Citation: Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi. Applications of fuzzy differential subordination theory on analytic p -valent functions connected with q-calculus operator[J]. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031
[1] | Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using $ q $-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886 |
[2] | Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy $ \mathbf{\gamma } $-convex functions connected with the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263 |
[3] | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, R. Sidaoui, Abdelkader Moumen . Inclusion properties for analytic functions of $ q $-analogue multiplier-Ruscheweyh operator. AIMS Mathematics, 2024, 9(3): 6772-6783. doi: 10.3934/math.2024330 |
[4] | Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for $ q $ -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794 |
[5] | Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with $ q $-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336 |
[6] | Shatha S. Alhily, Alina Alb Lupaş . Sandwich theorems involving fractional integrals applied to the $ q $ -analogue of the multiplier transformation. AIMS Mathematics, 2024, 9(3): 5850-5862. doi: 10.3934/math.2024284 |
[7] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with $ \mathfrak{q} $-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
[8] | A. A. Azzam, Daniel Breaz, Shujaat Ali Shah, Luminiţa-Ioana Cotîrlă . Study of the fuzzy $ q- $spiral-like functions associated with the generalized linear operator. AIMS Mathematics, 2023, 8(11): 26290-26300. doi: 10.3934/math.20231341 |
[9] | Alina Alb Lupaş, Georgia Irina Oros . Differential sandwich theorems involving Riemann-Liouville fractional integral of $ q $-hypergeometric function. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246 |
[10] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
Lotfi A. Zadeh published a paper in 1965 [1] that developed the theory of fuzzy sets. Fuzzy sets theory was included in 2011 [2], in the study of complex-valued functions related to subordination. The connection of this theory with the field of complex analysis was motivated by the many successful attempts of researchers to connect fuzzy sets with established fields of mathematical study. The differential subordination concept was first presented by the writers of [3,4]. Fuzzy differential subordination was first proposed in 2012 [5]. A publication released in 2017 [6] provides a good overview of the evolution of the fuzzy set concept and its connections to many scientific and technical domains. It also includes references to the research done up until that moment in the context of fuzzy differential subordination theory. The research revealed in 2012 [7] showed how to adapt the well-established theory of differential subordination to the specific details that characterizes fuzzy differential subordination and provided techniques for analyzing the dominants as well as for providing the best dominants of fuzzy differential subordinations. Also, some researchers applied fuzzy differential subordination to different function classes; see [8,9]. After that, the specific Briot–Bouquet fuzzy differential subordinations were taken into consideration for the studies [10].
Let Ap (p a positive integer) denote the class of functions of the form:
f(η)=ηp+∞∑n=p+1anηn ,(p∈N={1,2,3,..}, η∈U), | (1.1) |
which are analytic and multivalent (or p-valent) in the open unit disk U given by
U={η:|η|<1}. |
For p=1, the class Ap=A represents the class of normalized analytic and univalent functions in U.
Jackson [11,12] was the first to employ the q-difference operator in the context of geometric function theory. Carmichael [13], Mason [14], Trijitzinsky [15], and Ismail et al. [16] presented for the first time some features connected to the q -difference operator. Moreover, many writers have studied different q-calculus applications for generalized subclasses of analytic functions; see [17,18,19,20,21,22,23,24,25,26].
The Jackson's q-difference operator dq:Ap→Ap defined by
dq,pf(η):={f(η)−f(qη)(1−q)η(η≠0;0<q<1),f′(0)(η=0), | (1.2) |
provided that f′(0) exists. From (1.1) and (1.2), we deduce that
dq,pf(η):=[p]qηp−1+∞∑κ=p+1[κ]qaκηκ−1, | (1.3) |
where
[κ]q=1−qκ1−q=1+κ−1∑n=1qn, [0]q=0,[κ]q!={[κ]q[κ−1]q.........[2]q[1]q κ=1,2,3,... 1 κ=0. | (1.4) |
We observe that
limq→1−dq,pf(η):=limq→1−f(η)−f(qη)(1−q)η=f′(η). |
The q-difference operator is subject to the following basic laws:
dq(cf(η)±dℏ(η))=cdqf(η)±ddqℏ(η) | (1.5) |
dq(f(η)ℏ(η))=f(qη)dq(ℏ(η))+ℏ(η)dq(f(η)) | (1.6) |
dq(f(η)ℏ(η))=dq(f(η))ℏ(η)−f(η)dq(ℏ(η))ℏ(qη)ℏ(η), hbar(qη)ℏ(η)≠0 | (1.7) |
dq(logf(η))=lnqq−1dq(f(η))f(η), | (1.8) |
where f,ℏ∈A, and c and d are real or complex constants.
Jackson in [12] introduced the q-integral of f as:
∫η0f(t)dqt =η(1−q)∞∑κ=0qκf(ηqκ), |
and
limq→1−∫η0f(t)dqt =∫η0f(t)dt, |
where ∫η0f(t)dt, is the ordinary integral.
