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1. Introduction

Let (H , ⟨·, ·⟩) be a complex Hilbert space and let B(H) denote the algebra of all bounded linear
operators acting on H . A self-adjoint operator A is said to be positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H ,
while it is said to be strictly positive if A is positive and invertible. As usual, we say that A > B when
A− B > 0 and A ≥ B when A− B ≥ 0, respectively. Moreover,Mn denotes the sets of all n× n complex
matrices. The unitarily invariance of the ||| · ||| on Mn means that |||UAV ||| = |||A||| for any A ∈ Mn and
all unitary matrices U,V ∈ Mn. For A = [ai j] ∈ Mn, the Hilbert-Schmidt (or Frobenius) norm and the
trace norm of A are defined by

||A||2 =

√√ n∑
j=1

s2
j(A)

and

||A||1 =
n∑

j=1

s j(A),

respectively, where s j(A) are the singular values of A, that is, the eigenvalues of the positive semi-
definite matrix

|A| = (A∗A)
1
2 ,
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and arranged in a nonincreasing order. It is well known that ∥ · ∥2 is unitarily invariant. In addition, we
defined

A∇sB = (1 − s)A + sB

and
A♯sB = A

1
2 (A−

1
2 BA−

1
2 )sA

1
2

for s ∈ [0, 1], denoted by A∇B and A♯B when s = 1
2 , respectively. Similarly, we define the weighted

means by
a∇sb = (1 − s)a + sb

and
a♯sb = a1−sbs

for a, b > 0 and s ∈ [0, 1].
The famous Young’s inequality states that the convex combination of two positive numbers is greater

than or equal to the product of powers of these numbers with corresponding coefficients as exponents,
which reads

a♯sb ≤ a∇sb (1)

for a, b > 0 and 0 ≤ s ≤ 1, with equation if and only if a = b. It extends the classical arithmetic-
geometric means inequality. In 2015, Alzer et al. [1] showed the following refinements and reverses of
Eq (1) ( s

τ

)λ
≤

(a∇sb)λ − (a♯sb)λ

(a∇τb)λ − (a♯τb)λ
≤

(1 − s
1 − τ

)λ
(2)

for a, b > 0, 0 < s ≤ τ < 1 and λ ≥ 1. In recent years, there have been a large number of works
directly inspired by the Alzer-Fonseca-Kovačec inequality, see [2–7] et al. Moreover, letting λ = 1,
the following results obtained by Zhao and Wu [8] can be regarded as some further refinements of (2)
when s = 1

2 and τ = 1
2 , respectively,

(i) If 0 ≤ s ≤ 1
2 , then

sa + (1 − s)b ≤ asb1−s + (1 − s)(
√

a −
√

b )2 − r0(
4√
ab −

√
a )2; (3)

(ii) If 1
2 ≤ s ≤ 1, then

sa + (1 − s)b ≤ asb1−s + s(
√

a −
√

b )2 − r0(
4√
ab −

√
b )2; (4)

where a, b > 0, r0 = min{2r, 1−2r}, r = min{s, 1− s} for s ∈ [0, 1]. Sababheh and Moslehian [9] show a
nice multiple-term refinements of (3) and (4). Interested readers could refer to [10–14] and references
therein for some other results about Young’s inequality.

Unless otherwise specified, we will default to a, b > 0 and 0 ≤ s ≤ 1 in the rest of this article for
our convenience.

There are some results related to Young’s inequality mentioned above. Ghazanfari et al. [15]
presented an inequality

(1 − s2 + s3)a + (1 − s2)b ≤ ss−2asb1−s + (
√

a −
√

b )2. (5)
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It is easy to verify that both sides in the inequality (5) are greater than or equal to the corresponding
sides in the inequalities (3) and (4), respectively. This indicates that the inequality (5) is a new Young
type inequality.

In 2020, Ren [4] showed a generalization of the inequality (5),

(1 − sN+1 + sN+2)a + (1 − s2)b ≤ ssN−(N+1)asb1−s + (
√

a −
√

b )2 (6)

for N ∈ N+. Later, Yang and Li [16] gave a more generalized inequality than (6): If N1,N2 ∈ N
+, then

(1 − sN1+1 + sN1+2)a + (1 − sN2+2)b ≤ ss(N1−N2)−(N1+1)asb1−s + (
√

a −
√

b )2. (7)

Very recently, Zuo and Li [17] got a new generalization of inequality (5): If N ∈ N+, then

(1 − sN+1 + sN+2)a + (1 − sN+1)b ≤ ss−(N+1)asb1−s + (
√

a −
√

b )2. (8)

In addition, the Kantorovich constant and the Specht’s ratio are defined by

K(h, 2) =
(h + 1)2

4h
for h > 0

and

S (h) =


h

1
h−1

e log
(

h
1

h−1
) , if h ∈ (0, 1) ∪ (1,∞),

1, if h = 1.

