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1. Introduction

More and more fields of research have used fractional calculus to develop and find new
applications. Similarly, q-calculus is involved in several engineering domains, physics, and in
mathematics. The combination of fractional and q-calculus in geometric functions theory and some
interesting applications were obtained by Srivastava [1].

Jackson [2, 3] established the q-derivative and the q-integral in the field of mathematical analysis
via quantum calculus. The foundations of quantum calculus in the theory of geometric functions
were laid by Srivastava [4]. Continued research in this field has led to the obtaining of numerous
q-analogue operators, such as the q-analogue of the Sălăgean differential operator [5], giving new
applications in [6–8]; the q-analogue of the Ruscheweyh differential operator introduced by Răducanu
and Kanas [9] and studied by Mohammed and Darus [10] and Mahmood and Sokół [11]; and the
q-analogue of the multiplier transformation [12, 13].
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This study involves an operator defined by applying the Riemann-Liouville fractional integral to the
q-analogue of the multiplier transformation. Many operators have been defined and studied in recent
years by using the Riemann-Liouville or Atagana-Baleanu fractional integrals.

First, we recall the classically used notations and notions from geometric functions theory.
Working on the open unit disc U = {z ∈ C : |z| < 1}, we establish here the class of analytic

functions denoted byH (U) and its subclassesH [a, n] containing the functions f ∈ H (U) defined by
f (z) = a + anzn + an+1zn+1 + . . . , with z ∈ U, a ∈ C, n ∈ N, as well as An, containing the functions
f ∈ H (U) of the form f (z) = z + an+1zn+1 + . . . , z ∈ U. When n = 1, the notationA1 = A is used.

We also recall the Riemann-Liouville fractional integral definition introduced in [14, 15]:

Definition 1. ( [14, 15]) The fractional integral of order λ applied to the analytic function f in a
simply-connected region of the z-plane which contains the origin is defined by

D−λz f (z) =
1

Γ (λ)

∫ z

0

f (t)
(z − t)1−λdt,

where λ > 0 and the multiplicity of (z − t)λ−1 is removed by the condition that log (z − t) is real when
(z − t) > 0.

The q-analogue of the multiplier transformation is defined below.

Definition 2. ( [13]) The q-analogue of the multiplier transformation, denoted by Im,l
q , has the

following form:

Im,l
q f (z) = z +

∞∑
j=2

( [l + j
]
q

[l + 1]q

)m

a jz j,

where q ∈ (0, 1), m, l ∈ R, l > −1, and f (z) = z +
∑∞

j=2 a jz j ∈ A, z ∈ U.

Remark 1. We notice that lim
q→1
I

m,l
q f (z) = lim

q→1

(
z +

∑∞
j=2

( [l+ j]q

[l+1]q

)m

a jz j
)

= z+
∑∞

j=2

(
l+ j
l+1

)m
a jz j = I (m, 1, l).

The operator I (m, 1, l) was studied by Cho and Srivastava [16] and Cho and Kim [17]. The operator
I (m, 1, 1) was studied by Uralegaddi and Somanatha [18], and the operator I (α, λ, 0) was introduced
by Acu and Owa [19]. Cătaş [20] studied the operator Ip (m, λ, l) which generalizes the operator
I (m, λ, l) . Alb Lupaş studied the operator I (m, λ, l) in [21–23].

Now, we introduce definitions from the differential subordination and differential superordination
theories.

Definition 3. ( [24]) Between the analytic functions f and g there is a differential subordination,
denoted f (z) ≺ g (z), if there exists ω, a Schwarz analytic function with the properties |ω(z)| < 1, z ∈ U
and ω(0) = 0, such that f (z) = g(ω(z)), ∀ z ∈ U. In the special case where g is an univalent function
in U, the above differential subordination is equivalent to f (U) ⊂ g(U) and f (0) = g(0).