The study of linear operators is an important topic for research in the field of geometric function theory. Several prominent scholars have recently expressed interest in the introduction and analysis of such linear operators with regard to q-analogues. The Ruscheweyh derivative operator's q-analogue was examined by the writers of [27], who also examined some of its properties. It was Noor et al. [28] who originally introduced the q-Bernardi integral operator.
In [29], Aouf and Madian investigate the q-p-valent Că tas operator Isq,p(λ,ℓ):Ap→Ap (s∈N0=N∪{0},ℓ,λ≥0, 0<q<1,p∈N) as follows:
Isq,p(λ,ℓ)f(η)=ηp+∞∑κ=p+1([p+ℓ]q+λ([κ+ℓ]q−[p+ℓ]q)[p+ℓ]q)saκηκ(s∈N0,ℓ,λ≥0,0<q<1,p∈N). |
Also, Arif et al. [30] introduced the extended q -derivative operator ℜμ+p−1q:Ap→Ap for p-valent analytic functions is defined as follows:
ℜμ+p−1qf(η)=Qp(q,μ+p;η)∗f(η) (μ>−p),=ηp+∞∑κ=p+1[μ+p,q]κ−p[κ−p,q]!aκηκ. |
Setting
Gs,pq,λ,ℓ(η)=ηp+∞∑κ=p+1([p+ℓ]q+λ([κ+ℓ]q−[p+ℓ]q)[p+ℓ]q)sηκ. |
Now, we define a new function Gs,μq,p,λ,ℓ(η) in terms of the Hadamard product (or convolution) by:
Gs,pq,λ,ℓ(η)∗Gs,μq,p,λ,ℓ(η)=ηp+∞∑κ=p+1[μ+p,q]κ−p[κ−p,q]!ηκ (p∈N). |
Then, motivated essentially by the q-analogue of the Ruscheweyh operator and the q-analogue Cătas operator, we now introduce the operator Is,pq,μ(λ,ℓ):Ap→Ap defined by
Is,pq,μ(λ,ℓ)f(η)=Gs,μq,p,λ,ℓ(η)∗f(η), | (1.9) |
where s∈N0,ℓ,λ≥0,μ>−p,0<q<1,p∈N. For f∈Ap and (1.9), it is clear that
Is,pq,μ(λ,ℓ)f(η)=ηp+∞∑κ=p+1([p+ℓ]q[p+ℓ]q+λ([κ+ℓ]q−[p+ℓ]q))s[μ+p]κ−p,q[κ−p]q!aκηκ. | (1.10) |
We use (1.10) to deduce the following:
η dq(Is+1,pq,μ(λ,ℓ)f(η))=[ℓ+p]qλqℓIs,pq,μ(λ,ℓ)f(η)−([ℓ+p]qλqℓ−1)Is+1,pq,μ(λ,ℓ)f(η),(λ>0), | (1.11) |
qμη dq(Is,pq,μ(λ,ℓ)f(η))=[μ+p]qIs,pq,μ+1(λ,ℓ)f(η)−[μ]qIs,pq,μ(λ,ℓ)f(η). | (1.12) |
We note that :
(i) If s=0 and q→1− the operator defined in (1.10) reduces to the differential operator investigated by Goel and Sohi [31], and further, by making p=1, we get the familiar Ruscheweyh operator [32] (see also [33]). Also, for more details on the q-analogue of different differential operators, see the works [34,35];
(ii) If we set q→1−,p=1, we obtain Isλ,ℓ,μf(η) that was defined by Aouf and El-Ashwah [36];
(iii) If we set μ=0, and q→1−, we obtain Jsp(λ,ℓ)f(η) that was introduced by El-Ashwah and Aouf [37];
(iv) If μ=0, ℓ=λ=1,p=1, and q→1−, we obtain Isf(η) that was investigated by Jung et al. [38];
(v) If μ=0, λ=1,ℓ=0,p=1, and q→1−, we obtain Isf(η) that was defined by S ălăgean [39];
(vi) If we set μ=0, λ=1, and p=1, we obtain Iℓq,sf(η) that was presented by Shah and Noor [40];
(vii) If we set μ=0,λ=1,p=1, and q→1−, we obtain Jsq,ℓ, the Srivastava–Attiya operator; see [41,42];
(vii) I1,1q,0(1,0)=∫η0f(t)tdqt (q-Alexander operator [40]);
(viii) I1,1q,0(1,ℓ)=[1+ϱ]qηϱ∫η0tϱ−1f(t)dqt (q-Bernardi operator [28]);
(ix) I1,1q,0(1,1)=[2]qη∫η0f(t)dqt (q-Libera operator [28]).
We also observe that:
(i)Is,pq,μ(1,0)f(η)=Is,pq,μf(η)
f(η)∈A:Is,pq,μf(η)=ηp+∞∑κ=p+1([p]q[κ]q)s[μ+p]κ−p,q[κ−p]q!aκηκ, (s∈N0,μ≥0,0<q<1,p∈N,η∈U). |
(ii) Is,pq,μ(1,ℓ)f(η)=Is,p,ℓq,μf(η)
f(η)∈A:Is,p,ℓq,μf(η)=ηp+∞∑κ=p+1([p+ℓ]q[κ+ℓ]q)s[μ+p]κ−p,q[κ−p]q!aκηκ, (s∈N0,ℓ>0,μ≥0,0<q<1,p∈N,η∈U). |
(iii) Is,pq,μ(λ,0)f(η)=Is,p,λq,μf(η)
f(η)∈A:Is,p,λq,μf(η)=ηp+∞∑κ=p+1([p]q[p]q+λ([κ]q−[p]q))s[μ+p]κ−p,q[κ−p]q!aκηκ, (s∈N0,λ>0,μ≥0,0<q<1,p∈N,η∈U). |
We provide an overview of a number of fundamental ideas that are important to our research.
