Research article

Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water

  • Received: 31 January 2024 Revised: 26 May 2024 Accepted: 03 June 2024 Published: 01 July 2024
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This study aims to employ the extended direct algebraic method (EDAM) to generate and evaluate soliton solutions to the nonlinear, space-time conformable Estevez Mansfield-Clarkson equation (CEMCE), which is utilized to simulate shallow water waves. The proposed method entails transforming nonlinear fractional partial differential equations (NFPDEs) into nonlinear ordinary differential equations (NODEs) under the assumption of a finite series solution by utilizing Riccati ordinary differential equations. Various mathematical structures/solutions for the current model are derived in the form of rational, exponential, trigonometric, and hyperbolic functions. The wide range of obtained solutions allows for a thorough analysis of their actual wave characteristics. The 3D and 2D graphs are used to illustrate that these behaviors consistently manifest as periodic, dark, and bright kink solitons. Notably, the produced soliton solutions offer new and critical insights into the intricate behaviors of the CEMCE by illuminating the basic mechanics of the wave's interaction and propagation. By analyzing these solutions, academics can better understand the model's behavior in various settings. These solutions shed light on complicated issues such as configuration dispersion in liquid drops and wave behavior in shallow water.

    Citation: Mohammad Alqudah, Safyan Mukhtar, Haifa A. Alyousef, Sherif M. E. Ismaeel, S. A. El-Tantawy, Fazal Ghani. Probing the diversity of soliton phenomena within conformable Estevez-Mansfield-Clarkson equation in shallow water[J]. AIMS Mathematics, 2024, 9(8): 21212-21238. doi: 10.3934/math.20241030

    Related Papers:

  • This study aims to employ the extended direct algebraic method (EDAM) to generate and evaluate soliton solutions to the nonlinear, space-time conformable Estevez Mansfield-Clarkson equation (CEMCE), which is utilized to simulate shallow water waves. The proposed method entails transforming nonlinear fractional partial differential equations (NFPDEs) into nonlinear ordinary differential equations (NODEs) under the assumption of a finite series solution by utilizing Riccati ordinary differential equations. Various mathematical structures/solutions for the current model are derived in the form of rational, exponential, trigonometric, and hyperbolic functions. The wide range of obtained solutions allows for a thorough analysis of their actual wave characteristics. The 3D and 2D graphs are used to illustrate that these behaviors consistently manifest as periodic, dark, and bright kink solitons. Notably, the produced soliton solutions offer new and critical insights into the intricate behaviors of the CEMCE by illuminating the basic mechanics of the wave's interaction and propagation. By analyzing these solutions, academics can better understand the model's behavior in various settings. These solutions shed light on complicated issues such as configuration dispersion in liquid drops and wave behavior in shallow water.


