Research article Special Issues

Imploring interior GE-filters in GE-algebras

  • Received: 20 May 2021 Accepted: 13 October 2021 Published: 18 October 2021
  • MSC : 03G25, 06F35

  • The concept of an imploring interior GE-filter is introduced, and their properties are investigated. The relationship between an interior GE-filter and an imploring interior GE-filter are discussed. Example to show that any interior GE-filter is not an imploring interior GE-filter is provided. Conditions for an interior GE-filter to be an imploring interior GE-filter are given. Examples to show that an imploring interior GE-filter is independent to a belligerent interior GE-filter are provided. Conditions for an imploring interior GE-filter to be a belligerent interior GE-filter are given. The relationship between imploring interior GE-filter and prominent interior GE-filter are discussed. Example to show that any imploring interior GE-filter is not a prominent interior GE-filter is provided. Conditions for an imploring interior GE-filter to be a prominent interior GE-filter are given. Also, conditions under which an interior GE-filter larger than a given interior GE-filter can become an imploring interior GE-filter are considered.

    Citation: Sun Shin Ahn, Ravikumar Bandaru, Young Bae Jun. Imploring interior GE-filters in GE-algebras[J]. AIMS Mathematics, 2022, 7(1): 855-868. doi: 10.3934/math.2022051

    Related Papers:

    [1] Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379
    [2] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [3] S. Santhiya, K. Thilagavathi . Geometric properties of holomorphic functions involving generalized distribution with bell number. AIMS Mathematics, 2023, 8(4): 8018-8026. doi: 10.3934/math.2023405
    [4] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [5] Rabha W. Ibrahim, Dumitru Baleanu . On a combination of fractional differential and integral operators associated with a class of normalized functions. AIMS Mathematics, 2021, 6(4): 4211-4226. doi: 10.3934/math.2021249
    [6] Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus . q-Noor integral operator associated with starlike functions and q-conic domains. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606
    [7] Jamal Salah, Hameed Ur Rehman, Iman Al Buwaiqi, Ahmad Al Azab, Maryam Al Hashmi . Subclasses of spiral-like functions associated with the modified Caputo's derivative operator. AIMS Mathematics, 2023, 8(8): 18474-18490. doi: 10.3934/math.2023939
    [8] Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
    [9] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [10] Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi . Applications of fuzzy differential subordination theory on analytic p -valent functions connected with q-calculus operator. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031
  • The concept of an imploring interior GE-filter is introduced, and their properties are investigated. The relationship between an interior GE-filter and an imploring interior GE-filter are discussed. Example to show that any interior GE-filter is not an imploring interior GE-filter is provided. Conditions for an interior GE-filter to be an imploring interior GE-filter are given. Examples to show that an imploring interior GE-filter is independent to a belligerent interior GE-filter are provided. Conditions for an imploring interior GE-filter to be a belligerent interior GE-filter are given. The relationship between imploring interior GE-filter and prominent interior GE-filter are discussed. Example to show that any imploring interior GE-filter is not a prominent interior GE-filter is provided. Conditions for an imploring interior GE-filter to be a prominent interior GE-filter are given. Also, conditions under which an interior GE-filter larger than a given interior GE-filter can become an imploring interior GE-filter are considered.



    Let A stand for the collection of functions G of the type

    G(ξ)=ξ+j=2ajξj, (1.1)

    that are holomorphic in the open unit disk Λ:={ξC:|ξ|<1} of the complex plane, and let S indicate the subclass of functions of A which are univalent in Λ. For functions GA given by (1.1) and HA given by H(ζ)=ζ+j=2bjζj, we define the convolution product (or Hadamard) of G and H by

    (GH)(ζ)=(HG)(ζ)=ζ+j=2ajbjζj,ζΛ. (1.2)

    Let G and F be two holomorphic functions in Λ. The function G is said to be subordinated to F if there are Schwarz function w(ξ), that is, holomorphic in Λ with w(0)=0 and |w(ξ)|<1, ξΛ, such as G(ξ)=F(w(ξ)) for all ξΛ. This subordination notion is indicated by

    GForG(ξ)F(ξ).

