The purpose of this paper is to build some new Hardy-Hilbert-type inequalities with multiparameters and their equivalent forms and variants, which generalize some existing results. Similarly, the corresponding Hardy-Hilbert-type integral inequalities are also given.
Citation: Limin Yang, Ruiyun Yang. Some new Hardy-Hilbert-type inequalities with multiparameters[J]. AIMS Mathematics, 2022, 7(1): 840-854. doi: 10.3934/math.2022050
The purpose of this paper is to build some new Hardy-Hilbert-type inequalities with multiparameters and their equivalent forms and variants, which generalize some existing results. Similarly, the corresponding Hardy-Hilbert-type integral inequalities are also given.
[1] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, London: Cambridge University Press, 1952. |
[2] | B. C. Yang, L. Debnath, On a new generalization of Hardy-Hilbert's inequality and its applications, J. Math. Anal. Appl., 233 (1999), 484–497. doi: 10.1006/jmaa.1999.6295. doi: 10.1006/jmaa.1999.6295 |
[3] | B. C. Yang, On an extension of Hardy-Hilbert's inequality, Chin. Ann. Math., 23 (2002), 247–254. |
[4] | B. C. Yang, On a new inequality similar to Hardy-Hilbert's inequality, Math. Inequal. Appl., 6 (2003), 37–44. doi: 10.7153/mia-06-04. doi: 10.7153/mia-06-04 |
[5] | M. Z. Gao, B. C. Yang, On the extended Hilbert's inequality, Proc. Amer. Math. Soc., 126 (1998), 751–759. doi: 10.1090/S0002-9939-98-04444-X. doi: 10.1090/S0002-9939-98-04444-X |
[6] | Y. J. Li, B. He, On inequalities of Hilbert's type, B. Aust. Math. Soc., 76 (2007), 1–13. doi: 10.1017/S0004972700039423. doi: 10.1017/S0004972700039423 |
[7] | J. Kuang, Note on an extensions of Hardy-Hilbert's inequality, J. Math. Anal. Appl., 235 (1999), 608–614. doi: 10.1006/jmaa.1999.6373. doi: 10.1006/jmaa.1999.6373 |
[8] | B. J. Sun, on an extension of Hardy-Hilbert's inequality with a best possible constant factor, Adv. Math. China, 36 (2007), 39–46. |
[9] | J. S. Xu, Hardy-Hilbert's inequalities with two parameters, Adv. Math. China, 36 (2007), 189–202. |
[10] | H. P. Mullholland, Some theorems on Dirichlet series with positive coefficients and related integrals, Proc. London Math. Soc., 29 (1929), 281–292. doi: 10.1112/plms/s2-29.1.281. doi: 10.1112/plms/s2-29.1.281 |
[11] | B. C. Yang, On Hilbert's integral inequality, J. Math. Anal. Appl., 220 (1998), 778–785. doi: 10.1006/jmaa.1997.5877. doi: 10.1006/jmaa.1997.5877 |
[12] | B. C. Yang, A dual Hardy-Hilbert's inequality and generalizations, Adv. Math. China, 35 (2006), 102–108. |
[13] | B. C. Yang, On Hardy-Hilbert's integral inequality, J. Math. Anal. Appl., 261 (2001), 295–306. doi: 10.1006/jmaa.2001.7525. doi: 10.1006/jmaa.2001.7525 |
[14] | N. Das, S. Sahoo, A generalization of multiple Hardy-Hilbert's integral inequality, J. Math. Inequal., 3 (2009), 139–154. doi: 10.7153/jmi-03-14. doi: 10.7153/jmi-03-14 |
[15] | B. Sroysang, A generalization on some new types of Hardy-Hilbert's integral inequalities, J. Funct. Space, 2013 (2013), 925464. doi: 10.1155/2013/925464. doi: 10.1155/2013/925464 |
[16] | J. F. Cao, B. He, Y. Hong, B. C. Yang, Equivalent conditions and applications of a class of Hilbert-type integral inequalities involving multiple functions with quasi-homogeneous kernels, J. Inequal. Appl., 2018 (2018), 206. doi: 10.1186/s13660-018-1797-5. doi: 10.1186/s13660-018-1797-5 |
[17] | D. M. Xin, B. C. Yang, A. Z. Wang, Equivalent property of a Hilbert-Type integral inequality related to the beta function in the whole plane, J. Funct. Space, 2018 (2018), 2691816. doi: 10.1155/2018/2691816. doi: 10.1155/2018/2691816 |
[18] | Q. Liu, A Hilbert-type integral inequality under configuring free power and its applications, J. Inequal. Appl., 2019 (2019), 91. doi: 10.1186/s13660-019-2039-1. doi: 10.1186/s13660-019-2039-1 |
[19] | Q. Liu, On a mixed Kernel Hilbert-type integral inequality and its operator expressions with norm, Math. Meth. Appl. Sci., 44 (2021), 593–604. doi: 10.1002/mma.6766. doi: 10.1002/mma.6766 |
[20] | Q. Chen, B. C. Yang, A reverse Hardy-Hilbert-type integral inequality involving one derivative function, J. Inequal. Appl., 2020 (2020), 259. doi: 10.1186/s13660-020-02528-0. doi: 10.1186/s13660-020-02528-0 |
[21] | Y. Hong, J. Q. Liao, B. C. Yang, Q. Chen, A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications, J. Inequal. Appl., 2020 (2020), 140. doi: 10.1186/s13660-020-02401-0. doi: 10.1186/s13660-020-02401-0 |
[22] | J. Q. Liao, S. H. Wu, B. C. Yang, On a new half-discrete Hilbert-type inequality involving the variable upper limit integral and partial sums, Mathemtics, 8 (2020), 229. doi: 10.3390/math8020229. doi: 10.3390/math8020229 |