K(h, 2) and S (h) have some common properties, for example:
(i) K(1, 2) = S (1) = 1;
(ii) K(h, 2) and S (h) are decreasing on h ∈ (0, 1) and increasing on h ∈ (1,+∞);
(iii) K(h, 2) ≥ 1 and S (h) ≥ 1.
Zuo et al. [18] and Furuichi [19] showed

S (hr)a♯sb ≤ K(h, 2)ra♯sb ≤ a∇sb (9)

for r = min{s, 1 − s} and h = a
b > 0.

In this paper, we try to give some generalizations of (8), and we also present a new generalization of
Young type inequality, then we refine these inequalities with the Kantorovich constant. As applications,
we obtain some operator inequalities, Hilbert-Schmidt norm inequalities and trace inequalities.

2. Main results

First, we show a generalization of the inequality (8).

Theorem 1. Let N1,N2 ∈ N
+ and 1 ≥ s ≥ 0, a, b > 0. Then, we have

(1 − sN1+1 + sN1+2)a + (1 − sN1+N2+1)b ≤ ss(1−N2)−(N1+1)asb1−s + (
√

a −
√

b )2. (10)

AIMS Mathematics Volume 9, Issue 3, 7414–7425.



7417

Proof. By computations, we can get

ss(1−N2)−(N1+1)asb1−s + (
√

a −
√

b )2 − (1 − sN1+1 + sN1+2)a − (1 − sN1+N2+1)b

= ss(1−N2)−(N1+1)asb1−s − 2
√

ab + (1 − s)sN1+1a + ssN1+N2b

≥ ss(1−N2)−(N1+1)asb1−s − 2
√

ab + (sN1+1a)(1−s)(sN1+N2b)s (by (1))

=
(
s

s(1−N2)−(N1+1)
2 a

s
2 b

1−s
2 − s−

s(1−N2)−(N1+1)
2 a

1−s
2 b

s
2
)2

≥ 0.

□

We now explain that Theorem 1 is a new generalization of the Young type inequality. In fact,
comparing inequality (10) with (7), it is not difficult to find that

(1 − sN1+N2+1)b ≥ (1 − sN2+2)b

and
ss(1−N2)−(N1+1) ≥ ss(N1−N2)−(N1+1)

for N1,N2 ∈ N, 1 ≥ s ≥ 0, b > 0.

Remark 1. Taking N2 = 0 in Theorem 1, we get (8).

Next, we show another generalization of (8), which can be regarded as a complement of Theorem 1.

Theorem 2. Let N1,N2 ∈ N
+ and 1 ≥ s ≥ 0, a, b > 0. Then, we have

(1 − sN1+1 + sN1+2)a + (1 − sN1−N2+2)b ≤ ssN2−(N1+1)asb1−s + (
√

a −
√

b )2.

Proof. By computations, we can get

ssN2−(N1+1)asb1−s + (
√

a −
√

b )2 − (1 − sN1+1 + sN1+2)a − (1 − sN1−N2+2)b

= ssN2−(N1+1)asb1−s − 2
√

ab + (1 − s)sN1+1a + ssN1−N2+1b

≥ ssN2−(N1+1)asb1−s − 2
√

ab + (sN1+1a)(1−s)(sN1−N2+1b)s (by (1))

=
(
s

sN2−(N1+1)
2 a

s
2 b

1−s
2 − s−

sN2−(N1+1)
2 a

1−s
2 b

s
2
)2

≥ 0.

□

Comparing Theorem 2 with Theorem 1, it is easy to see that

(1 − sN1+N2+1)b ≥ (1 − sN1−N2+2)b

and
ss(1−N2)−(N1+1) ≥ ssN2−(N1+1)

for N2 ∈ N
+, 1 ≥ s ≥ 0, b > 0. Therefore, Theorem 2 is a new generalization of the Young type

inequality.
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Remark 2. Taking N2 = 1 in Theorem 2, we get (8).

Next, we show a new generalization of Young type inequality.