Definition 2.1. [43] A mapping F is said to be a fuzzy subset on Y≠ϕ, if it maps from Y to [0,1].
Alternatively, it is defined as:
Definition 2.2. [43] A pair (U,FU) is said to be a fuzzy subset on Y, where FU:Y→[0,1] is the membership function of the fuzzy set (U,FU) and U ={x∈Y:0<FU(x)≤1}=sup(U,FU) is the support of fuzzy set (U,FU).
Definition 2.3. [43] Let (U1,FU1) and (U2,FU2) be two subsets of Y. Then, (U1,FU1)⊆(U2,FU2) if and only if FU1(t)≤FU2(t), t∈Y, whereas (U1,FU1) and (U2,FU2) of Y are equal if and only if U1=U2.
The subordination method for two analytic functions f and h was established by Miller and Mocanu [44]. Specifically, if f(η)=h(κ(η)), where κ(η) is a Schwartz function in U, then, f is subordinate to h, symbolized by f≺h.
According to Oros [5], the subordination technique of analytic functions can be generalized to fuzzy notions as follows:
Definition 2.4. If f(η0)=h(η0) and F(f(η))≤F(h(η)),(η∈U⊂C), where η0∈U be a fixed point, then f is fuzzy subordinate to h and is denoted by f≺Fh.
Definition 2.5. [5] Let ψ:C3×U→C, and let h be univalent in U If ω is analytic in U and satisfies the (second-order) fuzzy differential subordination:
Fψ(C3×U)(ψ(ω(η),ηω′(η),η2ω′′(η);η))≤Fh(U)(h(η)), | (2.1) |
i.e.,
ψ(ω(η),ηω′(η),η2ω′′(η);η))≤F(h(ζ)), η∈U, |
then, ω is called a fuzzy solution of the fuzzy differential subordination. The univalent function ω is called a fuzzy dominant if ω(η)≺Fχ(η), for all ω satisfying (2.1). A fuzzy dominant ˜χ that satisfies ˜χ(η)≺Fχ(η) for all fuzzy dominant χ of (2.1) is said to be the fuzzy best dominant of (2.1).
Using the concept of fuzzy subordination, certain special classes are next defined.
The class of analytic functions h(η) that are univalent convex functions in U with h(0)=1 and Re(h(η))>0 is denoted by Ω. We define the following for h(η)∈Ω, F:C→[0,1], s∈N0,ℓ,λ≥0,μ>−p,0<q<1, and p∈N:
Definition 2.6. When f∈Ap, we say that f∈FMpγ(h) if and only if
(1−γ)[p]qηdqf(η)f(η)+γ[p]qdq(ηdqf(η))dqf(η)≺Fh(η). |
Furthermore,
FMp0(h)=FSTp(h)={f∈Ap:ηdqf(η)[p]qf(η)≺Fh(η)}, |
and
FMp1(h)=FCVp(h)={f∈Ap:dq(ηdqf(η))[p]qdqf(η)≺Fh(η)}. |
It is noted that
f∈FCVp(h)⇔ηdqf(η)[p]q∈FSTp(h). | (2.2) |
Particularly, for h(η)=1+η1−η, the classes FCVp(h) and FSTp(h) reduce to the classes FCVp, and FSTp, of the fuzzy p-valent convex and fuzzy p-valent starlike functions, respectively.
With the operator Is,pq,μ(λ,ℓ), specified by (1.10), certain new classes of fuzzy p-valent functions are defined as follows:
Definition 2.7. Let f∈Ap,ℓ,λ≥0,μ>−p,0<q<1, p∈N and s be a real. Then,
FMs,pq,μ(γ,λ,ℓ;h)={f∈Ap:Is,pq,μ(λ,ℓ)f(η)∈FMpγ(h)}, |
FSTs,pq,μ(γ,λ,ℓ;h)={f∈Ap:Is,pq,μ(λ,ℓ)f(η)∈FSTp(h)}, |
and
FCVs,pq,μ(γ,λ,ℓ;h)={f∈Ap:Is,pq,μ(λ,ℓ)f(η)∈FCVp(h)}. |
It is clear that
f∈FCVs,pq,μ(γ,λ,ℓ;h)⇔ηdqf(η)[p]q∈FSTs,pq,μ(γ,λ,ℓ;h). | (2.3) |
Particularly, if s=0,μ=1, then FMs,pq,μ(γ,λ,ℓ;h)=FMpγ(h), FSTs,pq,μ(γ,λ,ℓ;h)=FSTp(h), and FCVs,pq,μ(γ,λ,ℓ;h)= FCVp(h). Moreover, if p=1, then the classes FMpγ(h), FSTp(h), and FCVp(h) reduce to the classes FMγ(h), FST(h), and FCV(h) studied in [45].
