AIMS Mathematics, 7(1): 840-854.
ATIMS Mathematics DOI: 10.3934/math.2022050
%5 Received: 8 April 2021

o Accepted: 11 October 2021
http://www.aimspress.com/journal/Math Published: 18 October 2021

Research article

Some new Hardy-Hilbert-type inequalities with multiparameters

Limin Yang" and Ruiyun Yang

Basic Department, Henan Vocational College of Water Conservancy and Environment, Zhengzhou
450008, China

* Correspondence: Email: liminyangzhengzhou@163.com.

Abstract: The purpose of this paper is to build some new Hardy-Hilbert-type inequalities with
multiparameters and their equivalent forms and variants, which generalize some existing results.
Similarly, the corresponding Hardy-Hilbert-type integral inequalities are also given.

Keywords: Hardy—Hilbert-type inequality; Holder’s inequality; Beta function
Mathematics Subject Classification: 26D 15

1. Introduction

Leta,,b,>0,p>1,1/p+1/g=1.1f0< Y7, al <coand 0 < Y% b < oo, then

n=1

1/q

Z.O:Zwlncz+n sm(ﬂ/p)[i01 ]Up[ib] (D

n= =1 n=

where the constant r/ sin(rr/ p) is the best possible. The inequality (1.1) can be called as the well known
Hardy-Hilbert’s inequality [1]. An equivalent form of inequality (1.1) is presented as follows.

b3

n=1  m=1

n P —
sin(ﬂ/p)] ;a,’;, (1.2

where the constant [/ sin(sr/ p)]? 1s also the best possible. In connection with applications in analysis,
their generalizations and variants have received considerable interest recent years [2—-12]. By
introducing some parameters, Yang [13] obtained a generalization of Hardy-Hilbert’s integral
inequality with a best constant factor that involves the beta function. In the paper [14], Das and sahoo
considered a generalization of multiple Hardy-Hilbert’s inequality with the best constant factor.
Sroysang [15] established a generalization on the kinds of Hardy-Hilbert’s integral inequality with the
weight homogeneous function.
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By introducing a parameter, the following extension of (1.1) was obtained by Yang [3]. Let a,,, b, >
0,p>1,1/p+1/g=1.160< 32, n? DIVl < 00,0 < 322 n@DI=VpT < 0o, then

© o b 1/q
G L (P=D(=) p] p[ (q—l)(l—A)bq] 1.3
ZZmﬂ+n/l ﬂsm(n/p)[Z . ;n " (13)

n=1 m=1

where the constat /(A sin(rr/ p)) is the best possible.

Nextly, Sun [8] gave an extension of (1.3) as follows. Let a,,b, > 0, p > 1, 1/p+ 1/q = 1,
0<A<min(p,q),c>0.If0 < Y2 nPDI-Vgl < 00 (0 < 320 n@~DI-VpT < oo, then

—D(1-1 —1)(1-1
ZZ Tent ST DI N DI (14
(m n )‘ e P

n= =1

where the constant ¢, , = (1/c)B(1/(cp), A/(cq)) is the best possible, B(e, *) denotes the beta function.

Finally, by introducing two parameters, Xu [9] presented another extension of (1.3) as follows.
Let a,,b, > 0,p > 1, 1/p+1/g=1,0< 4, <p,0< b <q If0 < 32, nr =gl < oo,
0< Y, n@DI=p! < oo then

(o) (o] a b p o 1/q
men E‘ (p-D(A-) p }‘ (g-1)(1-12) g
Z Z m + pt2 < A, Vap,te sm(ﬂ/P)[ . ] [nzl " b”] ’ (1.5)

1/11/11/17

where the constant 7/(4, sin(rr/ p)) is the best possible.

Recently, some Hilbert-type integral inequalities with quasi-homogeneous integral kernels and
multiple functions were established [16]. By means of the technique of real analysis and the weight
functions, Xin [17] obtained an equivalent statements of a Hilbert-type integral inequality with the
nonhomogeneous kernel in the whole plane and the best constant factor related to the beta function.
By using the weight function and the technique of real analysis, Liu [18, 19] established some
multi-parameter Hilbert-type integral inequalities with the hybrid kernel and the best constant factors,
respectively. By using weight functions and introducing parameters, Chen and Yang [20] presented a
reverse Hardy-Hilbert-type integral inequality involving one derivative function and the beta function.
Based on the theory of operators, Hong et al. [21] obtained a necessary and sufficient condition and
the best constant factor for the Hilbert-type multiple integral inequality with kernel. Liao et al. [22]
investigated a new half-discrete Hilbert-type inequality involving the variable upper limit integral and
partial sums and proved the equivalent conditions of the best possible constant factor related to
several parameters.

In the paper, motivated by the mentioned references above, we will obtain a Hardy-Hilbert-type
inequality with multiparameters, which can be see as a new generalization of (1.3)—(1.5). And its
equivalent form and variant are given. Furthermore, their integral forms are also presented.