Definition 4. ( [24]) Considering a univalent function h in U and ψ : C3 × U → C, when the analytic
function p satisfies the differential subordination

ψ(p(z), zp′(z), z2 p′′(z); z) ≺ h(z), z ∈ U, (1.1)

then p is a solution of the differential subordination. When p ≺ g for all solutions p, the univalent
function g is a dominant of the solutions. A dominant g̃ with the property g̃ ≺ g for every dominant g
is called the best dominant of the differential subordination.
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Definition 5. ( [25]) Considering an analytic function h in U and ϕ : C3 × U → C, when p and
ϕ
(
p (z) , zp′ (z) , z2 p′′ (z) ; z

)
are univalent functions in U fulfilling the differential superordination

h(z) ≺ ϕ(p(z), zp′(z), z2 p′′ (z) ; z), (1.2)

then p is a solution of the differential superordination. When g ≺ p for all solutions p, the analytic
function g is a subordinant of the solutions. A subordinant g̃ with the property g ≺ g̃ for every
subordinant g is called the best subordinant of the differential superordination.

Definition 6. ( [24]) Q denotes the class of injective functions f analytic on U\E ( f ), with the property
f ′ (ζ) , 0 for ζ ∈ ∂U\E ( f ), when E ( f ) = {ζ ∈ ∂U : lim

z→ζ
f (z) = ∞}.

The obtained results from this paper are constructed based on the following lemmas.

Lemma 1. ( [24]) Considering the univalent function g in U and the analytic functions θ, η in a
domain D ⊃ g (U), such that η (w) , 0, ∀ w ∈ g (U) , define the functions G (z) = zg′ (z) η (g (z)) and

h (z) = θ (g (z)) + G (z). Assuming that G is starlike univalent in U and Re
(
zh′ (z)
G (z)

)
> 0, ∀ z ∈ U, when

the analytic function p having the properties p (U) ⊆ D and p (0) = g (0), satisfies the differential
subordination θ (p (z)) + zp′ (z) η (p (z)) ≺ θ (g (z)) + zg′ (z) η (g (z)) , for z ∈ U, then p ≺ g and g is the
best dominant.

Lemma 2. ( [26]) Considering the convex univalent function g in U and the analytic functions θ,
η in a domain D ⊃ g (U), define the function G (z) = zg′ (z) η (g (z)). Assuming that G is starlike

univalent in U and Re
(
θ′ (g (z))
η (g (z))

)
> 0, ∀ z ∈ U, when p ∈ H

[
g (0) , 1

]
∩ Q, with p (U) ⊆ D, the

function θ (p (z)) + zp′ (z) η (p (z)) is univalent in U, and the differential superordination θ (g (z)) +

zg′ (z) η (g (z)) ≺ θ (p (z)) + zp′ (z) η (p (z)) is satisfied, then g ≺ p and g is the best subordinant.

2. Main results

The operator obtained by applying the the Riemann-Liouville fractional integral to the q-analogue
of the multiplier transformation is written as follows:

Definition 7. Let q,m, l be real numbers, q ∈ (0, 1), l > −1, and λ ∈ N. The fractional integral applied
to the q-analogue of the multiplier transformation is defined by

D−λz I
m,l
q f (z) =

1
Γ (λ)

∫ z

0

I
m,l
q f (t)

(z − t)1−λdt = (2.1)

1
Γ (λ)

∫ z

0

t
(z − t)1−λdt +

∞∑
j=2

( [l + j
]
q

[l + 1]q

)m

a j

∫ z

0

t j

(z − t)1−λdt.

After a laborious computation, we discover that the fractional integral applied to the q-analogue of
the multiplier transformation takes the following form:

D−λz I
m,l
q f (z) =

1
Γ (λ + 2)

zλ+1 +

∞∑
j=2

( [l + j
]
q

[l + 1]q

)m
Γ ( j + 1)

Γ ( j + λ + 1)
a jz j+λ, (2.2)

when f (z) = z +
∑∞

j=2 a jz j ∈ A. We note that D−λz I
m,l
q f (z) ∈ H [0, λ + 1] .
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Remark 2. When q → 1, we obtain the classical case, and the fractional integral applied to the
multiplier transformation is defined by

D−λz I (m, 1, l) f (z) =
1

Γ (λ)