Theorem 3. Let N1,N2 ∈ N, 1 ≥ s ≥ 0 and a, b > 0. Then, we have

(1 − sN1 + sN1+1)a + (1 − sN2+1)b ≤ ss(N1−N2)−N1asb1−s + (
√

a −
√

b )2.

Proof. By computations, we obtain

(
√

a −
√

b )2 + ss(N1−N2)−N1asb1−s − (1 − sN1 + sN1+1)a − (1 − sN2+1)b

= (1 − s)(sN1a) + s(sN2b) − 2
√

ab + ss(N1−N2)−N1asb1−s

≥ (sN1a)1−s(sN2b)s − 2
√

ab + ss(N1−N2)−N1asb1−s (by (1))

=
(
s

s(N2−N1)+N1
2 a

1−s
2 b

s
2 − s

s(N1−N2)−N1
2 a

s
2 b

1−s
2
)2

≥ 0.

□

Letting N2 = 0 in Theorem 3, we get

(1 − sN + sN+1)a + (1 − s)b ≤ ssN−Nasb1−s + (
√

a −
√

b )2 (11)

for N ∈ N, 1 ≥ s ≥ 0 and a, b > 0. As we can see that both sides in (11) are greater than or equal to the
corresponding sides in the inequalities (3) and (4), respectively, this indicates that Theorem 3 is a new
generalization of the Young type inequality.

Following the ideas of Theorem 2, we can get a new Young type inequality by replacing N2 with 1−
N2 in Theorem 3. However, we omit it to avoid repetition of the article.

We next improve Theorems 1–Theorem 3 with the Kantorovich constant by (9).

Theorem 4. Let N1,N2 ∈ N
+ and 1 ≥ s ≥ 0, a, b > 0,

h =
s1−N2a

b
and

r = min{s, 1 − s}.

We have

(1 − sN1+1 + sN1+2)a + (1 − sN1+N2+1)b ≤ K(h, 2)−r ss(1−N2)−(N1+1)asb1−s + (
√

a −
√

b )2. (12)

Proof. Compute

K(h, 2)−r ss(1−N2)−(N1+1)asb1−s + (
√

a −
√

b )2 − (1 − sN1+1 + sN1+2)a − (1 − sN1+N2+1)b

= K(h, 2)−r ss(1−N2)−(N1+1)asb1−s − 2
√

ab + (1 − s)sN1+1a + ssN1+N2b

≥ K(h, 2)−r ss(1−N2)−(N1+1)asb1−s − 2
√

ab + K(h, 2)r(sN1+1a)(1−s)(sN1+N2b)s

=
(
K(h, 2)−

r
2 s

s(1−N2)−(N1+1)
2 a

s
2 b

1−s
2 − K(h, 2)

r
2 s−

s(1−N2)−(N1+1)
2 a

1−s
2 b

s
2
)2

≥ 0.

□
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Theorem 5. Let N1,N2 ∈ N
+, 1 ≥ s ≥ 0, a, b > 0 and r = min{s, 1 − s}.

(i) If

h =
sN2a

b
,

then, we have

(1 − sN1+1 + sN1+2)a + (1 − sN1−N2+2)b ≤ K(h, 2)−r ssN2−(N1+1)asb1−s + (
√

a −
√

b )2.

(ii) If

h =
sN1−N2a

b
,

then, we have

(1 − sN1 + sN1+1)a + (1 − sN2+1)b ≤ K(h, 2)−r ss(N1−N2)−N1asb1−s + (
√

a −
√

b )2.

Proof. Using the same technique as in Theorem 4, we complete the proof of Theorem 5. □

Replacing a by a2 and b by b2 in Theorems 4 and 5, respectively, we get the following corollary:

Corollary 1. Let N1,N2 ∈ N
+, a, b > 0 and r = min{s, 1 − s} for 1 ≥ s ≥ 0.

(i) If

h =
s1−N2a2

b2 ,

then, we have

(1 − sN1+1 + sN1+2)a2 + (1 − sN1+N2+1)b2 ≤ K(h, 2)−r ss(1−N2)−(N1+1)(asb1−s)2 + (a − b)2.

(ii) If

h =
sN2a2

b2 ,

then, we have

(1 − sN1+1 + sN1+2)a2 + (1 − sN1−N2+2)b2 ≤ K(h, 2)−r ssN2−(N1+1)(asb1−s)2 + (a − b)2.

(iii) If

h =
sN1−N2a2

b2 ,

then, we have

(1 − sN1 + sN1+1)a2 + (1 − sN2+1)b2 ≤ K(h, 2)−r ss(N1−N2)−N1(asb1−s)2 + (a − b)2.

