In this paper, we gave some generalized Young type inequalities due to Zuo and Li [J. Math. Inequal., 16 (2022), 1169-1178], and we also presented a new Young type inequality. As applications, we obtained some operator inequalities and matrix versions inequalities including the Hilbert-Schmidt norm and trace.
Citation: Yonghui Ren. Some new Young type inequalities[J]. AIMS Mathematics, 2024, 9(3): 7414-7425. doi: 10.3934/math.2024359
In this paper, we gave some generalized Young type inequalities due to Zuo and Li [J. Math. Inequal., 16 (2022), 1169-1178], and we also presented a new Young type inequality. As applications, we obtained some operator inequalities and matrix versions inequalities including the Hilbert-Schmidt norm and trace.
[1] | H. Alzer, C. M. da Fonseca, A. Kova$\check{c}$ec, Young-type inequalities and their matrix analogues, Linear Multilinear Algebra, 63 (2015), 622–635. https://doi.org/10.1080/03081087.2014.891588 doi: 10.1080/03081087.2014.891588 |
[2] | M. A. Ighachane, Multiple-term refinements of Alzer-Fonseca-Kova$\check{\rm c }$ec inequalities, Rocky Mountain J. Math., 52 (2022), 2053–2070. https://doi.org/10.1216/rmj.2022.52.2053 doi: 10.1216/rmj.2022.52.2053 |
[3] | M. A. Ighachane, M. Akkouchi, E. Benabdi, Further refinements of Alzer-Fonseca-Kova$\check{\rm c }$ec's inequalities and applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 115 (2021), 152. https://doi.org/10.1007/s13398-021-01093-5 doi: 10.1007/s13398-021-01093-5 |
[4] | Y. Ren, Some results of Young-type inequalities, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Math., 114 (2020), 143. https://doi.org/10.1007/s13398-020-00880-w doi: 10.1007/s13398-020-00880-w |
[5] | M. Sababheh, Convexity and matrix means, Linear Algebra Appl., 506 (2016), 588–602. https://doi.org/10.1016/j.laa.2016.06.027 |
[6] | W. Liao, J. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Funct. Anal., 6 (2015), 191–202. https://doi.org/10.15352/afa/06-3-16 doi: 10.15352/afa/06-3-16 |
[7] | Z. Taki, M. A. Ighachane, D. Q. Huy, D. T. T. Van, Further improvement of Alzer-Fonseca-Kova$\check{\rm c }$ec's type inequalities via weak sub-majorization with applications, Adv. Oper. Theory, 9 (2024), 6. https://doi.org/10.1007/s43036-023-00306-5 doi: 10.1007/s43036-023-00306-5 |
[8] | J. Zhao, J. Wu, Operator inequalities involving improved Young and its reverse inequalities. J. Math. Anal. Appl., 421 (2015), 1779–1789. https://doi.org/10.1016/j.jmaa.2014.08.032 |
[9] | M. Sababheh, M. S. Moslehian, Advanced refinements of Young and Heinz inequalities, J. Number Theory, 172 (2016), 178–199. https://doi.org/10.1016/j.jnt.2016.08.009 doi: 10.1016/j.jnt.2016.08.009 |
[10] | M. A. Ali, E. K$\ddot{\rm o }$bis, Some new q-Hermite-Hadamard-Mercer inequalities and related estimates in quantum calculus, J. Nonlinear Var. Anal., 7 (2023), 49–66. https://doi.org/10.23952/jnva.7.2023.1.04 doi: 10.23952/jnva.7.2023.1.04 |
[11] | S. S. Dragomir, Trace inequalities for positive operators via recent refinements and reverses of Young's inequality, Spec. Matrices, 6 (2018), 180–192. https://doi.org/10.1515/spma-2018-0015 doi: 10.1515/spma-2018-0015 |
[12] | M. H. M. Rashid, F. Bani-Ahmad, New versions of refinements and reverses of Young-type inequalities with the Kantorovich constant, Spec. Matrices, 11 (2023), 0180. https://doi.org/10.1515/spma-2022-0180 doi: 10.1515/spma-2022-0180 |
[13] | M. Sababheh, D. Choi, A complete refinement of Young's inequality, J. Math. Anal. Appl., 440 (2016), 379–393. https://doi.org/10.1016/j.jmaa.2016.03.049 doi: 10.1016/j.jmaa.2016.03.049 |
[14] | Y. Yu, X. Yuan, T. Qin, T. Du, Error bounds on the Hermite-Hadamard and Bullen-type inequalities for $2\alpha$-local fractional derivative, J. Nonlinear Funct. Anal., 2023 (2023), 34. https://doi.org/10.23952/jnfa.2023.34 doi: 10.23952/jnfa.2023.34 |
[15] | A. Ghazanfari, S. Malekinejad, S. Talebi, Some new inequalities involving Heinz operator means, arXiv, 2017. https://doi.org/10.48550/arXiv.1703.02580 |
[16] | C. Yang, Y. Li, A new Young type inequality involoving Heinz mean, Filomat, 34 (2020), 3639–3654. https://doi.org/10.2298/FIL2011639Y doi: 10.2298/FIL2011639Y |
[17] | H. Zuo, Y. Li, Some refinements of Young type inequalities, J. Math. Inequal., 16 (2022), 1169–1178. https://doi.org/10.7153/jmi-2022-16-78 doi: 10.7153/jmi-2022-16-78 |
[18] | H. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551–556. https://doi.org/10.7153/JMI-05-47 doi: 10.7153/JMI-05-47 |
[19] | S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egypt. Math. Soc., 20 (2012), 46–49. https://doi.org/10.1016/j.joems.2011.12.010 doi: 10.1016/j.joems.2011.12.010 |
[20] | J. Pe$\check{c}$ari$\acute{c}$, T. Furuta, J. Hot, Y. Seo, Mond-Pe$\check{c}$ari$\acute{c}$ method in operator inequalities, Element, 2005. |
[21] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511840371 |