∫ z

0

I (m, 1, l) f (t)
(z − t)1−λ dt = (2.3)

1
Γ (λ)

∫ z

0

t
(z − t)1−λdt +

∞∑
j=2

(
l + j
l + 1

)m

a j

∫ z

0

t j

(z − t)1−λdt,

which, after several calculus can be written in the form

D−λz I (m, 1, l) f (z) =
1

Γ (λ + 2)
zλ+1 +

∞∑
j=2

(
l + j
l + 1

)m
Γ ( j + 1)

Γ ( j + λ + 1)
a jz j+λ, (2.4)

when f (z) = z +
∑∞

j=2 a jz j ∈ A. We note that D−λz I (m, 1, l) f (z) ∈ H [0, λ + 1] .

The main subordination result product regarding the operator introduced in Definition 7 is exposed
in the following theorem:

Theorem 1. Consider f ∈ A and g an analytic function univalent in U with the property that g (z) , 0,

∀ z ∈ U, with real numbers q,m, l, q ∈ (0, 1), l > −1, and λ, n ∈ N. Assuming that
zg′ (z)
g (z)

is a starlike

function univalent in U and

Re
(
1 +

b
d

g (z) +
2c
d

(g (z))2
−

zg′ (z)
g (z)

+
zg′′ (z)
g′ (z)

)
> 0, (2.5)

for a, b, c, d ∈ C, d , 0, z ∈ U, denote

ψ
m,l,q
λ (n, a, b, c, d; z) := a + b

D−λz I
m,l
q f (z)
z

n

+ (2.6)

c
D−λz I

m,l
q f (z)
z

2n

+ dn

z
(
D−λz I

m,l
q f (z)

)′
D−λz I

m,l
q f (z)

− 1

 .
If the differential subordination

ψ
m,l,q
λ (n, a, b, c, d; z) ≺ a + bg (z) + c (g (z))2 + d

zg′ (z)
g (z)

, (2.7)

is satisfied by the function g, for a, b, c, d ∈ C, d , 0, then the differential subordinationD−λz I
m,l
q f (z)
z

n

≺ g (z) , (2.8)

holds and g is the best dominant for it.
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Proof. Setting p (z) :=
D−λz I

m,l
q f (z)
z

n

, z ∈ U, z , 0, and differentiating with respect to z, we get

p′ (z) = n
D−λz I

m,l
q f (z)
z

n−1

(
D−λz I

m,l
q f (z)

)′
z

−
D−λz I

m,l
q f (z)
z2

 =

n
D−λz I

m,l
q f (z)
z

n−1
(
D−λz I

m,l
q f (z)

)′
z

−
n
z

p (z)

and
zp′ (z)
p (z)

= n

z
(
D−λz I

m,l
q f (z)

)′
D−λz I

m,l
q f (z)

− 1

 .
Defining the functions θ and η by θ (w) := a + bw + cw2 and η (w) := d

w , it can be easily certified
that θ is analytic in C, η is analytic in C\{0}, and that η (w) , 0, w ∈ C\{0}.

Considering the functions G (z) = zg′ (z) η (g (z)) = d
zg′ (z)
g (z)

and

h (z) = θ (g (z)) + G (z) = a + bg (z) + c (g (z))2 + d
zg′ (z)
g (z)

,

we deduce that G (z) is starlike univalent in U.
Differentiating the function h with respect to z we get

h′ (z) = bg′ (z) + 2cg (z) g′ (z) + d
(g′ (z) + zg′′ (z)) g (z) − z (g′ (z))2

(g (z))2

and
zh′ (z)
G (z)

=
zh′ (z)

d zg′(z)
g(z)

= 1 +
b
d

g (z) +
2c
d

(g (z))2
−

zg′ (z)
g (z)

+
zg′′ (z)
g′ (z)

.

