The concept of an imploring interior GE-filter is introduced, and their properties are investigated. The relationship between an interior GE-filter and an imploring interior GE-filter are discussed. Example to show that any interior GE-filter is not an imploring interior GE-filter is provided. Conditions for an interior GE-filter to be an imploring interior GE-filter are given. Examples to show that an imploring interior GE-filter is independent to a belligerent interior GE-filter are provided. Conditions for an imploring interior GE-filter to be a belligerent interior GE-filter are given. The relationship between imploring interior GE-filter and prominent interior GE-filter are discussed. Example to show that any imploring interior GE-filter is not a prominent interior GE-filter is provided. Conditions for an imploring interior GE-filter to be a prominent interior GE-filter are given. Also, conditions under which an interior GE-filter larger than a given interior GE-filter can become an imploring interior GE-filter are considered.
Citation: Sun Shin Ahn, Ravikumar Bandaru, Young Bae Jun. Imploring interior GE-filters in GE-algebras[J]. AIMS Mathematics, 2022, 7(1): 855-868. doi: 10.3934/math.2022051
The concept of an imploring interior GE-filter is introduced, and their properties are investigated. The relationship between an interior GE-filter and an imploring interior GE-filter are discussed. Example to show that any interior GE-filter is not an imploring interior GE-filter is provided. Conditions for an interior GE-filter to be an imploring interior GE-filter are given. Examples to show that an imploring interior GE-filter is independent to a belligerent interior GE-filter are provided. Conditions for an imploring interior GE-filter to be a belligerent interior GE-filter are given. The relationship between imploring interior GE-filter and prominent interior GE-filter are discussed. Example to show that any imploring interior GE-filter is not a prominent interior GE-filter is provided. Conditions for an imploring interior GE-filter to be a prominent interior GE-filter are given. Also, conditions under which an interior GE-filter larger than a given interior GE-filter can become an imploring interior GE-filter are considered.
[1] | R. K. Bandaru, A. B. Saeid, Y. B. Jun, On GE-algebras, Bull. Sect. Logic, 50 (2021), 81–96. doi: 10.18778/0138-0680.2020.20. doi: 10.18778/0138-0680.2020.20 |
[2] | R. K. Bandaru, A. B. Saeid, Y. B. Jun, Belligerent GE-filter in GE-algebras, J. Indones. Math. Soc., in press. |
[3] | R. K. Bandaru, M. A. Öztürk, Y. B. Jun, Bordered GE-algebras, J. Alg. Sys., in press. |
[4] | G. Castellini, J. Ramos, Interior operators and topological connectedness, Quaest. Math., 33 (2010), 290–304. doi: 10.2989/16073606.2010.507322. doi: 10.2989/16073606.2010.507322 |
[5] | A. Diego, Sur algébres de Hilbert, Collect. Logique Math. Ser. A, 21 (1967), 177–198. |
[6] | J. G. Lee, R. K. Bandaru, K. Hur, Y. B. Jun, Interior GE-algebras, J. Math., 2021 (2021), 1–10. doi: 10.1155/2021/6646091. doi: 10.1155/2021/6646091 |
[7] | J. Rachůnek, Z. Svoboda, Interior and closure operators on bounded residuated lattices, Cent. Eur. J. Math., 12 (2014), 534–544. doi: 10.2478/s11533-013-0349-y. doi: 10.2478/s11533-013-0349-y |
[8] | A. Rezaei, R. K. Bandaru, A. B. Saeid, Y.B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021), 1121–1136. doi: 10.1007/s13370-021-00886-6. doi: 10.1007/s13370-021-00886-6 |
[9] | S. Z. Song, R. K. Bandaru, Y. B. Jun, Imploring GE-filters of GE-algebras, J. Math., 2021 (2021), 1–7. doi: 10.1155/2021/6651531. doi: 10.1155/2021/6651531 |
[10] | S. Z. Song, R. K. Bandaru, Y. B. Jun, Prominent interior GE-filters of GE-algebras, AIMS Math., 6 (2021), 13432–13447. doi: 10.3934/math.2021778. doi: 10.3934/math.2021778 |
[11] | S. Z. Song, R. K. Bandaru, D. A. Romano, Y. B. Jun, Interior GE-filters of GE-algebras, Discuss. Math. Gen. Algebra Appl., in press. |
[12] | F. Svrcek, Operators on GMV-algebras, Math. Bohem., 129 (2004), 337–347. doi: 10.21136/MB.2004.134044. doi: 10.21136/MB.2004.134044 |
[13] | S. J. R. Vorster, Interior operators in general categories, Quaest. Math., 23 (2000), 405–416. doi: 10.2989/16073600009485987. doi: 10.2989/16073600009485987 |