In the first part of this investigation, the goal is to establish certain inclusion relations between the classes seen in Definitions 5 and 7 using the properties of fuzzy differential subordination and then to obtain connections between the newly introduced subclasses by applying a new generalized q-calculus operator, which will be defined in the second part of this study. This research follows the line established by recent publications like [46,47,48].
The proofs of the main results require the following lemma:
Lemma 3.1. [47] Let r1, r2∈C, r1≠0, and a convex function h satisfies
Re(r1h(t)+r2)>0, t∈U. |
If g is analytic in U with g(0)=h(0), and Ω(g(t),tdqg(t);t)=g(t)+tdqg(t)r1g(t)+r2 is analytic in U with Ω(h(0),0;0)=h(0), then,
FΩ(C2×U)[g(t)+tdqg(t)r1g(t)+r2]≤Fh(U)(h(t)) |
implies
Fg(U)(g(t))≤Fh(U)(h(t)), t∈U. |
In this section, we are going to discuss some inclusion properties for the classes defined above.
Theorem 3.1. Let h∈Ω, 0≤γ≤1,ℓ,λ≥0,μ>−p,0<q<1,p∈N, and s be a real. Then,
FMs,pq,μ(γ,λ,ℓ;h)⊂FSTs,pq,μ(λ,ℓ;h). |
Proof. Let f∈FMs,pq,μ(γ,λ,ℓ;h), and let
ηdq(Is,pq,μ(λ,ℓ)f(η))[p]qIs,pq,μ(λ,ℓ)f(η)=χ(η), | (3.1) |
with χ(η) being analytic in U and χ(0)=1.
We take logarithmic differentiation of (2.1) to get
dq(ηdq(Is,pq,μ(λ,ℓ)f(η)))ηdqIs,pq,μ(λ,ℓ)f(η)−dq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)=dq(χ(η))χ(η). |
Equivalently,
dq(ηdq(Is,pq,μ(λ,ℓ)f(η)))[p]qdqIs,pq,μ(λ,ℓ)f(η)=χ(η)+1[p]qηdq(χ(η))χ(η). | (3.2) |
Since f∈FMs,pq,μ(γ,λ,ℓ;h), from (2.1) and (3.2), we get
(1−γ)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)+γ[p]qdq(ηdq(Is,pq,μ(λ,ℓ)f(η)))dqIs,pq,μ(λ,ℓ)f(η)=χ(η)+γ[p]qηdq(χ(η))χ(η)≺Fh(η). | (3.3) |
We obtain χ(η)≺Fh(η) by applying (3.3) and Lemma 3.1. Hence, f∈FSTs,pq,μ(λ,ℓ;h).
Corollary 3.1. FMsq,μ(λ,ℓ;h)⊂FSTsq,μ(λ,ℓ;h),if p=1. Furthermore, if s=0, μ=1, we obtain FMγ(h)⊂FST(h), and if γ=1, then FCV(h)⊂FST(h). Additionally, for h(η)=1+η1−η, we obtain FCV⊂FST.
Theorem 3.2. Let h∈Ω, γ>1,ℓ,λ≥0,μ>−p,0<q<1, p∈N, and s be a real. Then,
FMs,pq,μ(γ,λ,ℓ;h)⊂FCVs,pq,μ(γ,λ,ℓ;h). |
Proof. Let f∈FMs,pq,μ(γ,λ,ℓ;h). Then, by definition, we write
(1−γ)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)+γ[p]qdq(ηdq(Is,pq,μ(λ,ℓ)f(η)))dqIs,pq,μ(λ,ℓ)f(η)=p1(η)≺Fh(η). |
Now,
γ[p]qdq(ηdq(Is,pq,μ(λ,ℓ)f(η)))dqIs,pq,μ(λ,ℓ)f(η)=(1−γ)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)+γ[p]qdq(ηdq(Is,pq,μ(λ,ℓ)f(η)))dqIs,pq,μ(λ,ℓ)f(η)+(γ−1)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)=(γ−1)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)+p1(η). |
This implies
dq(ηdq(Is,pq,μ(λ,ℓ)f(η)))[p]qdqIs,pq,μ(λ,ℓ)f(η)=1γp1(η)+(1−1γ)ηdq(Is,pq,μ(λ,ℓ)f(η))[p]qIs,pq,μ(λ,ℓ)f(η)=1γp1(η)+(1−1γ)p2(η). |
Since p1,p2≺Fh(η), dq(ηdq(Is,pq,μ(λ,ℓ)f(η)))[p]qηdqIs,pq,μ(λ,ℓ)f(η)≺Fh(η). This is the expected outcome.
In particular, if p=1, we get FMsq,μ(γ,λ,ℓ;h)⊂FCVsq,μ(γ,λ,ℓ;h). Additionally, when s=0, μ=1, we have FMγ(h)⊂FCV(h), and considering h(η)=1+η1−η, we obtain FMpγ⊂FCV.