The condition

Re
(
zh′ (z)
G (z)

)
= Re

(
1 +

b
d

g (z) +
2c
d

(g (z))2
−

zg′ (z)
g (z)

+
zg′′ (z)
g′ (z)

)
> 0

is satisfied by relation (2.5), and we deduce that

a + bp (z) + c (p (z))2 + d
zp′ (z)
p (z)

= a + b
D−λz I

m,l
q f (z)
z

n

+

c
D−λz I

m,l
q f (z)
z

2n

+ dγ

z
(
D−λz I

m,l
q f (z)

)′
D−λz I

m,l
q f (z)

− 1

 = ψ
m,l,q
λ (n, a, b, c, d; z) ,

which is the function from relation (2.6).
Rewriting the differential subordination (2.7), we obtain

a + bp (z) + c (p (z))2 + d
zp′ (z)
p (z)

≺ a + bg (z) + c (g (z))2 + d
zg′ (z)
g (z)

.
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The hypothesis of Lemma 1 being fulfilled, we get the conclusion p (z) ≺ g (z), written asD−λz I
m,l
q f (z)
z

n

≺ g (z)

and g is the best dominant. �

Corollary 1. Suppose that the relation (2.5) is fulfilled for real numbers q,m, l , q ∈ (0, 1), l > −1, and
λ, n ∈ N. If the differential subordination

ψ
m,l,q
λ (n, a, b, c, d; z) ≺ a + b

αz + 1
βz + 1

+ c
(
αz + 1
βz + 1

)2

+ d
(α − β) z

(αz + 1) (βz + 1)

is verified for a, b, c, d ∈ C, d , 0, −1 ≤ β < α ≤ 1, and the function ψm,l,q
λ is given by relation (2.6),

then the differential subordination D−λz I
m,l
q f (z)
z

n

≺
αz + 1
βz + 1

is satisfied with the function g (z) =
αz + 1
βz + 1

as the best dominant.

Proof. Considering in Theorem 1 the function g (z) =
αz + 1
βz + 1

, with −1 ≤ β < α ≤ 1, the corollary is

verified. �

Corollary 2. Assume that relation (2.5) is satisfied for real numbers q,m, l , q ∈ (0, 1), l > −1, and
λ, n ∈ N. If the differential subordination

ψ
m,l,q
λ (n, a, b, c, d; z) ≺ a + b

(
z + 1
1 − z

)s

+ c
(
z + 1
1 − z

)2s

+
2sdz
1 − z2

holds for a, b, c, d ∈ C, 0 < s ≤ 1, d , 0, and the function ψm,l,q
λ is defined by relation (2.6), then the

differential subordination D−λz I
m,l
q f (z)
z

n

≺

(
z + 1
1 − z

)s

is satisfied with the function g (z) =

(
z + 1
1 − z

)s

as the best dominant.

Proof. Considering in Theorem 1 the function g (z) =

(
z + 1
1 − z

)s

, with 0 < s ≤ 1, the corollary is

obtained. �

When q→ 1 in Theorem 1, we get the classical case:
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Theorem 2. Consider f ∈ A and g an analytic function univalent in U with the property that g (z) , 0,

∀ z ∈ U, with real numbers m, l, l > −1, and λ, n ∈ N. Assuming that
zg′ (z)
g (z)

is a starlike function

univalent in U and

Re
(
1 +

b
d

g (z) +
2c
d

(g (z))2
−

zg′ (z)
g (z)

+
zg′′ (z)
g′ (z)

)
> 0, (2.9)

for a, b, c, d ∈ C, d , 0, z ∈ U, denote

ψm,l,λ (n, a, b, c, d; z) := a + b
[
D−λz I (m, 1, l) f (z)

z

]n

+ (2.10)

c
[
D−λz I (m, 1, l) f (z)

z

]2n

+ dn

z
(
D−λz I (m, 1, l) f (z)

)′
D−λz I (m, 1, l) f (z)

− 1

 .
If the differential subordination

ψm,l,λ (n, a, b, c, d; z) ≺ a + bg (z) + c (g (z))2 + d
zg′ (z)
g (z)

, (2.11)

is satisfied by the function g, for a, b, c, d ∈ C, d , 0, then the differential subordination(
D−λz I (m, 1, l) f (z)

z

)n

≺ g (z) (2.12)

holds and g is the best dominant for it.

