In this paper, the research discussed involves fractional calculus applied to a $ q $-operator. Fractional integrals applied to the $ q $-analogue of the multiplier transformation gives a new operator, and the research is conducted applying the differential subordination and superordination theories. The best dominant and the best subordinant are obtained by the theorems and corollaries discussed. Combining the results from the both theories, sandwich-type results are presented as a conclusion of this research.
Citation: Shatha S. Alhily, Alina Alb Lupaş. Sandwich theorems involving fractional integrals applied to the $ q $ -analogue of the multiplier transformation[J]. AIMS Mathematics, 2024, 9(3): 5850-5862. doi: 10.3934/math.2024284
In this paper, the research discussed involves fractional calculus applied to a $ q $-operator. Fractional integrals applied to the $ q $-analogue of the multiplier transformation gives a new operator, and the research is conducted applying the differential subordination and superordination theories. The best dominant and the best subordinant are obtained by the theorems and corollaries discussed. Combining the results from the both theories, sandwich-type results are presented as a conclusion of this research.
[1] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. |
[2] | F. H. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314. |
[3] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[4] | H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications, Chichester: Halsted Press, New York: John Wiley and Sons, 1989,329–354. |
[5] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving $q$-calculus, Anal. Math., 43 (2017), 475–487. |
[6] | M. Naeem, S. Hussain, T. Mahmood, S. Khan, M. Darus, A new subclass of analytic functions defined by using Sălăgean $q$ -differential operator, Mathematics, 7 (2019), 458. http://doi.org/10.3390/math7050458 doi: 10.3390/math7050458 |
[7] | S. M. El-Deeb, Quasi-Hadamard product of certain classes with respect to symmetric points connected with $q$- Sălăgean operator, Montes Taurus J. Pure Appl. Math., 4 (2022), 77–84. |
[8] | A. Alb Lupaş, Subordination Results on the $q$-Analogue of the Sălăgean Differential Operator, Symmetry, 14 (2022), 1744. http://doi.org/10.3390/sym14081744 doi: 10.3390/sym14081744 |
[9] | S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. |
[10] | H. Aldweby, M. Darus, Some subordination results on $q$ -analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 6 (2014), 958563. |
[11] | S. Mahmood, J. Sokół, New subclass of analytic functions in conical domain associated with Ruscheweyh $q$-differential operator, Results Math., 71 (2017), 1345–1357. |
[12] | A. Alb Lupaş, A. Cătaş, Differential Subordination and Superordination Results for $q$-Analogue of Multiplier Transformation, Fractal Fract., 7 (2023), 199. http://doi.org/10.3390/fractalfract7020199 doi: 10.3390/fractalfract7020199 |
[13] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving $q$-calculus, Anal. Math., 43 (2017), 475–487. |
[14] | S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., 39 (1987), 1057–1077. |
[15] | S. Owa, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53–59. |
[16] | N. E. Cho, H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modell., 37 (2003), 39–49. |
[17] | N. E. Cho, T. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (2003), 399–410. |
[18] | B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, In: Current topics in analytic function theory, Singapore: World Scientific Publishing, 1992,371–374. |
[19] | M. Acu, S. Owa, Note on a class of starlike functions, Kyoto: RIMS, 2006. |
[20] | A. Cătaş, On certain class of p-valent functions defined by new multiplier transformations, Proceedings of the International Symposium on Geometric Function Theory and Applications, 2007,241–250. |
[21] | A. Alb Lupaş, A new comprehensive class of analytic functions defined by multiplier transformation, Math. Comput. Modell., 54 (2011), 2355–2362. http://doi.org/10.1016/j.mcm.2011.05.044 doi: 10.1016/j.mcm.2011.05.044 |
[22] | A. Alb Lupaş, On special differential superordinations using multiplier transformation, J. Comput. Anal. Appl., 13 (2011), 121–126. |
[23] | A. Alb Lupaş, On special strong differential subordinations using multiplier transformation, Appl. Math. Lett., 25 (2012), 624–630. http://doi.org/10.1016/j.aml.2011.09.074 doi: 10.1016/j.aml.2011.09.074 |
[24] | S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, New York: Marcel Dekker, 2000. |
[25] | S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var., 48 (2003), 815–826. |
[26] | T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math., 35 (2002), 287–292. |
[27] | A. Alb Lupaş, M. Acu, Properties of a subclass of analytic functions defined by Riemann-Liouville fractional integral applied to convolution product of multiplier transformation and Ruscheweyh derivative, Demonstratio Math., 56 (2023), 20220249. http://doi.org/10.1515/dema-2022-0249 doi: 10.1515/dema-2022-0249 |
[28] | B. A. Frasin, Subordinations results for a class of analytic functions defined by linear operator, J. Inequal. Pure Appl. Math., 7 (2006), 134. |