    If the function F is univalent in Λ, then we have the inclusion equivalence

    G(ξ)F(ξ)G(0)=F(0)andG(Λ)F(Λ).

    The subfamilies of S which are the starlike and the convex function in Λ defined by

    S:={GA:ReξG(ξ)G(ξ)>0,ξΛ} (1.3)

    and

    C:={GA:Re(ξG(ξ))G(ξ)>0,ξΛ}, (1.4)

    respectively. Equivalently, we have

    S(φ)={GA:ξG(ξ)G(ξ)φ(ξ)},C(φ)={GA:(ξG(ξ))G(ξ)φ(ξ)},

    where

    φ(ξ)=1+ξ1ξ. (1.5)

    Janowski defined in [4] the extended function family S[A,B] of starlike functions called the Janwoski class of functions as follows: A function GA is in the family S[A,B] if

    ξG(ξ)G(ξ)1+Aξ1+Bξ(1B<A1).

    The above subordination could be written as

    ξG(ξ)G(ξ)=1+Ap(ξ)1+Bp(ξ)(1B<A1), (1.6)

    where an analytical function with a real positive part in Λ is denoted by p(ξ).

    The Janowski convex and Janowski starlike functions are obtained by reducing the above-described classes to the requirement 1B<A1. For the special cases A:=12α and B:=1, where 0α<1, we obtain the families, namely the family of starlike and convex functions of order α (0α<1) previously defined by Robertson in [6], and considered respectively by

    S(α):={GA:ReξG(ξ)G(ξ)>α,ξΛ},C(α):={GA:Re(ξG(ξ))G(ξ)>α,ξΛ}.

    Babalola defined the operator Iρυ:AAas

    IσυG(ζ)=(ρσρ1σ,υG)(ζ), (1.7)

    where

    ρσ,υ(ζ)=ζ(1ζ)συ+1,   συ+1>0,  ρσ=ρσ,0,

    and ρ1σ,υ is

    (ρσ,υρ1σ,υ)(ζ)=ζ1ζ   (σ,υN={1,2,3,...}).

    For GA, then (1.7) is equivalent to

    IσυG(ζ)=ζ+j=2[Γ(σ+j)Γ(σ+1)(συ)!(σ+jυ1)!]ajζj.

    Making use the binomial series

    (1δ)t=ti=0(ti)(1)i δi     (tN),

    for GA, El-Deeb [3] introduced the linear differential operator as follows:

    Dσ,0m,δ,υG(ζ)=G(ζ),
    Dσ,1t,δ,υG(ζ)=Dσt,δ,υG(ζ)=(1δ)tIσυG(ζ)+[1(1δ)t]ζ(IσυG)(ζ)=ζ+j=2[1+(j1)ct(δ)][Γ(σ+j)Γ(σ+1)(συ)!(σ+jυ1)!]ajζj...Dσ,nt,δ,υG(ζ)=Dσt,δ,υ(Dσ,n1t,δ,υG(ζ))=(1δ)tDσ,n1t,δ,υG(ζ)+[1(1δ)t]ζ(Dσ,n1t,δ,υG(ζ))=ζ+j=2[1+(j1)ct(δ)]n[Γ(σ+j)Γ(σ+1)(συ)!(σ+jυ1)!]ajζj=ζ+j=2ψnj[Γ(σ+j)Γ(σ+1)(συ)!(σ+jυ1)!]ajζj,  (δ>0; t,σ,υN; nN0=N{0}), (1.8)

    where

    ψnj=[1+(j1)ct(δ)]n, (1.9)

    and

    ct(δ)=ti=1(ti)(1)i+1 δi     (tN).