2. New Hardy-Hilbert-type inequalities with multiparameters for double series

For convenience, we assume always that B(e, %) represents the beta function throughout the paper.
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Theorem 2.1. Let a,,b, > 0, and p > 1, 1/p+1/g=1,0< 2, <p,0< A <q0<c< Al
0< Y, n(”‘l)(l‘%)aﬁ <00, 0< Y, n(q‘l)(l‘#)bz < oo, then

e SRR ITECIIN L4 I NI . LT
22 ey <l el [ Lt e
(m1+n2)ﬂ n=1

n=1

where the constant c,, = (1/ /1}/ q/l;/ PYB(c/(Ap), c/(Aq)) is the best possible.

Remark 2.1. The above inequality presented in (2.1) concretely produces some known Hardy-Hilbert
type inequalities based on different settings of the parameters 4, A, and A.

(A1) If A; = A, = A = ¢, then inequality (2.1) reduces to the inequality (1.3) given in Yang [3].
(A2) If A; = A, = A, then inequality (2.1) develops into the inequality (1.4) presented in Sun [8].
(A3) If A = ¢, then inequality (2.1) converts into the inequality (1.5) given in Xu [9].

The idea of proof of Theorem 2.1 comes similarly from [3] and [9]. To prove the Theorem 2.1, we
need some lemmas in the same way, which are new generalizations of some lemmas given in [8,9].

Lemma 2.1. Let p > 1, 1/p+1/qg = 1, 41,4, > 0, 0 < ¢ < A Define the weight function
wy0,p) = fooo(l/()cﬁl + Y)Yyl [yl @A) xe [Ty e (0, 00) and weight coefficient
D10, (1, p) = T (1) (m™ 4+ n )Y (2 [ )T AP /A1,

Then (a) wa,1,(y,p) = (1/A41)B(c/(Ap),c/(Aq)), and (b) If O < A < p, and n € N, then
@y, (N, p) < W, 0, (1, p) holds.

Proof. (a) Sett = xY1/y*. Then

00 1 A2 \c/(Ap) p 1 ) 1 . 1
w/ll,/lz(y9p):f —((y_) x%_ldx:— (,t/lq_ldt:—B(i,i).
o (x4 yh)Tixt A do (1+1)i A \Ap’ Aq

(b) Since 1 — (cA;/A) + (cA;/Ap) > 0, foxed A;,A,,and n € N, the function f(x) = (1/(xY +
n2)lty(n2 | x)elAp) xeli/A=1 g strict deceasing in (0, o). Then

fon < [ sedx= Y fom < [ o
m- m=1

So we have @,, ,,(n, p) < w,, 1, (n, p). This completes the proof of Lemma 2.1. m]
Similar to Lemma 2.1, we can introduce the following lemma.

Lemma 2.2. Let p > 1, 1/p+1/qg = 1, 41,4, > 0, 0 < ¢ < A Define the weight function
oy006p) = fow(l/(x*1 + Y)Y (M [y)cl@Pyea/=tgy - x e (0,00) and weight coefficient
a0, (m, p) = T (1/(m + n2) I (m [ )/ pete/ 1,

Then (a) Wi, 1,(x,p) = (1/A2)B(c/(Ap),c/(Aq)), and (b) If O < A, < ¢q, and m € N, then
Wy, 2,(m, p) < @a, 1,(m, p) holds.

Lemma23. Letp>1,1/p+1/g=1,24,4,>0,0<c< A €€ (0,9/2p)). Then

1
© Tl e
f f' Wi dudx = 0(1), & — 0. (2.2)
1 0

PSS (14 u)i
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Proof. Tt follows from € € (0,g/(2p)) that 1/p —&/q > 1/(2p). Then we have

0<f f ' uiGo- 1dudx<f f Wi~ dudx
(1 +u)1 A +uws +u)1
212
f f & 1dudx<_ f -5 gy = P
(1 + u)l Ay c?

which implies (2.2). This finishes the proof of Lemma 2.3. m|

Nextly, we will give the proof of Theorem 2.1.

Proof. By using the Holder’s inequality and Lemmas 2.1 and 2.2, we can capture

MJ,I ('/17171
(o] 00 oo (o] < A < A
§ § § E an mY\ " p T b, n2 \ v
= (Wﬂ1 + nh)1 — L (i 4 )T \ 2 S | [ (mAr + ph)ia \mh ,
n=1 m=1 n=1 m=1 m=q s
- 1/q
0 0 m/]l Aq 612_1 o n/IZ /%P mrjl —1
D30 v ey M ZZ
(m/ll + n/lZ)/l n/IZ ]7(7—1) (m/ll + n/lz)/l mll (ﬁfl)
n=1 m=1 m n= =1 nr
1/p

_ ii m'\ia Rl (p- 1)(1—‘%
= (m/h N n/lz)/% n/lz n-

o b
x[ Z X 1 A (n;)/{pmu:l‘ln(q‘”“‘dz)b]/q
S L Gt )T\
i > Iq
— &)/ll,/lz(m’(Z)mp D- 4 )ap [Za) /lz(n p)nq D(- l)bq]
- m=1

/q
W1, (n, pyn@ 0= F >bq]

i 1

(N p-na-2t) p 1"
<| D" @ m, @m0 aﬁl] [

m=1 n=1

- 1
gl [l [ gl | 2]
| Ay /lp Ag — m Ay /1]? Aq o
:cM,[Zm@‘”(“%a”] /p[z (@D o e

5 (2.3)
m=1 n=1

which implies (2.1). Now we prove that the constant c,, is the best possible. Suppose that the
constant ¢, , in inequality (2.1) is not the best possible, then there exists positive k < ¢, , such that k
replaces with ¢, , in inequality (2.1) holds all the same. Especially, for ¢ € (0,q/2p), let

1+(cAy £/ )+(p-1)(1-cdy /) N 1+(cy 8/ D+g-1)(1-cdp /1)
a, = (1/n) » and b, = (1/n) q for n € N, then we obtain
[ee] [s6] [ee]
Z (p-1(1-41) 1/1 _ and Z n(q—l)(l—%)j) Z (2.4)
n=1 nl+% n=1 n=1 I’l

On the other hand, we have

1 o0 1 ) 1 0 1 )
E:fl xwdwnzz;nw:1+an—<1+f1 Sdx= 0. (25)

n=2
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It follows from (2.4) and (2.5) that we observe

= c Py & PR 190 1 Upr 2 l/q
(p-D(1-50) ] [ (q—l)(l—f>bq] _ [ + o1 ] [ ]
[ ; " Z " " clie M cle

I/p A
] = W(l + 0(1)), (26)

zom] [z

as & tends to 0*. According to the assumption, we have

00 (o) ,\ 00 00 1+(cdy g/ D)+(p=1)(1-cd /) 1+(cAye/D)+(g=1)(1-cdp /1)
ZZ T = 2 2 G G
A Ys % A2)7 a lTl
— = (m" +n ) — = (m" +n )i
1+(d]s//l)+(p D(1—-cAy /) 1+(cApe/D+(g—1)(1—cdy /1)

> —C (l) ’ (1) ! dxdy
) (XA‘+)’”2)’ x y
cd_gyg
T us” " dudx
s (l + u)l
L J c 1 £
f = f ul (=9)- "dudx — —f — f 1 uis— - 1dudx
4 (1+I/t)1 I+ (1+u)4

where in the third equality we set that u = y/x". At the same time, when & tends to 0*, we have
1 1
i 8l oh i~ o) =2 ) =4 i)
e—0r \A\g ¢q/ A\p ¢ Aq Ap Ap Aq
| c 1 1
[0 au=p(S(5 2 (2 - ) = B Lot
o (I+u): ANg q/WN\p ¢ Ap- Aq

which implies that if & tends to 0*, the following equations holds true

| Y | « 1 by A c c
- Wi~ qudyx = B(—, —) + o(1 ]
A2 fl o+ \fo (1+ u)ﬁ cihel \Ap” Aq M

It follows from Lemma 2.3 that when & tends to 0, we get

i i b, o4
(mY +n)i  cdidE

B(C )+0(1)] o)

m=1 n= Ap’ Aq
:C/ll/lsz(/lp 1 )(“O(l)) W%[Ho(l)]. 2.7)

Due to the equations (2.6) and (2.7), we can obtain

A
,1”P i CAp(1+O(1))<ZZ(mM i < gk o)
1 2

m=1 n=1

as g tends to 0". We have ¢, , < k, in contradiction with supposition. So the constant ¢, , in inequality
(2.1) is the best possible. This finishes the proof of Theorem 2.1. O

AIMS Mathematics Volume 7, Issue 1, 840-854.



845

Theorem 2.2. Let a,, > Oand p > 1, 1/p+1/g =1,0< 43 < p,0< A <¢q 0<c <A
cap = (/9 0")B(c/(Ap), ¢/ (A)). IFO < Tin_y mP~D1-Wgh < oo, then

-1 a— (p-DH(1- ”1)
0< Z [Z (m/ll + n,lz) ] C/lp Z m m’ (28)

where the constant ci 18 the best possible. Moreover, inequality (2.8) is equivalent to inequality (2.1).

Proof. There exists k, € N, such that Y* _ (a,/(m" + n®2)¥Y) > 0 for k > ky. Setting b,(k) =
neRIEI Sk (@, /(mt + n?2)1)]P! for k > k. Thanks to (2.1), then we get

x k k k k
S cy ambn(k)
0< an bZ(k) Zl’l ! [Z (m/“ +n/12)1] ZZ (m/l1 +n/lz)4

n=1 n=1 m=1 n=1 m=1

D1 cdp P D1 cdy l/q
<CM)[ Z p(PD0=) gp [Z a1 ‘UbZ(k)] ,
n=1 n=1

which imply the following inequality

k k
(= _ _ﬂ
Zn(q D(1-= )bZ(k) < cipzn(.v (1 )

n=1 n=1

& cd
Letting k tends to o, we have 0 < 3} n?"(1=7)4”? < 0. Then we obtain
n=1

N M2 a
o< S St e B
(m + nt2)i P
n=1 m=1

Therefore, inequality (2.8) holds from inequality (2.1).
On the other hand, if inequality (2.8) holds, by applying the Holder’s inequality, we have

g anb, e a, -2
2D T =T ) | T by
n:lml(ml_'_nz)l n=1 m:l(m1+n2)/l
hnd cA had l/p c/l q
5 (Sl S
n=1 m=1 (m/ll + n/lz)
= oy o 14
<Cﬂ’p[zn<p—1>u—ﬂ)a£] [Zn(q D=4 )bZ] ’
n=1 n=1

which means that inequality (2.1) holds. Since the constant ¢, , in inequality (2.1) is the best possible,
and inequality (2.1) is the equivalent to inequality (2.8), the constant ¢, , in inequality (2.8) is also the
best possible. This completes the proof of Theorem 2.2. O

Now we present a variant of Theorem 2.1 as follows.
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Theorem 2.3. Let a,,b, > 0, andp > 1, 1/p+1/g=1,0< A4, <p0< A <qg0<c< Al
0 < Y2, (Innt)P=D0-Dpr-lgl < 0o, and 0 < 3.2 ,(Inn2) 4" DI=Dpa=1pT < co, then

&) I/p1r 1/q
a c _ _ _c _
P |t ‘aﬁ} [Zﬂnn%“’ oyl 29)
n2m2(nm n )A n=2 n=2

where the constant c,, = (1 //li/ q/lé/ PYB(c/(Ap), c/(Aq)) is the best possible.

Remark 2.2. The above inequality presented in (2.9) concretely produces some known Hardy-Hilbert
type inequalities based on different settings of the parameters A, A, and A.

(B1) If 4y = 1, = A = ¢ = 1, Theorem 2.3 reduces to Theorem 2.1 given by Yang [4].

(B2) If A = ¢, then Theorem 2.3 is converted into Theorem 4 obtained by Xu [9].

B3) Ify =4, =4 =c=1and a,,b, are replaced by a,,/m, b,/n, respectively, then the inequality
(2.9) is developed into the Muholland’s inequality presented in [10].

When a,,, b, are replaced by a,,/m, b, /n in inequality (2.9), respectively, it is easy to obtain that
inequality (2.9) is equivalent to the following new variant of Muholland’s inequality.

1/q

© &) pr o
<c In ) P-D0=5,-1 40 Inn2) @ D09y 1pa|
,,Z Z; — (lnmbnw A Z;x ) ’ Z;‘( ) /
where 0 < 32, (Inp")P~D1=Dp-1gl < 00, 0 < ¥°,(Inn®)@D1-Dp-1p! < oo, and the constant
cap = (1 //l}/q/l;/”)B(c/(/lp), ¢/(Aq)) is also the best possible.

The method of proof of Theorem 2.3 comes from [4,9]. To prove Theorem 2.3, we need the
following two lemmas, which are new generalizations of Lemma 3 and Lemma 4 in [9].

Lemma 24. Letp > 1, 1/p+1/q =1, 41,4, > 0,0 < ¢ < A Define the weight function o', , (v, p) =
flw(l/(ln xUy2)1)(Iny*/ In xﬂl)ﬁ(h} ¥ x7ldx, y € (0,00), and weight coefficient 'y, 1,(n, p) =
Yoo (1/(Inmh ) (Ann®/ Inm™) & (Inm*)i'm™". Then (a) W), p) = (1/A1)B(c/(Ap), c/(Aq)),
and (b) If n € N and n > 2, then o'y, 1,(n, p) < w;Mz(n, p) holds.

Proof. (a) Sett = Inx"/Iny*®. Then

. 1 1 1 0 1 ¢ 1
Wy, 05 P) = f ( e ) (Inx")i'x"'dx = — ~tiadt = —B(i’ i).
" 1 (Inxty2)illnxh A Je A+ A \Ap’ Ag

(b) For fixed A;, A5,and 2 < n € N, the function f(x) = (1/(In x"n2)7)(Inn'2/ In x)% (In x1) 11 x7!
is strict deceasing in (1,00). Then f(m) < fm m_l f(x)dx. Furthermore, we can obtain ), _, f(m) <
Eo Jf(x)dx. So we have w'y, 1,(n, 5) < ), (1, 5). m]

Similar to Lemma 2.4, we can get the following lemma.

Lemma2.5. Letp>1,1/p+ 1/q =1, 41,4, > 0,0 < ¢ < A Define the weight function ', 1,(x, p) =
f (1/(In x1y®2))(In x* / In y2) 7 (In y2) iy~ 1dy, x € (0,00), and weight coefficient &', ,,(m, p) =
Yo, (1/(nmt ) D) (Inmt / Inn®2) % (Inn®)i~'n™!. Then (a) &' 4.1,(x, p) = (1/)B(c/(Ap), c/(A9)),
and (b) If m € N, and m > 2 then cﬁ’ﬁl,ﬁz(m, p) < W'y, 1,(m, p) holds.
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Nextly, we will give the proof of Theorem 2.1.

Proof. By using the Holder’s inequality and Lemmas 2.4 and 2.5, we have

© o ambn 0 o0 a, lnm/h ﬁ Badeol) K l(l_g)mé
ZZW:ZZ[(lnmﬂlnﬂz)fﬂ(hmﬂz) R

nr
bn lnnﬂz ﬁ 1 L(]_g) 1 l(g_l) I’l%
Aipdyis \Inmd (Inp™)r = (n m™)a " —
(InmApte)a \Inm

ah (ln mt

(In mh nt2)a

< /g
*© q A2\ p -1
> n AN 1 o805 (i 1
(In m n/lz)a In m m

ma

Nk
M

IA

£ _1 I/p
) (In )i (n ) 50-DM }
n

In nt2

S
I
[\
3
I
[\8]

Ms

X
n=2 m=2
o o < 1/p
1 lllm/l' A c_ _ — _c —
(525 Gt () oty
nm-int)a nn
n=2 m=2

X

:Mg

- < 1/q
lnn Ap P .
Z (nm™) T m ™ (In n'2)@ D=0 pa-1pa
— (In m’l' nt2)i \Inm" '

ey 14

(ﬂul,ﬂz(n, p)(]n n/lz)(q_l)(l_%)nq_lbz

Me

0 A —1)(1-¢ 1
w/,ll,,lz(m,q)(lnml)(P YA=9) P a’

D

g 3
(3]

L n=2

1l/pr 1l/q

<| 20 @ lm)inm )P Dmr ],
Lm=2 § L n=2

a)’/ll,/lz(l’l,p)(]n n/lz)(q_l)(l_%)l’lq_lbz

e

) I/pr 1/q

m=2 n=2

which implies (2.9). Now we prove that the constant ¢, , is the best possible. Suppose that the
constant ¢, , in inequality (2.9) is not the best possible, then there exists positive k < ¢, , , such that k
replaces with ¢, ,, inequality (2.9) holds all the same. Especially, for ¢ € (0,q/(2p)), set
4, = 1/(n(In p)(=c/0/p+(+ece/D/p)y and b, = 1/(n(In p'2)1=c/D/p+(1+ce/0/a) for n € N, then we have

[ee)

In ntH)®P-DA=Dyp-15 _ and In n2)@= D=1 ya- lb
Z( ) Z n(In n"')1+ Z( ) Z n(lnnb)”

n=2 n=2 n=2

As o tends to 0", we have

(o8]

1 ® 1 1 1 1 - 1
TP ——dx < = + + Ep a———
Al+oo £ x(ln x/l)l+0' X HZ:; n(ln n/l)l+a' 2(111 2/l)l+0' 3(111 3/l)l+0' ; n(ln n/l)l+(r

« 1 1
<0(1) + L‘ de =0(1)+ —— Trg

which implies that as € tends to 0", we obtain
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. Ipr & . ~ 14
[Z(lnnxl)(p—l)(l—pnp—lag] [Z(lnnh)(q—lxl—pnq—lb'ql]

n=2 n=2

A I/p A 1/q A
= oA, el g + 0(1)] [c/121+"5“8 + 0(1)] =

From the assumptions, we have

1 1

€ C 1+
m(lnm’“)q(1 Dt C n(lnn/h)p RS

1
f f ln(xdly’h)x = dxdy

(lnx/ll)q(l /l)+ p y(lny/lz)p(l A)+l+

1
A A2\
n=2 m=2 n= =2 ln(m ‘n 2)1

1 cel_ ¢
cl_eyq
—1” —u ™0 dudx

/12 e x(Inxt)*% ta y
Inx”

:i ! = f ! - uiG~07 dudx
/12 . x(ln x/11)1+7 0 <
oo _t
1 c £
— i —1 _ flm 1 1 . ui(%_ﬁ)_ldudx
B Je x(Inxt)*T Jo 1
where in the third equality we set that u = In y2/In x

41 Since

1 0 1 0 1 cel & 1 /1
— f _uiGmD dudx = —{— B(i, i) + 0(1)]}
A Jde x(Inx)HT Jo (1 +u)i L le, gl \Ap Aq

e— 0",

A c
= ——|B( =) + o],
e T el \Ap’ Ag
which implies

x(In x4)+T

. 1 Ay 1 . 1 A
Z g & n c &
o< | —— ™ 0G0 dudx < | ———— ™ w80 dudx
e X(InxM)*T Joo (14w e 0
1_¢
qu/lle 5G9
(1 +£)(q - pe)dy T

=0(1), € > 0.
From the above inequalities, we can obtain

N L

+o(1 ] o
- — (lnmﬂlnb)l C/111+68//l/128 /lp /lq) ( ) ( )

A
IR R
C/l] l+C£//l/128 /lp /1 ( ( ))

A
W%p(l +o(l)), € > 0" (2.11)
According to (2.10) and (2.11), then we give

A
C/ll/p+ce//1 l/q C/lp(l + 0(1)) < Z Z

1+c. ’ ’
> > (ln m/lln/lz) 1 /1(11+C8//l)/p/1( CS//l)/qS
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which impies ¢, , < k, in contradiction with supposition. So the constant c, , in inequality (2.9) is the
best possible. This completes the proof of Theorem 2.3. O

Theorem 2.4. Let a,,b, > 0, andp > 1, 1/p+1/g=1,0< 2, <p 0< A <q 0<c <A
cp=(1 /A}/%/P)B(c/up), c/(A9)). If0 < Y22, (In ) P=D0=Dpr=1gP < oo, then

[

Z n(ln rﬂZ)1

where the constant c’j’p is the best possible. And inequality (2.12) is equivalent to inequality (2.9).

3 p 3]
a ¢
—2 | <> (nm™)P N Dprlal (2.12)

(Inmtipt)a P
m=2 m=2

Proof. There exists ky € N such that ¥, a,/(InmYn®)i > 0 for k > ky. Setting
(k) = 1/(n(In n®)'=D[2E _, @,/ (Inmt1n2)717~! for k > ko, then

k k

k
1 a P
0 <> (tn ) a-D1-Dye-1pa k) = —[ S ]
Z( ) n( ) ; n(lnn/lz)l—j mzzz (lnm/lln/lz)j

S nba(h)
- Z Z (lrflmﬂln/lz)ﬁ Cap

n=2 m=2

S PSS LR (g-1)(1 I Ve
E (Inm™)"¥ UmP aﬁ] E (Inn™) Ut bik)|
m=2 n=2

which implies that the following inequality holds

k k
Z(lnnzz)(q—l)(l—g)nq—lbz(k) < Ci,p Z(lnm/l’)(p DA=9) P10

m*

As k tends to oo, we have
4 An(p-DU-9) . p-1_p
E E c E (Inm™) mP a
A, )
— n(In ”/12)] 1 [mzz (In mllnh) ] ’ m=2 ;

which implies inequality (2.12). If inequality (2.12) holds, by applying the Holder’s inequality, then

Z Z (lnmAInAZ)l Z [

a 1 o
—— nl’(lnnb)p“v)bn]
L annyr- Z:;anmmnmJ[

) Y il 1 day@-1(1-2), g1 pq|
<[Zn(lnnb)l [Zz(lnnﬂ—ln/lz)[] ] [Z(lnn ) n b]

n=2

Thanks to the inequality (2.12), this means the inequality (2.9) holds. Since the inequalities (2.9) and
(2.12) are equivalent, then ci , 1s also the best possible. This completes the proof of Theorem 2.4. O

3. New corresponding Hardy-Hilbert-type integral inequalities

In this section, we will give new double integral forms of double series inequalities.

Theorem 3.1. Let f(x),g(x) >0, p> 1, I/p+1/q =1, 1,42, 4,¢ > 0. ¢y, = (1/(4}"72)/")B(c/(Ap),
c/(Ag)). If0 < fooo x(f"l)(l‘%l)fp(x)dx < 00,0 < fow y("‘l)(l‘%)gq(y)dy < oo, then

00 ¢ 1/p b c l/q
f f( )8(y) dxdy<cﬂ,p[f x(p—l)(l—i‘)fp(x)dx] [f YaD=Beaay| 3.0
0 0
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N %_1 WL g P - (p—l)(l—MTl) p
L Y [fo (x/11+y/lz)idx:| dy<C/LP 0 X f (x)dx, (32)

where the constant factors in the inequalities (3.1) and (3.2) are also the best possible. Moreover, the
inequalities (3.1) and (3.2) are equivalent.

Proof. By mean of Holder’s inequality and Lemmas 2.1 and 2.2, we have

f CHON
dxdy
(a1 + y )i

‘42 cdg |

-1 .
VRN ORI o WY
(x4 y)is \ Yy T ] (et 4 po)da \ XY & Y
X 1 p
f f _ff x_ﬁl)m y -l l/p f f gq(y) )ﬁ);p - iy 1/q
(xt +y12)ﬂ x!’(%—l)/q (x4 y2)a x/“ yq(¥—1)/p
1\ 4 “_
f f (x/ll + y/lz) ) 1 (p b= )fp(x)dy]
/12 cld l/q
e
XM+ nt)a\x

ety VUpp e IR
=[ f @a,2,(x, )x P07 )f”(x)dx] [ f w0y, )y I )g”(y)dy]
0 0

1 00 . 1 00 . 1
:[iB(i,i)] /p[f x(p—l)(l—%)fp(x)dx /p[lB(i’i)] [f y(q—l)(l—‘ff)gq(y)dy] /a
A \Ap Aq 0 A1 \Ap Aq 0
¥ D=5 o Ver (-1)(1-22) ¢ Ha
—cu| [ B ] | [y g
0 0

According to the hypotheses, it is easy to see that the equality in the above the second inequality is
not possible. Now we prove that the constant c, , is the best possible. If the constant c, , is not the best
possible, then there exists k < ¢, , such that k replaces with ¢, ,, inequality (3.1) holds all the same.
Especially, for € € (0,q/(2p)), we set

I/\

1/q

Q=

+ +
]Z"(x) _ l+ +(p 1)(17111) D) X € [O, 1)7 and g(x) _ 1+ +(q (- (12) X € [O, 1),
0, x € [1, 00), 0, x € [1, 00).
Based on the course of the proof of Theorem 2.1, we have
PO A
———,(1 +0o(1)) < f dxdy < —————k(1 + o(1)),
C/ll/p Vg AP (x + yL)i /P e

as ¢ tends to 0*. We have c,, < k, in contradiction with supposition. So the constant ¢, , in the
inequality (3.1) is the best possible.
There exists #, > O such that fOT fx)/(x" + y2)idx > 0 for T > t,, setting

s, T) = y#‘l[foT F(x)/(x" +y2)idx]P~!, y € (0, 00). Thanks to the inequality (3.1), thus we get

T T T
iy oy fx) P f f (x)g(y, T)
(g—D( 1 ) od — 1 1 PR =
‘fo Y 8°0. T)dy fo‘ Y [‘fo (xh +y/12)5dx] “ o Jo (xt +y/12)4
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r D1- /p T 11— /q
<C/l,p[ f = ‘“f”(X)dX] [ f Y0 g4y, Thdy|
0 0

which implies that as 7" tends to oo, then we have

[ [ ] wr<e, [
0 0 (Xt +yl) 0
which means the inequality (3.2) holds. If inequality (3.2) holds, by using the Holder’s inequality, then
R ACO{C) R =R A ) e
f f %dxdy= f [y G %d [y g g(y)]dy
o Jo (xh+yh) 0 o (x4 ye)
C a p o qlpp o 1/q
<[f yi—l(f _Jw de) dy] [f x(”_l)(l_%)fp(x)dx :
0 0 (X + yh)a 0

which implies that the inequality (3.1) holds. Therefore, inequalities (3.1) and (3.2) are equivalent. It
is easy to see that the constant Cﬁ,p in the inequality (3.2) is also the best possible. O

Now we present a new variant of Theorem 3.1 as follows.

Theorem 3.2. Let f(x).g(x) 20, p> 1, 1/p+1/g =1, 1. Ay, d.c > 0. ¢y, = (1 [P B(e/(Ap),
c/(Aq)). If0 < [ (nx")P=DI=Dxr=1 fr(x)dx < 00, and 0 < [~ (Iny*)@=DI=Dya~1¢4(y)dy < oo, then

- | 1
f f (f( x)8(») dxdy<cﬂ,,,[f (lnxal)(p—n(l—;)xp—lfp(x)dx] P
1 1

In xtiyt2)i

00 . 1/q
X[f (Iny®) e D=Dya-ledyydy| , (3.3)
1

0 1 0 C
f - S dx] dy <<’ f I (0 dx, (3.4)
1 y(ny®) =i LJp (Inxhyt)s "

where the constant factors in the inequalities (3.3) and (3.4) are also the best possible. Furthermore,
inequalities (3.3) and (3.4) are equivalent.