Theorem 3.3. Let h∈Ω, 0≤γ1<γ2<1,ℓ,λ≥0,μ>−p,0<q<1, p∈N, and s be a real number. Then,
FMs,pq,μ(γ2,λ,ℓ;h)⊂FMs,pq,μ(γ1,λ,ℓ;h). |
Proof. For γ1=0, it is obviously true, based on the preceding theorem.
Let f∈FMs,pq,μ(γ2,λ,ℓ;h). Then, by definition, we have
(1−γ2)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)+γ2[p]qdq(ηdq(Is,pq,μ(λ,ℓ)f(η)))ηdqIs,pq,μ(λ,ℓ)f(η)=g1(η)≺Fh(η). | (3.4) |
Now, we can easily write
(1−γ1)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)+γ1[p]qdq(ηdq(Is,pq,μ(λ,ℓ)f(η)))dqIs,pq,μ(λ,ℓ)f(η)=γ1γ2g1(η)+(1−γ1γ2)g2(η), | (3.5) |
where we have used (3.4), and ηdq(Is,pq,μ(λ,ℓ)f(η))[p]qIs,pq,μ(λ,ℓ)f(η)=g2(η)≺Fh(η). Since g1,g2≺Fh(η), (3.5) implies
(1−γ1)[p]qηdq(Is,pq,μ(λ,ℓ)f(η))Is,pq,μ(λ,ℓ)f(η)+γ1[p]qdq(ηdq(Is,pq,μ(λ,ℓ)f(η)))dqIs,pq,μ(λ,ℓ)f(η)≺Fh(η). |
This proves the theorem.
Remark 3.1. If γ2=1, and f∈FMs,pq,μ(1,λ,ℓ;h)=FCVs,pq,μ(λ,ℓ;h), then the previously proved result shows that
f∈FMs,pq,μ(γ1,λ,ℓ;h), for 0≤γ1<1. |
Consequently, by using Theorem 3.1, we get FCVs,pq,μ(λ,ℓ;h)⊂FSTs,pq,μ(1,λ,ℓ;h).
Now, certain inclusion results are discussed for the subclasses given by Definition 2.1.
Theorem 3.4. Let h∈Ω, ℓ,λ≥0,μ>−p,0<q<1, p∈N, and s be a real with [ℓ+p]q>λqℓ. Then,
FSTs,pq,μ+1(λ,ℓ;h)⊂FSTs,pq,μ(λ,ℓ;h)⊂FSTs+1,pq,μ(λ,ℓ;h). |
Proof. Let f∈FSTs,pq,μ(λ,ℓ;h). Then,
ηdq(Is+1,pq,μ(λ,ℓ)f(η))[p]qIs+1,pq,μ(λ,ℓ)f(η)≺Fh(η). |
Now, we set
ηdq(Is+1,pq,μ(λ,ℓ)f(η))[p]qIs+1,pq,μ(λ,ℓ)f(η)=P(η), | (3.6) |
with analytic P(η) in U and P(0)=1.
From (1.11) and (3.6), we get
ηdq(Is+1,pq,μ(λ,ℓ)f(η))[p]qIs+1,pq,μ(λ,ℓ)f(η)=[ℓ+p]qλqℓ(Is,pq,μ(λ,ℓ)f(η))[p]qIs+1,pq,μ(λ,ℓ)f(η)−1[p]q([ℓ+p]qλqℓ−1), |
equivalently,
[ℓ+p]qλqℓ(Is,pq,μ(λ,ℓ)f(η))[p]qIs+1,pq,μ(λ,ℓ)f(η)=P(η)+ξq,p. |
where ξq,p=1[p]q([ℓ+p]qλqℓ−1).
On q-logarithmic differentiation yields,
ηdq(Is,pq,μ(λ,ℓ)f(η))[p]qIs,pq,μ(λ,ℓ)f(η)=P(η)+ηdq(P(η))[p]q(P(η)+ξq,p). | (3.7) |
Since f∈FSTs,pq,μ(λ,ℓ;h), (3.7) implies
P(η)+ηdq(P(η))[p]q(P(η)+ξq,p)≺Fh(η). | (3.8) |
We conclude that P(η)≺Fh(η) by applying (3.8) and Lemma 3.1. Hence, f∈FSTs+1,pq,μ(λ,ℓ;h). To prove the first part, let f∈FSTs,pq,μ+1(λ,ℓ;h), and set
χ(η)=ηdq(Is,pq,μ(λ,ℓ)f(η))[p]qIs,pq,μ(λ,ℓ)f(η), |
where χ is analytic in U with χ(0)=1. Then, it follows χ≺Fh(η) that by applying the same arguments as those described before with (1.12). Theorem 3.4's proof is now complete.