Proof. The proof of the theorem follows the same steps as the proof of Theorem 1 and it is omitted. �

The corresponding superordination results regarding the operator introduced in Definition 7 are
exposed in the following:

Theorem 3. Consider f ∈ A and g an analytic function univalent in U with the properties g (z) , 0

and
zg′ (z)
g (z)

is starlike univalent in U, with real numbers q,m, l, q ∈ (0, 1), l > −1, and λ, n ∈ N.

Assuming that

Re
(
2c
d

(g (z))2 +
b
d

g (z)
)
> 0, for b, c, d ∈ C, d , 0 (2.13)

and the function ψm,l,q
λ (n, a, b, c, d; z) is defined in relation (2.6), if the differential superordination

a + bg (z) + c (g (z))2 + d
zg′ (z)
g (z)

≺ ψ
m,l,q
λ (n, a, b, c, d; z) (2.14)

is fulfilled for the function g, for a, b, c, d ∈ C, d , 0, then the differential superordination

g (z) ≺
D−λz I

m,l
q f (z)
z

n

(2.15)

holds and g is the best subordinant for it.
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Proof. Set p (z) :=
(

D−λz I
m,l
q f (z)
z

)n
, z ∈ U, z , 0.

Defining the functions θ and η by θ (w) := a + bw + cw2 and η (w) :=
d
w
, it is evident that η (w) , 0,

w ∈ C\{0} and we can certify that θ is analytic in C and η is analytic in C\{0}.
With easy computation, we get that

θ′ (g (z))
η (g (z))

=
g′ (z)

[
b + 2cg (z)

]
g (z)

d

and relation (2.13) can be written as

Re
(
θ′ (g (z))
η (g (z))

)
= Re

(
2c
d

(g (z))2 +
b
d

g (z)
)
> 0,

for b, c, d ∈ C, d , 0.
Following the same computations as in the proof of Theorem 1, the differential superordination

(2.14) can be written as

a + bg (z) + c (g (z))2 + d
zg′ (z)
g (z)

≺ a + bp (z) + c (p (z))2 + d
zp′ (z)
p (z)

.

The hypothesis of Lemma 2 being fulfilled, we obtain the conclusion

g (z) ≺ p (z) =

D−λz I
m,l
q f (z)
z

n

and g is the best subordinant. �

Corollary 3. Assume that relation (2.13) is verified for real numbers q,m, l , q ∈ (0, 1), l > −1, and
λ, n ∈ N. If the differential superordination

a + b
αz + 1
βz + 1

+ c
(
αz + 1
βz + 1

)2

+ d
(α − β) z

(αz + 1) (βz + 1)
≺ ψ

m,l,q
λ (n, a, b, c, d; z)

is satisfied for a, b, c, d ∈ C, d , 0, −1 ≤ β < α ≤ 1, and the function ψm,l,q
λ is defined by the relation

(2.6), then the differential superordination

αz + 1
βz + 1

≺

D−λz I
m,l
q f (z)
z

n

holds with the function g (z) =
αz + 1
βz + 1

as the best subordinant.

Proof. Considering in Theorem 3 the function g (z) =
αz + 1
βz + 1

, with −1 ≤ β < α ≤ 1, the corollary is

proved. �
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Corollary 4. Suppose that relation (2.13) is fulfilled for real numbers q,m, l , q ∈ (0, 1), l > −1, and
λ, n ∈ N. If the differential superordination

a + b
(
z + 1
1 − z

)s

+ c
(
z + 1
1 − z

)2s

+
2sdz
1 − z2 ≺ ψ

m,l,q
λ (n, a, b, c, d; z)

is satisfied for a, b, c, d ∈ C, 0 < s ≤ 1, d , 0, and the function ψm,l,q
λ is given by the relation (2.6), then

the differential superordination (
z + 1
1 − z

)s

≺

D−λz I
m,l
q f (z)
z

n

is satisfied with the function g (z) =

(
z + 1
1 − z

)s

as the best subordinant.