Proof. By applying the Holder’s inequality and Lemmas 2.4 and 2.5, we have

ACY SR foo foo f(x) (hlxﬂl)”’q Ay 5D 10 A=) ;]
dxdy = c 1 2)pia 1 g\ 72
f ‘[1 (Inxtiyt)i SN [(lnx“yh)fp In yt () v

1 A ACT‘Z 1 c 1
x| 5 a(ny»t) (ny 00 3502 |y
(ln x/l]y/lZ)/lq ln X xq

1/
f f a S lnx ) (Iny™)i=!(In ¥y - DI dxdy] ’
n

xflly/IZ ) vl ln A2

q 1 2\ 4(1_c e Y Ve
f f g1(y) ny ) * (Iny*)#1=9(In xﬂl)a‘l—dxdy]
. (In o

xflly/b)a ln xt
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” ” 1 In x!\ig Ao S—1 —1 A (p=D(1=) _p—1 ¢p 1
:[ dx (lnx’“yﬁz)ﬁ(lny@) (ny=)*y™ (nx™) o f(x)dy]
1 1

x[foody . : (lnyﬁz);))(lnxﬁl)j_]x_l(lnyh)(q_l)(l_i)yq_]gq()’)dx]l/q
1 i (Inxtiy)7\nxt

. N I I 1/q
:[ f @' 3.2 (x, @)(In x )P0 P71 2 () dx [ f W' 1,2, p)(Iny2) @ DA=Dya 1g‘](y)aly]
1

1

00 . 1/p 00 . 1/q
:CM[ f (In x1)P=D0=9) 41 f”(x)dx] [ f (lnyh)(q—lxl—nyq—lgq(y)dy] ,
1 1

which implies the inequality (3.3). According to the hypotheses, it is easy to see that the equality
in the above the second inequality is not possible. Now we prove that the constant c, , is the best
possible. Suppose that the constant ¢, , in inequality (3.3) is not the best possible, then exists positive
k < c,, such that when k replaces with c, ,, the inequality (3.3) holds all the same. Especially, for
€€ (0,9/(2p)), we set

—1 1
~ %a x€[0,1), - . e x€[0,1),
f(x) = x(inxt) 7= and 2(x) ={ xtnx)p0-9 7

0, x €1, 00), 0, x € [1,00).
Due to the course of the proof of Theorem 2.3, we have

(X)g(y) %
—— ¢,(1 +0(1)) < dxdy < k(1 + o(1)),
/ll/p+cs//l ]/q M’( ) f ﬁ (lnxalyb)ﬂ y C/l(11+cs//l)/p/l(21+ce/l)/q8 ( (1)

as € tends to 0". We have ¢, , < k, in contradiction with supposition. So the constant ¢, , in inequality
(3.3) is the best possible.
There exists f, > 0 such that flT f(x)/(InxYy2)idx > 0O for T > . Setting

g0, T) = (1/((Iny™) N[ [T £(x)/(nxy2) dx]?™! for T > 1y, then

fT(lnyh)(q_l)(l_j)yq_lgq(y’ T)dy = f T f0ew,T) T)
1

| (In xtiyL)7 A

1/q

T < l/p T c
<C/1,p[ f (Inxt) P D=l g (X)dx [ f (Iny®) @Dy lgd(y, Thdy|
1 1

which implies that as 7" tends to oo, then we have

* 1 ~ J(x) u P - (p-1(1-5) p-1
[ dx] dy < c” (In x*)P=DA=D k=1 £7(x)dx,
1 y(ny2)!=il ) (Inxtix®)i N

which implies the inequality (3.4). If inequality (3.4) holds, by Holder’s inequality, then

S0, f"" 1 * f) Lo e baes)
f f (In xh yt)3 dxdy = | [y},(lny,zz)},(l—;) ) (lnx/uyaz);dx][y (In y™) g(y)]dy

f L f‘” 0 .y dy]””[ f“(myh)@-nu_@yq-l gq(y)dy]”"
1 y(Iny)! "INy (Inxtiyte)s 1 ’

which means the inequality (3.3) holds. Since the inequalities (3.3) and (3.4) are equivalent, then cﬁ”p
is also the best possible. The proof of Theorem 3.2 is completed. O
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Remark 3.1. It is easy to see that inequality (3.3) is equivalent to the following new Mullholand’s
inequality associated integral.

J0gB) f"" ANG-D=5) 1 p 1/p
f f xy(lnxﬁlyh)ldXdy<Cﬂ,p[ 1 (In x*) x f (x)dx]

1/q

x| f (Iny) e 0-Dytgaay |
1

where 0 < [ (In x*)P~DA=Dx=1 £2(x)dx < 00,0 < [ (In y2)@~D1=Dy~194(y)dy < o, and the constant
' , (ny Y gl (y)dy
factor ¢, , is also the best possible.

Remark 3.2. In the paper [16], by using the quasi-homogeneous integral kernels, Cao et al. obtained
some Hilbert-type integral inequalities involving multiple functions with the best constant factors. In
this paper, we not only give some Hilbert-type integral inequalities with multiparameters, but also
obtain some Hilbert-type inequalities with multiparameters for double series. Therefore, our results
are different from Cao et al. [16].

4. Conclusions

In this paper, we have established a new Hardy-Hilbert-type inequality with multiparameters.
Furthermore, its equivalent forms and variants, which generalize some existing results, have been also
presented. Finally, the corresponding Hardy-Hilbert-type integral inequalities haven been obtained.
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