Theorem 3.5. Let h∈Ω, ℓ,λ≥0,μ>−p,0<q<1, p∈N, and s be a real. Then,
FCVs,pq,μ+1(λ,ℓ;h)⊂FCVs,pq,μ(λ,ℓ;h)⊂FCVs+1,pq,μ(λ,ℓ;h). |
Proof. Let f∈FCVs,pq,μ(λ,ℓ;h). Applying (2.3), we show that
f∈FCVs,pq,μ(λ,ℓ;h)⇔η(dqf)[p]q∈FSTs,pq,μ(λ,ℓ;h)⇔η[p]qdq(Is,pq,μ(λ,ℓ)f(η))∈FSTp(h)⇔η(dqf)[p]q∈FSTs+1,pq,μ(λ,ℓ;h)⇔η[p]qdq(Is+1,pq,μ(λ,ℓ)f(η))∈FSTp(h)⇔Is+1,pq,μ(λ,ℓ)(η(dqf)[p]q)∈FSTp(h)⇔Is+1,pq,μ(λ,ℓ)f(η)∈FCVp(h)⇔f∈FCVs+1,pq,μ(λ,ℓ;h). |
We can demonstrate the first part using arguments similar to those described above. Theorem 3.5's proof is now complete.
For f(η)∈Ap, the generalized (p,q)-Bernardi integral operator for p-valent functions Bpn,qf(η):Ap→Ap is defined by
Bpn,qf(η)={Bp1,q(Bpn−1,qf(η)), (n∈N),f(η), (n=0), |
where Bp1,qf(η) is given by
Bp1,qf(η)=[p+ϱ]qηϱ∫η0tϱ−1f(t)dqt=ηp+∞∑κ=p+1([p+ϱ]q[κ+ϱ]q)aκzκ, (ϱ>−p,η∈U). | (3.9) |
From Bp1,qf(η), we deduce that
Bp2,qf(η)=Bp1,q(Bp1,qf(η))=ηp+∞∑κ=p+1([p+ϱ]q[κ+ϱ]q)2aκzκ, (ϱ>−p), |
and
Bpn,qf(η)=ηp+∞∑κ=p+1([p+ϱ]q[κ+ϱ]q)naκzκ, (n∈N, ϱ>−p), |
which are defined in [49].
If n=1, we obtain the q-Bernardi integral operator for a p -valent function [50].
Theorem 3.6. Let f∈FMs,pq,μ(γ,λ,ℓ;h), and define
Bpq,ϱ(η)=[p+ϱ]qηϱ∫η0tϱ−1f(t)dqt (ϱ>0). | (3.10) |
Then, Bpq,ϱ∈FSTs,pq,μ(λ,ℓ;h).
Proof. Let f∈Ms,pq,μ(γ,λ,ℓ;h), and Bs,pq,μ,ϱ(λ,ℓ)(η)=Is,pq,μ(λ,ℓ)(Bpq,ϱ(η)). We assume
ηdq(Bs,pq,μ,ϱ(λ,ℓ)(η))[p]qBs,pq,μ,ϱ(λ,ℓ)(η)=N(η), | (3.11) |
where N(η) is analytic in U with N(0)=1.
From (3.10), we obtain
dq(ηϱBs,pq,μ,ϱ(λ,ℓ)(η))[p+ϱ]q=ηϱ−1f(η). |
This implies
ηdq(Bs,pq,μ,ϱ(λ,ℓ)(η))=([p]q+[ϱ]qqϱ)f(η)−[ϱ]qqϱBs,pq,μ,ϱ(λ,ℓ)(η). | (3.12) |
We use (3.11), (3.12), and (1.10), to obtain
N(η)=([p]q+[ϱ]qqϱ)ηdq(Is,pq,μ(λ,ℓ)f(η))[p]qIs,pq,μ(λ,ℓ)(Bpq,ϱ(η))−[ϱ]qqϱ[p]q. |
We use logarithmic differentiation to obtain
ηdq(Is,pq,μ(λ,ℓ)f(η))[p]qIs,pq,μ(λ,ℓ)f(η)=N(η)+ηdqN(η)[p]qN(η)+[ϱ]qqϱ. | (3.13) |
Since f∈FMs,pq,μ(γ,λ,ℓ;h)⊂FSTs,pq,μ(λ,ℓ;h), (3.13) implies
N(η)+ηdqN(η)[p]qN(η)+[ϱ]qqϱ≺Fh(η). |
The intended outcome follows from applying Lemma 3.1.
When p=1, the following corollary can be stated:
Corollary 3.2. Let f∈FMsq,μ(γ,λ,ℓ;h), and define
Bq,ϱf(η)=[1+ϱ]qηϱ∫η0tϱ−1f(t)dqt (ϱ>0). |
Then, Bq,ϱf(η)∈FSTsq,μ(λ,ℓ;h).
The means of the fuzzy differential subordiantion theory are employed in order to introduce and initiate investigations on certain subclasses of multivalent functions. The q-p-analogue multiplier-Ruscheweyh operator Is,pq,μ(λ,ℓ) is developed using the notion of a q-difference operator and the concept of convolution. The q-analogue of the Ruscheweyh operator and the q-p-analogue of the Cătas operator are further used to introduce a new operator applied for defining particular subclasses. In the second section, we obtained some inclusion properties between the classes FMs,pq,μγ,λ,ℓ;h), FSTs,pq,μ(λ,ℓ;h), and FCVs,pq,μ(λ,ℓ;h). The investigations concern the (p,q)-Bernardi integral operator for the p-valent function preservation property and certain inclusion outcomes for the newly defined classes. Another new generalized q-calculus operator is defined in this investigation that helps establish connections between the classes introduced and investigated in this study. For instance, many researchers used fuzzy theory in different branches of mathematics [51,52,53,54].
This work is intended to motivate future studies that would contribute to this direction of study by developing other generalized subclasses of q-close-to-convex and quasi-convex multivalent functions as well as by presenting other generalized q-calculus operators.
Ekram E. Ali1, Georgia Irina Oros, Rabha M. El-Ashwah and Abeer M. Albalahi: conceptualization, methodology, validation, formal analysis, formal analysis, writing-review and editing; Ekram E. Ali1, Rabha M. El-Ashwah and Abeer M. Albalahi: writing-original draft preparation; Ekram E. Ali1 and Georgia Irina Oros: supervision; Ekram E. Ali1: project administration; Georgia Irina Oros: funding acquisition. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The publication of this paper was supported by University of Oradea, Romania.
The authors declare that they have no conflicts of interest.
[1] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] | G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, General Mathematics, 19 (2011), 97–103. |
[3] |
S. S. Miller, P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6
![]() |
[4] |
S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–172. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507
![]() |
[5] | G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Universitatis Apulensis, 30 (2012), 55–64. |
[6] |
I. Dzitac, F. G. Filip, M. J. Manolescu, Fuzzy logic is not fuzzy: world-renowned computer scientist Lotfi A. Zadeh, Int. J. Comput. Commun., 12 (2017), 748–789. https://doi.org/10.15837/ijccc.2017.6.3111 doi: 10.15837/ijccc.2017.6.3111
![]() |
[7] | G. I. Oros, G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248. |
[8] |
E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator, AIMS Mathematics, 9 (2024), 5451–5465. https://doi.org/10.3934/math.2024263 doi: 10.3934/math.2024263
![]() |
[9] |
E. E. Ali, M. Vivas-Cortez, R. M. El-Ashwah, A. M. Albalahi, Fuzzy subordination results for meromorphic functions connected with a linear operator, Fractal Fract., 8 (2024), 308. https://doi.org/10.3390/fractalfract8060308 doi: 10.3390/fractalfract8060308
![]() |
[10] | G. I. Oros, Briot-Bouquet fuzzy differential subordination, Analele Universitatii Oradea Fasc. Matematica, 2 (2012), 83–97. |
[11] |
F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[12] | F. H. Jackson, On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193–203. |
[13] | R. D. Carmichael, The general theory of linear q-difference equations, Am. J. Math., 34 (1912), 147–168. |
[14] |
T. E. Mason, On properties of the solution of linear q-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216
![]() |
[15] |
W. J. Trjitzinsky, Analytic theory of linear difference equations, Acta Math., 61 (1933), 1–38. https://doi.org/10.1007/BF02547785 doi: 10.1007/BF02547785
![]() |
[16] |
M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
![]() |
[17] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
![]() |
[18] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex A., 22 (2021), 1501–1520. |
[19] |
H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822
![]() |
[20] |
E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a q-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184
![]() |
[21] |
E. E. Ali, A. M. Lashin, A. M. Albalahi, Coefficient estimates for some classes of biunivalent function associated with Jackson q-difference operator, J. Funct. Space., 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
![]() |
[22] |
E. E. Ali, H. M. Srivastava, A. M. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the q-derivatives of the q-binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
![]() |
[23] |
E. E. Ali, H. M. Srivastava, A. M. Albalahi, Subclasses of p-valent k-uniformly convex and starlike functions defined by the q-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578
![]() |
[24] |
E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of q-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
![]() |
[25] |
W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional q-calculus operator, Math. Bohem., 148 (2023), 131–148. http://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21
![]() |
[26] |
B. Wang, R. Srivastava, J. L. Liu, A certain subclass of multivalent analytic functions defined by the q-difference operator related to the Janowski functions, Mathematics, 9 (2021), 1706. https://doi.org/10.3390/math9141706 doi: 10.3390/math9141706
![]() |
[27] |
S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
![]() |
[28] | K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[29] |
M. K. Aouf, S. M. Madian, Inclusion and properties neighbourhood for certain p-valent functions associated with complex order and q-p-valent Cătaş operator, J. Taibah Univ. Sci., 14 (2020), 1226–1232. https://doi.org/10.1080/16583655.2020.1812923 doi: 10.1080/16583655.2020.1812923
![]() |
[30] |