    From (1.8), we obtain that

    ct(δ) ζ (Dσ,nt,δ,υG(ζ))=Dσ,n+1t,δ,υG(ζ)[1ct(δ)]Dσ,nt,δ,υG(ζ). (1.10)

    In this article using the El-Deeb operator defined in (1.8), we define a new sub-family of A:

    Rm,n,σt,δ,υ(A,B)={GA:Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ)1+Aξ1+Bξ}, (1.11)

    where 1A<B1;  δ>0; t,σ,υN and n,mN0, that will lead us to the study of Fekete-Szegö problem. Further, coefficient estimates, characteristic properties and partial sums results will be established.

    Specializing the values of A and B one can obtain the particular cases

    (i)   Rm,n,σt,δ,υ(12α,1)=:Wm,n,σt,δ,υ(α)={GA:Re(Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ))>α, (0α<1)};

    and

    (ii)   Rm,n,σt,δ,υ(1,1)=:Fm,n,σt,δ,υ={GA:Re(Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ))>0}.                            

    To solve the Fekete-Szegö type inequality for GRm,n,σt,δ,υ(A,B) we will use the next results (the first part is due to Carathéodory [1]):

    Lemma 1. [1,5] If P(ξ)=1+p1ξ+p2ξ2+P where P the class of holomorphic functions with positive real part in Λ, with P(0)=1, then

    |pn|2,n1, (2.1)

    and for the complex number μC we have

    |p2μp21|2max{1;|12μ|}. (2.2)

    If μ is a real parameter, then

    |p2μp21|{4μ+2,ifμ0,2if0μ1,4μ2ifμ1. (2.3)

    When μ>1 or μ<0, equality (2.3) holds true if and only if P1(ξ)=1+ξ1ξ or one of its rotations. When 0<μ<1, the equality (2.3) holds if and only if P2(ξ)=1+ξ21ξ2 or one of its rotations. When μ=0, equality (2.3) holds if and only if

    P3(ξ)=(1+c2)1+ξξ+1+(1c2)ξ+11+ξ(0c1)

    or one of its rotations. When μ=1, the equality (2.3) holds true if P(ξ) is a reciprocal of one of the functions such that the equality holds true in the case when μ=0.

    Theorem 1. If GA defined as (1.1), belongs to Rm,n,σt,δ,υ(A,B), then

    |a2|(συ+1)(AB)(σ+1)|ψm2ψn2|, (2.4)
    |a3|(συ+1)(συ+2)(AB)(σ+1)(σ+2)|ψm2ψn2|×max{1;|B+(AB)(ψn+m2ψ2n2)(ψm2ψn2)2|}, (2.5)

    and for a complex number τ, we have

    |a3τa22|(συ+1)(συ+2)(AB)(σ+1)(σ+2)|ψm3ψn3|max{1;|Ω(τ,σ,υ,A,B)|}, (2.6)

    where

    Ω(τ,σ,υ,A,B)=12Θ(τ,σ,υ,A,B),                                                            
    Θ(τ,σ,υ,A,B)=12(1+B(AB)(ψn+m2ψ2n2)(ψm2ψn2)2                                     
                                                      +τ(AB)(σ+2)(συ+1)(ψm3ψn3)(σ+1)(συ+2)(ψm2ψn2)2), (2.7)

    and ψnj is given by (1.9).

    Proof. We will show that the relations (2.4)(2.6) and (2.16) hold true for GRm,n,σt,δ,υ(A,B). If GRm,n,σt,δ,υ(A,B), then

    Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ)1+Aξ1+Bξ

    which yields

    Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ)1+Aw(ξ)1+Bw(ξ)=G(w(ξ)),(1B<A1). (2.8)

    Since we can write w(ξ) as

    w(ξ)=1h(ξ)1+h(ξ)=p1ξ+p2ξ2+p3ξ3+2+p1ξ+p2ξ2+p3ξ3+,

    where h(ξ)P and have the form h(ξ)=1+p1ξ+p2ξ2+p3ξ3+, so

    G(w(ξ))=1+12(AB)p1ξ+(AB)4[2p2(1+B)p21]ξ2+, (2.9)

    and therefore

    Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ)=1+(σ+1)(συ+1)(ψm2ψn2)a2ζ+((σ+1)(σ+2)(συ+1)(συ+2)(ψm3ψn3)a3(σ+1)2(συ+1)2((ψn+m2ψ2n2))a22)ζ2+. (2.10)