Based on the scalars results mentioned above, we next present some operator inequalities, Hilbert-
Schmidt norm inequalities and trace inequalities as promised.

Lemma 6. [20] Let X ∈ Mn be self-adjoint and f and g be continuous real functions such that
f (t) ≥ g(t) for all t ∈ S p(X) (the spectrum of X). Then f (X) ≥ g(X).

AIMS Mathematics Volume 9, Issue 3, 7414–7425.
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Theorem 7. Let A, B ∈ B(H) be strictly positive operators and let positive real numbers m,m′ and
M,M′ satisfy either of the following conditions:

(i) 0 < s1−N2mI ≤ A ≤ s1−N2m′I < M′I ≤ B ≤ MI;
(ii) 0 < sN2−1mI ≤ B ≤ sN2−1m′I < M′I ≤ A ≤ MI.

Then, we have

(1 − sN1+1 + sN1+2)B + (1 − sN1+N2+1)A ≤ K(h′, 2)−r ss(1−N2)−(N1+1)A♯sB + 2(A∇B − A♯B),

where
h′ =

M′

s1−N2m′
, r = min{s, 1 − s}

and N1,N2 ∈ N
+.

Proof. Let b = 1 in (12), we have

(1 − sN1+1 + sN1+2)a + (1 − sN1+N2+1) ≤ K(s1−N2a, 2)−r ss(1−N2)−(N1+1)as + (a + 1 − 2
√

a ). (13)

Under the conditions (i), we have

I ≤ h′I =
M′

s1−N2m′
I ≤ X = A−

1
2 BA−

1
2 ≤ hI =

M
s1−N2m

I,

and then
S p(X) ⊆ [h′, h] ⊆ (1,+∞).

By Lemma 6 and (13), we obtain

(1 − sN1+1 + sN1+2)X + (1 − sN1+N2+1)I ≤ max
h′≤x≤h

K(x, 2)−r ss(1−N2)−(N1+1)Xs + (X + I − 2X
1
2 ).

Since the Kantorovich constant K(h, 2) is an increasing function on h ∈ (1,+∞), then

(1 − sN1+1 + sN1+2)A−
1
2 BA−

1
2 + (1 − sN1+N2+1)I

≤ K(h′, 2)−r ss(1−N2)−(N1+1)(A−
1
2 BA−

1
2 )s + A−

1
2 BA−

1
2 + I − 2(A−

1
2 BA−

1
2 )

1
2 . (14)

Under the conditions (ii), we have

1
h

I =
sN2−1m

M
I ≤ X = A−

1
2 BA−

1
2 ≤

1
h′

I =
sN2−1m′

M′
I ≤ I,

and then
S p(X) ⊆ [

1
h
,

1
h′

] ⊆ (0, 1).

Since the Kantorovich constant K(h, 2) is a decreasing function on h ∈ (0, 1), we can similarly get

(1 − sN1+1 + sN1+2)A−
1
2 BA−

1
2 + (1 − sN1+N2+1)I

≤ K
( 1
h′
, 2
)−r ss(1−N2)−(N1+1)(A−

1
2 BA−

1
2 )s + A−

1
2 BA−

1
2 + I − 2(A−

1
2 BA−

1
2 )

1
2 . (15)

In fact, inequality (14) is equal to (15) with the property

K(t, 2) = K(
1
t
, 2).

Multiplying A
1
2 from the both sides to the inequalities (14) or (15), we get the required results. □

AIMS Mathematics Volume 9, Issue 3, 7414–7425.
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Theorem 8. Let A, B ∈ B(H) be strictly positive operators and let positive real numbers m,m′ and
M,M′ satisfy either of the following conditions

(i) 0 < sN2mI ≤ A ≤ sN2m′I < M′I ≤ B ≤ MI;
(ii) 0 < s−N2mI ≤ B ≤ s−N2m′I < M′I ≤ A ≤ MI;
Then, we have

(1 − sN1+1 + sN1+2)B + (1 − sN1−N2+2)A ≤ K(h′, 2)−r ssN2−(N1+1)A♯sB + 2(A∇B − A♯B),

where
h′ =

M′

sN2m′
, r = min{s, 1 − s}

and N1,N2 ∈ N
+.