M. Arif, H. M. Srivastava, S. Umar, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211–1221. https://doi.org/10.1007/s13398-018-0539-3 doi: 10.1007/s13398-018-0539-3
![]() |
[31] |
R. M. Goel, N. S. Sohi, A new criterion for p-valent functions, P. Am. Math. Soc., 78 (1980), 353–357. https://doi.org/10.2307/2042324 doi: 10.2307/2042324
![]() |
[32] |
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801
![]() |
[33] |
K. I. Noor, M. Arif, On some applications of Ruscheweyh derivative, Comput. Math. Appl., 62 (2011), 4726–4732. https://doi.org/10.1016/j.camwa.2011.10.063 doi: 10.1016/j.camwa.2011.10.063
![]() |
[34] |
I. Aldawish, M. Darus, Starlikeness of q-differential operator involving quantum calculus, Korean J. Math., 22 (2014), 699–709. https://doi.org/10.11568/kjm.2014.22.4.699 doi: 10.11568/kjm.2014.22.4.699
![]() |
[35] |
H. Aldweby, M. Darus, A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, ISRN Mathematical Analysis, 2013 (2013), 382312. https://doi.org/10.1155/2013/382312 doi: 10.1155/2013/382312
![]() |
[36] |
M. K. Aouf, R. M. El-Ashwah, Inclusion properties of certain subclass of analytic functions defined by multiplier transformations, Annales Universitatis Mariae Curie-Sklodowska Sectio A–Mathematica, 63 (2009), 29–38. https://doi.org/10.2478/v10062-009-0003-0 doi: 10.2478/v10062-009-0003-0
![]() |
[37] | R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Universitatis Apulensis, 24 (2010), 51–61. |
[38] |
T. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
![]() |
[39] | G. S. Sălăgean, Subclasses of univalent functions, In: Complex analysis—Fifth Romanian-Finnish seminar, Berlin: Springer, 1983,362–372. https://doi.org/10.1007/BFb0066543 |
[40] |
S. A. Shah, K. I. Noor, Study on q-analogue of certain family of linear operators, Turk. J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
![]() |
[41] |
H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
![]() |
[42] | H. M. Srivastava, J. Choi, Series associated with the Zeta and related functions, Dordrecht: Springer, 2001. |
[43] | S. G. Gal, A. I. Ban, Elemente de matematică fuzzy, Romania: Editura Universităţii din Oradea, 1996. |
[44] | S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
[45] |
S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad, A. M. Albalahi, Inclusion results for the class of fuzzy α-convex functions, AIMS Mathematics, 8 (2023), 1375–1383. https://doi.org/10.3934/math.2023069 doi: 10.3934/math.2023069
![]() |
[46] |
B. Kanwal, S. Hussain, A. Saliu, Fuzzy differential subordination related to strongly Janowski functions, Appl. Math. Sci. Eng., 31 (2023), 2170371. https://doi.org/10.1080/27690911.2023.2170371 doi: 10.1080/27690911.2023.2170371
![]() |
[47] |
S. A. Shah, E. E. Ali, A. Catas, A. M. Albalahi, On fuzzy differential subordination associated with q-difference operator, AIMS Mathematics, 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336
![]() |
[48] |
B. Kanwal, K. Sarfaraz, M. Naz, A. Saliu, Fuzzy differential subordination associated with generalized Mittag-Leffler type Poisson distribution, Arab Journal of Basic and Applied Sciences, 31 (2024), 206–212. https://doi.org/10.1080/25765299.2024.2319366 doi: 10.1080/25765299.2024.2319366
![]() |
[49] |
S. H. Hadi, M. Darus, A class of harmonic (p,q)-starlike functions involving a generalized (p,q)-Bernardi integral operator, Probl. Anal. Issues Anal., 12 (2023), 17–36. https://doi.org/10.15393/j3.art.2023.12850 doi: 10.15393/j3.art.2023.12850
![]() |
[50] |
P. H. Long, H. Tang, W. S. Wang, Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator, AIMS Mathematics, 6 (2021), 1191–1208. https://doi.org/10.3934/math.2021073 doi: 10.3934/math.2021073
![]() |
[51] |
O. A. Arqub, J. Singh, M. Alhodaly, Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations, Math. Method. Appl. Sci., 46 (2023), 7807–7834. https://doi.org/10.1002/mma.7228 doi: 10.1002/mma.7228
![]() |
[52] |
O. A. Arqub, J. Singh, B. Maayah, M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Method. Appl. Sci., 46 (2023), 7965–7986. https://doi.org/10.1002/mma.7305 doi: 10.1002/mma.7305
![]() |
[53] |
O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. & Applic., 28 (2017), 1591–1610. https://doi.org/10.1007/s00521-015-2110-x doi: 10.1007/s00521-015-2110-x
![]() |
[54] |
O. A. Arqub, S. Momani, S. Al-Mezel, M. Kutbi, Existence, Uniqueness, and characterization theorems for nonlinear fuzzy integrodifferential equations of Volterra type, Math. Probl. Eng., 2015 (2015), 835891. http://doi.org/10.1155/2015/835891 doi: 10.1155/2015/835891
![]() |
1. | Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi, Marwa Ennaceur, Fuzzy Subordination Results for Meromorphic Functions Associated with Hurwitz–Lerch Zeta Function, 2024, 12, 2227-7390, 3721, 10.3390/math12233721 | |
2. | Khadeejah Rasheed Alhindi, Application of the q-derivative operator to a specialized class of harmonic functions exhibiting positive real part, 2025, 10, 2473-6988, 1935, 10.3934/math.2025090 |