    加载中


    [1] S. M. Zheng, Nonlinear evolution equations, New York: Chapman and Hall/CRC, 2004. https://doi.org/10.1201/9780203492222
    [2] R. Racke, Lectures on nonlinear evolution equations: Initial value problems, Cham: Birkhäuser, 2015. https://doi.org/10.1007/978-3-319-21873-1
    [3] C. Y. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, On the exact soliton solutions and different wave structures to the modified Schrodinger's equation, Results Phys., 54 (2023), 107037. https://doi.org/10.1016/j.rinp.2023.107037 doi: 10.1016/j.rinp.2023.107037
    [4] C. Y. Zhu, M. Al-Dossari, N. S. A. El-Gawaad, S. A. M. Alsallami, S. Shateyi, Uncovering diverse soliton solutions in the modified Schrodinger's equation via innovative approaches, Results Phys., 54 (2023), 107100. https://doi.org/10.1016/j.rinp.2023.107100 doi: 10.1016/j.rinp.2023.107100
    [5] C. Y. Zhu, S. A. O. Abdallah, S. Rezapour, S. Shateyi, On new diverse variety analytical optical soliton solutions to the perturbed nonlinear Schrodinger equation, Results Phys., 54 (2023), 107046. https://doi.org/10.1016/j.rinp.2023.107046 doi: 10.1016/j.rinp.2023.107046
    [6] M. M. A. Khater, Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson-Pickering equation, Results Phys., 44 (2023), 106193. https://doi.org/10.1016/j.rinp.2022.106193 doi: 10.1016/j.rinp.2022.106193
    [7] M. M. Al-Sawalha, R. Shah, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Mathematics, 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
    [8] H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G'/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
    [9] S. Behera, N. H. Aljahdaly, Nonlinear evolution equations and their traveling wave solutions in fluid media by modified analytical method, Pramana, 97 (2023), 130. https://doi.org/10.1007/s12043-023-02602-4 doi: 10.1007/s12043-023-02602-4
    [10] A. R. Adem, B. Muatjetjeja, T. S. Moretlo, An extended (2+1)-dimensional coupled burgers system in fluid mechanics: Symmetry reductions; Kudryashov method; conservation laws, Int. J. Theor. Phys., 62 (2023), 38. https://doi.org/10.1007/s10773-023-05298-9 doi: 10.1007/s10773-023-05298-9
    [11] K. J. Wang, Multi-wave complexiton, multi-wave, interaction-wave and the travelling wave solutions to the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for the incompressible fluid, Pramana, 98 (2024), 47. https://doi.org/10.1007/s12043-024-02725-2 doi: 10.1007/s12043-024-02725-2
    [12] M. M. Bhatti, D. Q. Lu, An application of Nwogus Boussinesq model to analyze the head-on collision process between hydroelastic solitary waves, Open Phys., 17 (2019), 177–191. https://doi.org/10.1515/phys-2019-0018 doi: 10.1515/phys-2019-0018
    [13] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [14] J. F. Alzaidy, Fractional sub-equation method and its applications to the space-time fractional differential equations in mathematical physics, Brit. J. Math. Comput. Sci., 3 (2013), 153–163.
    [15] M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.1007/s11082-022-03819-0 doi: 10.1007/s11082-022-03819-0
    [16] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractal Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
    [17] M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
    [18] H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Investigating families of soliton solutions for the complex structured coupled fractional Biswas-Arshed model in birefringent fibers using a novel analytical technique, Fractal Fract., 7 (2023), 491. https://doi.org/10.3390/fractalfract7070491 doi: 10.3390/fractalfract7070491
    [19] M. M. Al-Sawalha, H. Yasmin, R. Shah, A. H. Ganie, K. Moaddy, Unraveling the dynamics of singular stochastic solitons in stochastic fractional Kuramoto-Sivashinsky equation, Fractal Fract., 7 (2023), 753. https://doi.org/10.3390/fractalfract7100753 doi: 10.3390/fractalfract7100753
    [20] E. L. Mansfield, P. A. Clarkson, Symmetries and exact solutions for a 2+1-dimensional shallow water wave equation, Math. Comput. Simul., 43 (1997), 39–55. https://doi.org/10.1016/S0378-4754(96)00054-7 doi: 10.1016/S0378-4754(96)00054-7
    [21] W. Thadee, A. Chankaew, S. Phoosree, Effects of wave solutions on shallow-water equation, optical-fibre equation and electric-circuit equation, Maejo Int. J. Sci. Tech., 16 (2022), 262–274.
    [22] C. Y. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee-Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
    [23] S. Lin, J. Zhang, C. Qiu, Asymptotic analysis for one-stage stochastic linear complementarity problems and applications, Mathematics, 11 (2023), 482. https://doi.org/10.3390/math11020482 doi: 10.3390/math11020482
    [24] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [25] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [26] W. Liu, X. Bai, H. Yang, R. Bao, J. Liu, Tendon driven bistable origami flexible gripper for high-speed adaptive grasping, IEEE Rob. Autom. Lett., 9 (2024), 5417–5424. https://doi.org/10.1109/LRA.2024.3389413 doi: 10.1109/LRA.2024.3389413
    [27] S. Phoosree, S. Chinviriyasit, New analytic solutions of some fourth-order nonlinear space-time fractional partial differential equations by G'/G-expansion method, Songklanakarin J. Sci. Technol., 43 (2021), 795–801.
    [28] S. Phoosree, W. Thadee, Wave effects of the fractional shallow water equation and the fractional optical fiber equation, Front. Appl. Math. Stat., 8 (2022), 900369. https://doi.org/10.3389/fams.2022.900369 doi: 10.3389/fams.2022.900369
    [29] V. E. Tarasov, On chain rule for fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 1–4. https://doi.org/10.1016/j.cnsns.2015.06.007 doi: 10.1016/j.cnsns.2015.06.007
    [30] J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376 (2012), 257–259. https://doi.org/10.1016/j.physleta.2011.11.030 doi: 10.1016/j.physleta.2011.11.030
    [31] M. Z. Sarikaya, H. Budak, F. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792–799.
    [32] S. A. Almutlak, S. Parveen, S. Mahmood, A. Qamar, B. M. Alotaibi, S. A. El-Tantawy, On the propagation of cnoidal wave and overtaking collision of slow shear Alfvén solitons in low $\beta$-magnetized plasmas, Phys. Fluids, 35 (2023), 075130. https://doi.org/10.1063/5.0158292 doi: 10.1063/5.0158292
    [33] T. Hashmi, R. Jahangir, W. Masood, B. M. Alotaibi, S. M. E. Ismaeel, S. A. El-Tantawy, Head-on collision of ion-acoustic (modified) Korteweg-de Vries solitons in Saturn's magnetosphere plasmas with two temperature superthermal electrons, Phys. Fluids, 35 (2023), 103104. https://doi.org/10.1063/5.0171220 doi: 10.1063/5.0171220
    [34] B. S. Kashkari, S. A. El-Tantawy, A. H. Salas, L. S. El-Sherif, Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma, Chaos Soliton Fract., 130 (2020), 109457. https://doi.org/10.1016/j.chaos.2019.109457 doi: 10.1016/j.chaos.2019.109457
    [35] S. A. El-Tantawy, A. M. Wazwaz, Anatomy of modified Korteweg-de Vries equation for studying the modulated envelope structures in non-Maxwellian dusty plasmas: Freak waves and dark soliton collisions, Phys. Plasmas, 25 (2018), 092105. https://doi.org/10.1063/1.5045247 doi: 10.1063/1.5045247
    [36] R. A. Alharbey, W. R. Alrefae, H. Malaikah, E. Tag-Eldin, S. A. El-Tantawy, Novel approximate analytical solutions to the nonplanar modified Kawahara equation and modeling nonlinear structures in electronegative plasmas, Symmetry, 15 (2023), 97. https://doi.org/10.3390/sym15010097 doi: 10.3390/sym15010097
    [37] S. A. El-Tantawy, A. H. Salas, H. A. Alyouse, M. R. Alharthi, Novel exact and approximate solutions to the family of the forced damped Kawahara equation and modeling strong nonlinear waves in a plasma, Chinese J. Phys., 77 (2022), 2454–2471. https://doi.org/10.1016/j.cjph.2022.04.009 doi: 10.1016/j.cjph.2022.04.009
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(60) PDF downloads(11) Cited by(0)

Article outline

Figures and Tables

Figures(16)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog