In the article we introduce several new subclasses of analytic functions associated with pedal shaped functions. By using differential subordination and convolution operator theory, we obtain the bound estimations of the coefficients $ a_2 $ and $ a_3 $, and the logarithmic coefficients $ d_1 $ and $ d_2 $ as well as Fekete-Szegö type functional inequalities for these subclasses.
Citation: Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang. The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region[J]. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357
In the article we introduce several new subclasses of analytic functions associated with pedal shaped functions. By using differential subordination and convolution operator theory, we obtain the bound estimations of the coefficients $ a_2 $ and $ a_3 $, and the logarithmic coefficients $ d_1 $ and $ d_2 $ as well as Fekete-Szegö type functional inequalities for these subclasses.
[1] | A. W. Goodman, Univalent Functions, vol. 1, Tempa: Mariner Publishing Company, 1983. |
[2] | A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87–92. doi: 10.4064/ap-56-1-87-92 |
[3] | S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Compt. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7 |
[4] | S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pure Appl., 45 (2000), 647–657. |
[5] | S. Kanas, An unified approach to Fekete-Szegö problem, Appl. Math. Compt., 218 (2012), 8453–8461. doi: 10.1016/j.amc.2012.01.070 |
[6] | S. Kanas, Coefficient estimates in subclasses of the Caratheodory class related to conical domains, Acta Math. Univ. Comenian(N.S.), 74 (2005), 149–161. |
[7] | B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl., 2014 (2014), 1–16. doi: 10.1186/1029-242X-2014-1 |
[8] | W. Ma, D. Minda, Uniformly convex functions Ⅱ, Ann. Polon. Math., 8 (1993), 275–285. |
[9] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions. Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Lang, S. Zhang (Editors), International Press, pp. 157-169, 1994. |
[10] | S. N. Malik, Some topics in Geometric functions theory, Saarbrücken: LAP LAMBERT Academic Publishing, 2017. |
[11] | S. N. Malik, S. Mahmood, M. Raza, S. Farman, S. Zainab, Coefficient Inequalities of functions associated with petal type domains, Mathematics, 6 (2018), 298. doi: 10.3390/math6120298 |
[12] | S. N. Malik, M. Raza, M. Arif, S. Hussain, Coeffifficient estiates of some subclasses of analytic functions related with conic domains, Anal. Univ. Ovidius Const. Ser. Mat., 21 (2013), 181–188. |
[13] | K. I. Noor, S. N. Malik, On Coefficient inequalities of functions associated with conic domainsz, Compt. Math. Appl., 62 (2011), 2209–2217. doi: 10.1016/j.camwa.2011.07.006 |
[14] | M. Raza, S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 412. doi: 10.1186/1029-242X-2013-412 |
[15] | A. Rønning, Uniformly convex functions and corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196. doi: 10.1090/S0002-9939-1993-1128729-7 |
[16] | F. Yousef, R. A. Frasin, T. A. Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32 (2018), 3229–3236. doi: 10.2298/FIL1809229Y |