    If we compare the first coefficients of (2.9) and (2.10), we get

    a2=(συ+1)(AB)2(σ+1)(ψm2ψn2)p1, (2.11)
    a3=(συ+1)(συ+2)(AB)2(σ+1)(σ+2)(ψm3ψn3)×(p2p212[1+BAB((AB)(ψn+m2ψ2n2)(ψm2ψn2)2)]) (2.12)

    and by using (2.1) in (2.11) and (2.2) in (2.12), we get

    |a2|(συ+1)(AB)(σ+1)|ψm2ψn2|, (2.13)
    |a3|(συ+1)(συ+2)(AB)(σ+1)(σ+2)|ψm3ψn3|×max{1;|B+(AB)(ψn+m2ψ2n2)(ψm2ψn2)2|}. (2.14)

    For a complex nubmer τ, and from (2.11) together with (2.12), we have

    |a3τa22|=(συ+1)(συ+2)(AB)2(σ+1)(σ+2)(ψm3ψn3)|p2Θ(τ,σ,υ,A,B)p21|, (2.15)

    where Θ(τ,σ,υ,A,B) is denoted by (2.7). Now, we apply Lemma 1 to (2.15) and obtain the required results.

    Theorem 2. If the function GA defined as (1.1) belongs to Rm,n,σt,δ,υ(A,B), then for any real parameter τ we obtain

    |a3τa22|(συ+1)(συ+2)(AB)2(σ+1)(σ+2)|ψm3ψn3|{12Θ(τ,σ,υ,A,B),ifτ<φ1,1,ifφ1τφ2,2Θ(τ,σ,υ,A,B)1,ifτ>φ2, (2.16)

    where Θ(τ,σ,υ,A,B) is given by (2.7),

    φ1=(σ+1)(συ+2)(ψm2ψn2)2(AB)(σ+2)(συ+1)(ψm3ψn3)×(1B+(AB)(ψn+m2ψ2n2)(ψm2ψn2)2),               

    and

    φ2=(σ+1)(συ+2)(ψm2ψn2)2(AB)(σ+2)(συ+1)(ψm3ψn3)×(1B+(AB)(ψn+m2ψ2n2)(ψm2ψn2)2).

    Proof. The proof can be produced directly by making use of Lemma 1 in (2.15), so we choose to omit it.

    The "Koebe one quarter theorem" [2] ensures that the image of Λ under each univalent function GA consists a disk of radius 14. Thus each univalent function G has an inverse G1 satisfying

    G1(G(ξ))=ξ,(ξΛ)andG(G1(w))=w,(|w|<r0(G),r0(G)14).

    A function GA is called bi-univalent in Λ if both G and G1 are univalent in Λ. We mention that the collection of bi-univalent functions defined in the unit disk Λ is not empty. For example, the functions ξ, ξ1ξ, log(1ξ) and 12log1+ξ1ξ are members of bi-univalent function family, however the Koebe function is not a member.

    Theorem 3. If GRm,n,σt,δ,υ(A,B) and the inverse function of G is G1(w)=w+j=2djwj, then

    |d2|(συ+1)(AB)(σ+1)|ψm2ψn2| (3.1)
    |d3|(συ+1)(συ+2)(AB)(σ+1)(σ+2)|ψm3ψn3|max{1;|2Θ(2,σ,υ,A,B)1|}, (3.2)

    and for any μC, we have

    |d3μd22|(συ+1)(συ+2)(AB)(σ+1)(σ+2)|ψm3ψn3|×max{1;|2Θ(2,σ,υ,A,B)+μ(AB)(σ+2)(συ+1)(ψm3ψn3)(σ+1)(συ+2)(ψm2ψn2)21|},

    where Θ(2,σ,υ,A,B) given by (2.7).

    Proof. Since

    G1(w)=w+n=2dnwn (3.3)

    is the inverse of the function G, it can be seen that

    ξ=G1(G(ξ))=G(G1(ξ)),|ξ|<r0(G). (3.4)

    From (1.1) and (3.4), we obtain that

    ξ=G1(ξ+n=2anξn),|ξ|<r0(G). (3.5)

    Therefore from (3.4) and (3.5) we get

    ξ+(a2+d2)ξ2+(a3+2a2d2+d3)ξ3+=ξ,|ξ|<r0(G). (3.6)

    Equating the corresponding coefficients of the relation (3.6), we conclude that

    d2=a2, (3.7)
    d3=2a22a3. (3.8)

    First, from the relations (2.11) and (3.7) we have

    d2=(συ+1)(AB)2(σ+1)(ψm2ψn2)p1. (3.9)

    To find |d3|, from (3.8) we have

    |d3|=|a32a22|.

    Hence, by using (2.15) for real τ=2 we deduce that

    |d3|=|a32a22|=(συ+1)(συ+2)(AB)2(σ+1)(σ+2)|ψm3ψn3||p2Θ(2,σ,υ,A,B)p21|=(συ+1)(συ+2)(AB)(σ+1)(σ+2)|ψm3ψn3|max{1;|2Θ(2,σ,υ,A,B)|1}, (3.10)

    where Θ(2,σ,υ,A,B) given by (2.7). For any complex number μ, a simple computation gives us that

    d3μd22=(συ+1)(συ+2)(AB)2(σ+1)(σ+2)(ψm3ψn3)(p2Θ(2,σ,υ,A,B)p21)μ[(συ+1)(AB)]2[2(σ+1)(ψm2ψn2)]2p21.=(συ+1)(συ+2)(AB)2(σ+1)(σ+2)(ψm3ψn3)×(p2p212[2Θ(2,σ,υ,A,B)+μ(AB)(σ+2)(συ+1)(ψm3ψn3)(σ+1)(συ+2)(ψm2ψn2)2]). (3.11)

    By taking modulus on both sides of (3.11) and applying Lemma 1 and (2.1), we find that

    |d3μd22|(συ+1)(συ+2)(AB)(σ+1)(σ+2)|ψm3ψn3|×max{1;|2Θ(2,σ,υ,A,B)+μ(AB)(σ+2)(συ+1)(ψm3ψn3)(σ+1)(συ+2)(ψm2ψn2)21|},

    and this completes our proof.

    By applying the techniques introduced by Silverman in [7], we will introduce some characteristic properties of the functions GRm,n,σt,δ,υ(A,B) such as partial sums results, necessary and sufficient conditions, radii of close-to-convexity, distortion bounds, radii of starlikeness and convexity.

    Theorem 4. If GA and be defined as (1.1) belongs to Rm,n,σt,δ,υ(A,B), then

    j=2((1B)ψmj+(A1)ψnj)(σ+1(συ+1))|aj|(AB), (4.1)

    where ψnj given by (1.9).

    Proof. Letting GRm,n,σt,δ,υ(A,B), by (1.11) we deduce that

    Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ)=1+Aw(ξ)1+Bw(ξ),ξΛ, (4.2)

    where w(ξ) is a Schwarz function, or equivalently

    |Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ)ADσ,nt,δ,υG(ζ)BDσ,mt,δ,υG(ζ)|<1,ξΛ.

    Thus, the above relation leads us to

    |Dσ,mt,δ,υG(ζ)Dσ,nt,δ,υG(ζ)ADσ,nt,δ,υG(ζ)BDσ,mt,δ,υG(ζ)|=|j=2(ψmjψnj)(σ+1(συ+1))ajξj(AB)ξ+j=2(AψnjBψmj)(σ+1(συ+1))ajξj|j=2(ψmjψnj)(σ+1(συ+1))|aj|rj1(AB)j=2(AψnjBψmj)(σ+1(συ+1))|aj|rj1<1,

    and taking |ξ|=r1 simple computation yields (4.1).