Proof. Considering in Theorem 3 the function g (z) =

(
z + 1
1 − z

)s

, with 0 < s ≤ 1, the corollary is

obtained. �

When q→ 1 in Theorem 3, we get the classical case:

Theorem 4. Consider f ∈ A and g an analytic function univalent in U with the properties g (z) , 0

and
zg′ (z)
g (z)

is starlike univalent in U, with real numbers m, l, l > −1, and λ, n ∈ N. Assuming that

Re
(
2c
d

(g (z))2 +
b
d

g (z)
)
> 0, for b, c, d ∈ C, d , 0, (2.16)

and the function ψm,l,λ (n, a, b, c, d; z) is defined in relation (2.10), if the differential superordination

a + bg (z) + c (g (z))2 + d
zg′ (z)
g (z)

≺ ψm,l,λ (n, a, b, c, d; z) (2.17)

is fulfilled for the function g, for a, b, c, d ∈ C, d , 0, then the differential superordination

g (z) ≺
(

D−λz I (m, 1, l) f (z)
z

)n

(2.18)

holds and g is the best subordinant for it.

Proof. The proof of the theorem follows the same steps as the proof of Theorem 3 and it is omitted. �

The sandwich-type result is obtained by combining Theorems 1 and 3.

Theorem 5. Consider f ∈ A and g1, g2 analytic functions univalent in U with the properties that

g1 (z) , 0, g2 (z) , 0, ∀ z ∈ U, and, respectively,
zg′1 (z)
g1 (z)

,
zg′2 (z)
g2 (z)

are starlike univalent, with real

numbers q,m, l, q ∈ (0, 1), l > −1, and λ, n ∈ N. Assuming that relation (2.5) is verified by the function
g1 and the relation (2.13) is verified by the function g2, and the function ψm,l,q

λ (n, a, b, c, d; z) defined by
relation (2.6) is univalent in U, if the sandwich-type relation

a + bg1 (z) + c (g1 (z))2 + d
zg′1 (z)
g1 (z)

≺ ψ
m,l,q
λ (n, a, b, c, d; z) ≺ a + bg2 (z) + c (g2 (z))2 + d

zg′2 (z)
g2 (z)
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is satisfied for a, b, c, d ∈ C, d , 0, then the below sandwich-type relation

g1 (z) ≺
D−λz I

m,l
q f (z)
z

n

≺ g2 (z)

holds for g1 as the best subordinant and g2 the best dominant.

Considering in Theorem 5 the functions g1 (z) =
α1z + 1
β1z + 1

, g2 (z) =
α2z + 1
β2z + 1

, with −1 ≤ β2 < β1 <

α1 < α2 ≤ 1, the following corollary holds.

Corollary 5. Suppose that relations (2.5) and (2.13) are fulfilled for real numbers q,m, l, q ∈ (0, 1),
l > −1, and λ, n ∈ N. If the sandwich-type relation

a + b
α1z + 1
β1z + 1

+ c
(
α1z + 1
β1z + 1

)2

+ d
(α1 − β1) z

(α1z + 1) (β1z + 1)
≺ ψ

m,l,q
λ (n, a, b, c, d; z)

≺ a + b
α2z + 1
β2z + 1

+ cχ
(
α2z + 1
β2z + 1

)2

+ d
(α2 − β2) z

(α2z + 1) (β2z + 1)

is satisfied for a, b, c, d ∈ C, d , 0, −1 ≤ β2 ≤ β1 < α1 ≤ α2 ≤ 1, and the function ψm,l,q
λ is defined by

the relation (2.6), then the following sandwich-type relation

α1z + 1
β1z + 1

≺

D−λz I
m,l
q f (z)
z

n

≺
α2z + 1
β2z + 1

holds for g1 (z) =
α1z + 1
β1z + 1

as the best subordinant and g2 (z) =
α2z + 1
β2z + 1

the best dominant.

Considering in Theorem 5 the functions g1 (z) =

(
z + 1
1 − z

)s1

, g2 (z) =

(
z + 1
1 − z

)s2

, with 0 < s1, s2 ≤ 1,

the following corollary holds.