Proof. Using the same method as in Theorem 7, we can get Theorem 8 by Theorem 5 (i). □

Theorem 9. Let A, B ∈ B(H) be strictly positive operators and let positive real numbers m,m′ and
M,M′ satisfy either of the following conditions

(i) 0 < sN1−N2mI ≤ A ≤ sN1−N2m′I < M′I ≤ B ≤ MI;
(ii) 0 < sN2−N1mI ≤ B ≤ sN2−N1m′I < M′I ≤ A ≤ MI;
Then, we have

(1 − sN1 + sN1+1)B + (1 − sN2+1)A ≤ K(h′, 2)−r ss(N1−N2)−N1 A♯sB + 2(A∇B − A♯B).

where
h′ =

M′

sN1−N2m′
, r = min{s, 1 − s}

and N1,N2 ∈ N
+.

Proof. Using the same method as in Theorem 7, we can obtain Theorem 9 by Theorem 5 (ii). □

Theorem 10. Let A, B ∈ Mn be positive definite and X ∈ Mn. Then, we have

(1 − sN1+1 + sN1+2)||A||22 + (1 − sN1+N2+1)||B||22 ≤ K−r ss(1−N2)−(N1+1)||AsXB1−s||22 + ||AX − XB||22,

where N1,N2 ∈ N
+, r = min{s, 1 − s} for 1 ≥ s ≥ 0 and

K = min
{
K(

s1−N2λ2
i

µ2
l

, 2), 1 ≤ i, l ≤ n
}

for λi, µl are eigenvalues of A, B, respectively.

Proof. Since A, B ∈ Mn are positive definite, by the spectral theorem, there exist unitary matrices
U,V ∈ Mn such that

A = UΛ1U∗, B = VΛ2V∗,

where

Λ1 = diag(λ1, λ2, · · · , λn), Λ2 = diag(µ1, µ2, · · · , µn), λi, µi > 0, i = 1, 2, · · · , n.

AIMS Mathematics Volume 9, Issue 3, 7414–7425.
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Let
Y = U∗XV = [yil],

then,

||AX − XB||22 =
∣∣∣∣∣∣U[(λi − µl)yil]V∗

∣∣∣∣∣∣2
2
=

n∑
i,l=1

(λi − µl)2|yil|
2.

Similarly, we have

||AsXB1−s||22 =

n∑
i,l=1

(λs
iµ

1−s
l )2|yil|

2

and

||A||22 =
n∑

i,l=1

λ2
i |yil|

2.

By the unitarily invariance of the Hilbert-Schmidt norm and Corollary 1 (i), we get the following results

(1 − sN1+1 + sN1+2)||A||22 + (1 − sN1+N2+1)||B||22

= (1 − sN1+1 + sN1+2)
n∑

i,l=1

λ2
i |yil|

2 + (1 − sN1+N2+1)
n∑

i,l=1

µ2
l |yil|

2

=

n∑
i,l=1

[
(1 − sN1+1 + sN1+2)λ2

i + (1 − sN1+N2+1)µ2
l

]
|yil|

2

≤

n∑
i,l=1

[
K−r ss(1−N2)−(N1+1)(λs

iµ
1−s
l )2 + (λi − µl)2

]
|yil|

2

= K−r ss(1−N2)−(N1+1)||AsXB1−s||22 + ||AX − XB||22.

□

Theorem 11. Let A, B ∈ Mn be positive definite and X ∈ Mn. Then, we have

(1 − sN1+1 + sN1+2)||A||22 + (1 − sN1−N2+2)||B||22 ≤ K−r ssN2−(N1+1)||AsXB1−s||22 + ||AX − XB||22,

where N1,N2 ∈ N
+, r = min{s, 1 − s} for 1 ≥ s ≥ 0 and

K = min
{
K(

sN2λ2
i

µ2
l

, 2), 1 ≤ i, l ≤ n
}

for λi, µl are eigenvalues of A, B, respectively.

Proof. We get Theorem 11 by Theorem 10 and Corollary 1 (ii). □

Theorem 12. Let A, B ∈ Mn be positive definite and X ∈ Mn. Then, we have

(1 − sN1 + sN1+1)||A||22 + (1 − sN2+1)||B||22 ≤ K−r ss(N1−N2)−N1 ||AsXB1−s||22 + ||AX − XB||22,

where N1,N2 ∈ N
+, r = min{s, 1 − s} for 1 ≥ s ≥ 0 and

K = min
{
K(

sN1−N2λ2
i

µ2
l

, 2), 1 ≤ i, l ≤ n
}

for λi, µl are eigenvalues of A, B, respectively.
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Proof. We get Theorem 12 by Theorem 10 and Corollary 1 (iii). □

Lemma 13. [21] Let A, B ∈ Mn, then,
n∑

j=1

s j(AB) ≤
n∑

j=1

s j(A)s j(B).