    Example 1. For

    G(ξ)=ξ+j=2(AB)(1B)ψmj+(A1)ψnj(συ+1σ+1)jξj,ξΛ,

    such that j=2j=1, we get

    j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)|aj|=j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)×(AB)(1B)ψmj+(A1)ψnj(συ+1σ+1)j=(AB)j=2j=(AB).

    Then GRm,n,σt,δ,υ(A,B), and we note that the inequality (4.1) is sharp.

    Corollary 1. Let GRm,n,σt,δ,υ(A,B) given by (1.1). Then

    |aj|(AB)(1B)ψmj+(A1)ψnj(συ+1σ+1),forj2, (4.3)

    where ψnj is defined by (1.9). The approximation is sharp for the function

    G(ξ):=ξ(AB)(1B)ψmj+(A1)ψnj(συ+1σ+1)ξj,j2. (4.4)

    Theorem 5. If GRm,n,σt,δ,υ(A,B), then

    r(AB)(1B)ψmj+(A1)ψnj(συ+1σ+1)r2|G(η)|r+(AB)(1B)ψmj+(A1)ψnj(συ+1σ+1)r2. (4.5)

    For the function defined by

    ˆG(ξ):=ξ(AB)(1B)ψmj+(A1)ψnj(συ+1σ+1)ξ2,|ξ|=r<1, (4.6)

    the approximation is sharp.

    Proof. For |ξ|=r<1 we have

    |G(ξ)|=|ξ+j=2ajξj||ξ|+j=2aj|ξ|j=r+j=2aj|r|j.

    Moreover, since for |ξ|=r<1 we get rj<r2 for all j2, the above relation implies that

    |G(ξ)|r+r2j=2|aj|. (4.7)

    Similarly, we get

    |G(ξ)|rr2j=2|aj|. (4.8)

    From the relation (4.1) we have

    j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)|aj|(AB),

    but

    ((1B)ψm2+(A1)ψn2)(σ+1συ+1)j=2|aj|j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)|aj|(AB).

    Therefore,

    j=2aj(συ+1σ+1)(AB)(1B)ψm2+(A1)ψn2, (4.9)

    and by using (4.3) in (4.7) and (4.8) we get the desired result.

    The next distortion theorem for the family Rm,n,σt,δ,υ(A,B) could be similarly obtained:

    Theorem 6. If GRm,n,σt,δ,υ(A,B), then

    12(συ+1)(AB)(σ+1)((1B)ψm2+(A1)ψn2)r|G(ξ)|1+2(συ+1)(AB)(σ+1)((1B)ψm2+(A1)ψn2)r.

    The equality holds if the function is ˆG given by (4.6).

    Proof. Since the proof is quite analogous with those of Theorem 5, so it will be omitted.

    The next result deals with the fact that a convex combination of functions of the class Rm,n,σt,δ,υ(A,B) belongs to the same class, as follows:

    Theorem 7. Let GiRm,n,σt,δ,υ(A,B) given by

    Gi(ξ)=ξ+j=2ai,jξj,i=1,2,3,,m. (4.10)

    Then HRm,n,σt,δ,υ(A,B), where

    H(ξ):=mi=1ciGi(ξ),andmi=1ci=1. (4.11)

    Proof. By Theorem 4 we have

    j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)|aj|(AB),

    and,

    H(ξ)=mi=1ci(ξ+j=2ai,jξj)=ξ+j=2(mi=1ciai,j)ξj.

    Therefore

    j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)|mi=1ciai,j|mi=1[j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)|ai,j|]ci=mi=1(AB)ci=(AB)mi=1ci=(AB),

    thus H(ξ)Rm,n,σt,δ,υ(A,B).