Corollary 6. Assume that the relations (2.5) and (2.13) are satisfied for real numbers q,m, l, q ∈ (0, 1),
l > −1, and λ, n ∈ N. If the sandwich-type relation

a + b
(
z + 1
1 − z

)s1

+ c
(
z + 1
1 − z

)2s1

+
2s1dz
1 − z2 ≺ ψ

m,l,q
λ (n, a, b, c, d; z)

≺ a + b
(
z + 1
1 − z

)s2

+ v
(
z + 1
1 − z

)2s2

+
2s2dz
1 − z2

holds for a, b, c, d ∈ C, d , 0, −1 ≤ β2 ≤ β1 < α1 ≤ α2 ≤ 1, and the function ψm,l,q
λ is defined by the

relation (2.6), then the following sandwich-type relation(
z + 1
1 − z

)s1

≺

D−λz I
m,l
q f (z)
z

n

≺

(
z + 1
1 − z

)s2

is satisfied for g1 (z) =

(
z + 1
1 − z

)s1

as the best subordinant and g2 (z) =

(
z + 1
1 − z

)s2

the best dominant.
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The sandwich-type result is obtained by combining Theorems 2 and 4 for the classical case when
q→ 1.

Theorem 6. Consider f ∈ A and g1, g2 analytic functions univalent in U with the properties that

g1 (z) , 0, g2 (z) , 0, ∀ z ∈ U, and, respectively,
zg′1 (z)
g1 (z)

,
zg′2 (z)
g2 (z)

are starlike univalent, with real

numbers m, l, l > −1, and λ, n ∈ N. Assuming that relation (2.9) is verified by the function g1 and
relation (2.16) is verified by the function g2, and the function ψm,l,λ (n, a, b, c, d; z) from relation (2.10)
is univalent in U, if the sandwich-type relation

a + bg1 (z) + c (g1 (z))2 + d
zg′1 (z)
g1 (z)

≺ ψm,l,λ (n, a, b, c, d; z) ≺ a + bg2 (z) + c (g2 (z))2 + d
zg′2 (z)
g2 (z)

,

is satified for a, b, c, d ∈ C, d , 0, then the below sandwich-type relation

g1 (z) ≺
(

D−λz I (m, 1, l) f (z)
z

)n

≺ g2 (z)

holds for g1 as the best subordinant and g2 the best dominant.

3. Conclusions

The results presented in this paper are determined as applications of fractional calculus combined
with q-calculus in geometric functions theory. We obtain a new operator described in Definition 7 by
applying a fractional integral to the q-analogue of the multiplier transformation. The new fractional
q-analogue of the multiplier transformation operator introduced in this paper yields new subordination
and superordination results.

The subordination theory used in Theorem 1 gives the best dominant of the differential
subordination and, considering well-known functions in geometric functions theory as the best
dominant, some illustrative corollaries are obtained. Using the duality, the superordination theory
used in Theorem 3 gives the best subordinant of the differential superordination, and illustrative
corollaries are established taking the same well-known functions. Combining Theorem 1 and
Theorem 3, we present a sandwich-type theorem involving the two dual theories of differential
subordination and superordination. Considering the functions studied in the previous corollaries, we
establish the other sandwich-type results. The classical case when q→ 1 is also presented.

For future studies, using the fractional integral of the q-analogue of the multiplier transformation
introduced in this paper, and following [27] and [28], we can define q- subclasses of univalent
functions and study some properties, such as coefficient estimates, closure theorems, distortion
theorems, neighborhoods, radii of starlikeness, convexity, and close-to-convexity of functions
belonging to the defined subclass.
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9. S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca,
64 (2014), 1183–1196.

10. H. Aldweby, M. Darus, Some subordination results on q -analogue of Ruscheweyh differential
operator, Abstr. Appl. Anal., 6 (2014), 958563.
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21. A. Alb Lupaş, A new comprehensive class of analytic functions defined by
multiplier transformation, Math. Comput. Modell., 54 (2011), 2355–2362.
http://doi.org/10.1016/j.mcm.2011.05.044
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