Theorem 14. Let A, B ∈ Mn be positive definite and N1,N2 ∈ N
+, r = min{s, 1 − s} for 1 ≥ s ≥ 0 and

K = min
{
K(

s1−N2 s j(A)
s j(B)

, 2), 1 ≤ j ≤ n
}
.

Thus, we have

tr
[
(1 − sN1+1 + sN1+2)A + (1 − sN1+N2+1)B

]
≤ K−r ss(1−N2)−(N1+1)||As||2||B1−s||2 + ||A||1 + ||B||1 − 2||A

1
2 B

1
2 ||1.

Proof. By Theorem 4, Lemma 13 and the famous Cauchy-Schwarz inequality, we obtain

tr
[
(1 − sN1+1 + sN1+2)A + (1 − sN1+N2+1)B

]
=

n∑
j=1

(
(1 − sN1+1 + sN1+2)s j(A) + (1 − sN1+N2+1)s j(B)

)
≤

n∑
j=1

[
max K

( s1−N2 s j(A)
s j(B)

, 2
)−r

ss(1−N2)−(N1+1)ss
j(A)s1−s

j (B) +
( √

s j(A) −
√

s j(B)
)2]

= K−r ss(1−N2)−(N1+1)
n∑

j=1

s j(As)s j(B1−s) +
n∑

j=1

s j(A) +
n∑

j=1

s j(B) − 2
n∑

j=1

√
s j(A)s j(B)

≤ K−r ss(1−N2)−(N1+1)
( n∑

j=1

s2
j(A

s)
) 1

2
( n∑

j=1

s2
j(B

1−s)
) 1

2

+

n∑
j=1

s j(A) +
n∑

j=1

s j(B) − 2
n∑

j=1

s j(A
1
2 B

1
2 )

= K−r ss(1−N2)−(N1+1)||As||2||B1−s||2 + ||A||1 + ||B||1 − 2||A
1
2 B

1
2 ||1.

□

Theorem 15. Let A, B ∈ Mn be positive definite and N1,N2 ∈ N
+, r = min{s, 1 − s} for 1 ≥ s ≥ 0 and

K = min
{
K(

sN2 s j(A)
s j(B)

, 2), 1 ≤ j ≤ n
}
.

We have

tr
[
(1 − sN1+1 + sN1+2)A + (1 − sN1−N2+2)B

]
≤ K−r ssN2−(N1+1)||As||2||B1−s||2 + ||A||1 + ||B||1 − 2||A

1
2 B

1
2 ||1.

Proof. Following the line of Theorem 14, we can get the Theorem 15 by Theorem 5 (i). □

Theorem 16. Let A, B ∈ Mn be positive definite and N1,N2 ∈ N
+, r = min{s, 1 − s} for 1 ≥ s ≥ 0 and

K = min
{
K(

sN1−N2 s j(A)
s j(B)

, 2), 1 ≤ j ≤ n
}
.

We have

tr
[
(1 − sN1 + sN1+1)A + (1 − sN2+1)B

]
≤ K−r ss(N1−N2)−N1 ||As||2||B1−s||2 + ||A||1 + ||B||1 − 2||A

1
2 B

1
2 ||1.

Proof. Following the line of Theorem 14, we can get the Theorem 16 by Theorem 5 (ii). □
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3. Conclusions

In this paper, we give two generalized Young type inequalities of Zuo and Li [17], and we also
present a new Young type inequality by comparing with the results obtained by Zhao and Wu [8]. As
applications, we obtain some inequalities including operator, Hilbert-Schmidt norm and trace using
our scalars results.
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inequalities and applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 115 (2021),
152. https://doi.org/10.1007/s13398-021-01093-5

4. Y. Ren, Some results of Young-type inequalities, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A.
Math., 114 (2020), 143. https://doi.org/10.1007/s13398-020-00880-w

5. M. Sababheh, Convexity and matrix means, Linear Algebra Appl., 506 (2016), 588–602.
https://doi.org/10.1016/j.laa.2016.06.027

6. W. Liao, J. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean,
Ann. Funct. Anal., 6 (2015), 191–202. https://doi.org/10.15352/afa/06-3-16

7. Z. Taki, M. A. Ighachane, D. Q. Huy, D. T. T. Van, Further improvement of Alzer-Fonseca-
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