    Regarding the arithmetic means of the functions of the family Rm,n,σt,δ,υ(A,B) the next result holds:

    Theorem 8. If GiRm,n,σt,δ,υ(A,B) are given by (4.10), then

    G(ξ):=ξ+1kj=2(ki=1ai,jξj)Rm,n,σt,δ,υ(A,B). (4.12)

    Where G is the arithmetic mean of Gi, i=1,2,3,,k.

    Proof. From the definition relation (4.12) we get

    G(ξ)=1kki=1fi(ξ)=1kki=1(ξ+j=2ai,jξj)=ξ+j=2(1kki=1ai,j)ξj,

    and to prove that G(ξ)Rm,n,σt,δ,υ(A,B), according to the Theorem 4.1 it is sufficient to prove that

    j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)(1kki=1|ai,j|)(AB).

    A simple computation shows that

    j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)(1kki=1|ai,j|)=1kki=1(j=2((1B)ψmj+(A1)ψnj)(σ+1συ+1)|ai,j|)1kki=1(AB)=(AB).

    Therefore GRm,n,σt,δ,υ(A,B).

    Theorem 9. If GRm,n,σt,δ,υ(A,B), then G is a starlike functions of order ϑ (0ϑ<1), |ξ|<r1,

    r1=infj2((1ϑ)((1B)ψmj+(A1)ψnj)(σ+1)(jϑ)(συ+1)(AB))1j1.

    The equality holds for G given in (4.4).

    Proof. Let GRm,n,σt,δ,υ(A,B). We see that G is a starlike functions of order ϑ, if

    |ξG(ξ)G(ξ)1|<1ϑ.

    By simple calculation, we deduce

    j=2(jϑ1ϑ)|aj||ξ|j1<1. (4.13)

    Since GRm,n,σt,δ,υ(A,B), from (4.1) we get

    j=2((1B)ψmj+(A1)ψnj)(σ+1)(συ+1)(AB)|aj|<1. (4.14)

    The relation (4.13) will holds true if

    j=2(jϑ1ϑ)|aj||ξ|j1<j=2((1B)ψmj+(A1)ψnj)(σ+1)(συ+1)(AB)|aj|,

    which implies that

    |ξ|j1<((1ϑ)((1B)ψmj+(A1)ψnj)(σ+1)(jϑ)(συ+1)(AB)),

    or, equivalently

    |ξ|<((1ϑ)((1B)ψmj+(A1)ψnj)(σ+1)(jϑ)(συ+1)(AB))1j1,

    which yields the starlikeness of the family.

    Theorem 10. If GRm,n,σt,δ,υ(A,B), then G is a close-to-convex function of order ϑ (0ϑ<1), |ξ|<r2,

    r2=infj2((1ϑ)(σ+1)((1B)ψmj+(A1)ψnj)j(συ+1)(AB))1j1.

    Proof. Let GRm,n,σt,δ,υ(A,B). If G is close-to-convex function of order ϑ, then we find that

    |G(ξ)1|<1ϑ,

    that is

    j=2j1ϑ|aj||ξ|j1<1. (4.15)

    Since GRm,n,σt,δ,υ(A,B), by (4.1) we have

    j=2(σ+1)((1B)ψmj+(A1)ψnj)(συ+1)(AB)|aj|<1. (4.16)

    The relation (4.13) will holds true if

    j=2j1ϑ|aj||ξ|j1<j=2(σ+1)((1B)ψmj+(A1)ψnj)(συ+1)(AB)|aj|,

    which implies that

    |ξ|j1<((1ϑ)(σ+1)((1B)ψmj+(A1)ψnj)j(συ+1)(AB)),

    or, equivalently

    |ξ|<((1ϑ)(σ+1)((1B)ψmj+(A1)ψnj)j(συ+1)(AB))1j1,

    which yields the desired result.

    In this paper, we introduced a new class Rm,n,σt,δ,υ(A,B) of holomorphic functions defined in the open unit disk, which is connected to the combination of the Binomial series and the Babalola operator. We employed differential subordination involving Janowski-type functions to investigate these properties. Utilizing well-established results, such as Carathéodory's inequality for functions with real positive parts, as well as the Keogh-Merkes and Ma-Minda inequalities, we established upper bounds for the first two initial coefficients of the Taylor-Maclaurin power series expansion. Additionally, we derived an upper bound for the Fekete-Szegő functional for functions within this family.

    We also extended our findings to include similar results for the first two coefficients and for the Fekete-Szegő inequality for functions G1 when GRm,n,σt,δ,υ(A,B). Furthermore, we determined coefficient estimates, distortion bounds, radius problems, and the radius of starlikeness and close-to-convexity for these newly defined functions.

    Kholood M. Alsager: Conceptualization, validation, formal analysis, investigation, supervision; Sheza M. El-Deeb: Methodology, formal analysis, investigation; Ala Amourah: Methodology, validation, writing-original draft; Jongsuk Ro: Writing-original draft, writing-review. All authors have read and agreed to the published version of the manuscript.

    This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1A2C2004874). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20214000000280).

    The authors declare no conflict of interest.



    [1] R. K. Bandaru, A. B. Saeid, Y. B. Jun, On GE-algebras, Bull. Sect. Logic, 50 (2021), 81–96. doi: 10.18778/0138-0680.2020.20. doi: 10.18778/0138-0680.2020.20
    [2] R. K. Bandaru, A. B. Saeid, Y. B. Jun, Belligerent GE-filter in GE-algebras, J. Indones. Math. Soc., in press.
    [3] R. K. Bandaru, M. A. Öztürk, Y. B. Jun, Bordered GE-algebras, J. Alg. Sys., in press.
    [4] G. Castellini, J. Ramos, Interior operators and topological connectedness, Quaest. Math., 33 (2010), 290–304. doi: 10.2989/16073606.2010.507322. doi: 10.2989/16073606.2010.507322
    [5] A. Diego, Sur algébres de Hilbert, Collect. Logique Math. Ser. A, 21 (1967), 177–198.
    [6] J. G. Lee, R. K. Bandaru, K. Hur, Y. B. Jun, Interior GE-algebras, J. Math., 2021 (2021), 1–10. doi: 10.1155/2021/6646091. doi: 10.1155/2021/6646091
    [7] J. Rachůnek, Z. Svoboda, Interior and closure operators on bounded residuated lattices, Cent. Eur. J. Math., 12 (2014), 534–544. doi: 10.2478/s11533-013-0349-y. doi: 10.2478/s11533-013-0349-y
    [8] A. Rezaei, R. K. Bandaru, A. B. Saeid, Y.B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021), 1121–1136. doi: 10.1007/s13370-021-00886-6. doi: 10.1007/s13370-021-00886-6
    [9] S. Z. Song, R. K. Bandaru, Y. B. Jun, Imploring GE-filters of GE-algebras, J. Math., 2021 (2021), 1–7. doi: 10.1155/2021/6651531. doi: 10.1155/2021/6651531
    [10] S. Z. Song, R. K. Bandaru, Y. B. Jun, Prominent interior GE-filters of GE-algebras, AIMS Math., 6 (2021), 13432–13447. doi: 10.3934/math.2021778. doi: 10.3934/math.2021778
    [11] S. Z. Song, R. K. Bandaru, D. A. Romano, Y. B. Jun, Interior GE-filters of GE-algebras, Discuss. Math. Gen. Algebra Appl., in press.
    [12] F. Svrcek, Operators on GMV-algebras, Math. Bohem., 129 (2004), 337–347. doi: 10.21136/MB.2004.134044. doi: 10.21136/MB.2004.134044
    [13] S. J. R. Vorster, Interior operators in general categories, Quaest. Math., 23 (2000), 405–416. doi: 10.2989/16073600009485987. doi: 10.2989/16073600009485987
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2625) PDF downloads(83) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog