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Abstract: This study aims to employ the extended direct algebraic method (EDAM) to generate
and evaluate soliton solutions to the nonlinear, space-time conformable Estevez Mansfield-Clarkson
equation (CEMCE), which is utilized to simulate shallow water waves. The proposed method entails
transforming nonlinear fractional partial differential equations (NFPDEs) into nonlinear ordinary
differential equations (NODEs) under the assumption of a finite series solution by utilizing Riccati
ordinary differential equations. Various mathematical structures/solutions for the current model are
derived in the form of rational, exponential, trigonometric, and hyperbolic functions. The wide range
of obtained solutions allows for a thorough analysis of their actual wave characteristics. The 3D
and 2D graphs are used to illustrate that these behaviors consistently manifest as periodic, dark, and
bright kink solitons. Notably, the produced soliton solutions offer new and critical insights into the
intricate behaviors of the CEMCE by illuminating the basic mechanics of the wave’s interaction and
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propagation. By analyzing these solutions, academics can better understand the model’s behavior in
various settings. These solutions shed light on complicated issues such as configuration dispersion in
liquid drops and wave behavior in shallow water.

Keywords: soliton solutions; conformable Estevez-Mansfield-Clarkson equation; conformable
derivative; shallow water; extended direct algebraic method
Mathematics Subject Classification: 34G20, 35A20, 35A22, 35R11

1. Introduction

Nonlinear fractional partial differential equations (NFPDEs) play a crucial role in the fields of
applied science, engineering, and mathematics, as well as in modeling various physical nonlinear
phenomena. The fields of fluid dynamics, fluid mechanics, neurons, optical fibers, electric circuits,
water waves, plasma waves, capillary-gravity waves, chemical physics, and plasma physics have
garnered significant attention due to the various fractional models developed [1, 2]. Understanding
the behaviors of distinct elements within various scientific fields is of the utmost significance,
underscoring the necessity of exploring approaches to address non-functional partial differential
equations (PDEs) [3–5].

The examination of soliton solutions to NFPDEs continues to hold academic significance, owing
to the enhanced level of intricacy and comprehensiveness they provide compared to conventional
solutions. A soliton can be defined as a solitary wave packet that exhibits self-reinforcing properties
and traverses a medium without undergoing any changes in its shape or velocity. Fermion stability
and robustness make them useful in many branches of physics and engineering. They facilitate
the effective transmission of information and preserve coherence across long distances in nonlinear
systems. Mathematicians have employed robust and various methodologies to pursue novel soliton
solution outcomes. The notable methods include the Khater II method [6], the modified Khater
method [7], the (G′/G)-expansion method [8], the (G′2)-expansion method [9], the Kudryashov
method [10,11], the Poincaré-Lighthill-Kuo method [12], the exp-function method [13], the fractional
sub-equation method [14], the Sardar sub-equation method [15], the extended direct algebraic method
(EDAM) [16–19], and others.

In 1997, Mansfield and Clarkson introduced the Estevez-Mansfield-Clarkson Equation (EMCE),
which is a nonlinear evolution equation of the fourth order [20]. This equation has proven advantageous
in examining wave dynamics in shallow water, as it was initially employed in their investigation of
pattern dispersion in liquid droplets. The EMCE is expressed in its formal form as follows:

ψyyyt +ϖψytψy +ϖψyyψt + ψtt = 0. (1.1)

Here, ψ ≡ ψ(y, t) indicates the wave function, and ϖ is a non-zero constant. This study aims to
create soliton solutions for the conformable EMCE (CEMCE) using the EDAM. This EMCE extension
model substitutes integer-order derivatives with conformable fractional derivatives (CFDs). Numerous
potential uses are introduced through the integration of CFDs in this framework. For example, CFDs,
enable a more profound representation of the fractional-order kinetics present in some systems of
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matter that can enhance the precision of sims and forecasts. CFDs can help us better grasp the
memory processes and non-local impacts prevalent in low-depth water interactions, which will help
us simulate patterning generation, the dissemination of waves, and wave couplings in the EMCE.
Implications for this improved system include tsunami modeling, coastal technology, research in the
field of complicated hydrodynamics, and weather forecasting. Scholars can more effectively address
real-world issues in related domains and get fresh knowledge into the behavior of shallow water swells
by employing CFDs. The model is represented by the following equation [21]:

Dδ
t (D

β
y(Dβ

y(Dβ
yψ))) +ϖDβ

yψDβ
y(Dδ

tψ) +ϖDδ
tψDβ

y(Dβ
yψ) + Dδ

t (D
δ
tψ) = 0, (1.2)

where Dβ
y(·) and Dδ

t (·) are CFDs and 0 < β, δ ≤ 1. CFDs provide an effective operator to explain the
physical behavior of phenomena have a non-integer behavior, including occurrences that show effects
of memory alongside their non-local and local behavior. In conventional math, localized behavior
wherein the degree of shift at a location solely relies on its current surroundings is captured by
conventional derivatives. Nonetheless, many systems in the real world exhibit non-local behavior,
in which the system’s past or remote locations impact the current condition of the structure at a
given time. Fractional derivatives, including CFDs, extend calculus to explain such a behavior. For
example, fractional interactions are a property of viscoelastic substances in the field of materials,
wherein the tension or strain at a place depends on the material’s distortion behavior and its current
environment [22, 23]. CFDs, which consider the entire system’s behavior throughout an uninterrupted
variety of past events, precisely represent this memory impact. Furthermore, the propagation of
molecules in the diffusion process frequently exhibits non-local patterns. This results in fractional
diffusing problems, where the spread of molecules across a non-local region determines the degree to
which intensity changes occur at a given place. To accurately simulate these kinds of occurrences,
CFDs offer a mathematical tool that bridges the gap between local and non-local behaviors and
considers memory-related factors that are part of the system’s behavior [24–26].

Prior to the present study, numerous scholars have dealt with the EMCE and the fractional EMCE
(FEMCE). For example, the Kudryashov approach [21] yielded solutions to the nonlinear fractional
space-time FEMCE, which formed exponential functions. Kinks and periodic waves characterized the
behaviors found in the solution. The space-time fractional Ablowitz-Kaup-Newell-Segur (AKNS)
water equation and the exact traveling wave solutions FEMCE were investigated by Phoosree &
Chinviriyasit using the (G′/G)-expansion approach in terms of hyperbolic functions, trigonometric
functions, and rational functions [27]. Ultimately, Phoosree and Thadee [28] were able to obtain
traveling wave solutions for the FEMCE by employing Jumarie’s Riemann-Liouville derivative,
thereby establishing the solution in the finite series, along with the simple equation technique and
the Bernoulli equation. However in the present study, we will construct soliton solutions for the
FEMCE using a novel EDAM approach. The recommended method transforms NFPDEs into nonlinear
ordinary differential equations (NODEs) using Riccati Ordinary Differential Equations (ODE) and a
finite series solution. This investigation has led to the discovery of soliton solutions that exhibit various
mathematical structures, including trigonometric, exponential, rational, and hyperbolic functions.
These structures allow for a detailed examination of their actual wave behaviors. In particular, we
show that these behaviors are periodic, shock, and kink solitons. This is supported by showing how
they look in contour, 3D, and 2D graphs. Interestingly, our results produce a wider variety of results
than previous solutions, thus providing new and significant insights into the underlying phenomena of
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the model under study.
The rest of this investigation is organized in the following sections: Section 2 describes the materials

and methodology for the EDAM; Section 3 shows the soliton solutions for the CEMCE; Section 4
includes a discussion and the corresponding graphics; and in Section 5, the most important findings
are summarized in brief points.

2. Methodology & materials

2.1. The basic definition for the conformable fractional derivatives (CFDs)

By using the distinct advantages CFDs offer over other fractional derivative operators, it is possible
to explicitly solve NFPDEs. Remarkably, different formulations of the fractional derivative for Eq (1.2)
do not produce traveling wave and soliton solutions because they violate the chain rule [29, 30].
Consequently, Eq (1.2) was modified to include the CFDs operator of order β as follows [31]:

Dβ
ϑw(ϑ) = lim

γ→0

w(γϑ1−β + ϑ) − w(ϑ)
γ

, β ∈ (0, 1]. (2.1)

Here, we employ the following attributes of this derivative:

Dβ
ϑϑ

a = aϑa−β, (2.2)

Dβ
ϑ(a1ρ(ϑ) ± a2η(ϑ)) = a1Dβ

ϑ(ρ(ϑ)) ± a2Dβ
ϑ(η(ϑ)), (2.3)

Dβ
ϑχ[ζ(ϑ)] = χ′ζ(ζ(ϑ))Dβ

ϑζ(ϑ), (2.4)

where ρ(ϑ), η(ϑ), χ(ϑ), and ζ(ϑ) are arbitrary differentiable functions, whereas (a, a1, a2) are constants.

2.2. The working procedure of the EDAM

Here, we outline the operating strategy of the EDAM. Consider the following conditions and factors
when working with the NFPDE:

R(ψ,Dα
t ψ,D

β
y1
ψ,Dγ

y2
ψ, ψDβ

y1
ψ, . . .) = 0, 0 < α, β, γ ≤ 1, (2.5)

where ψ ≡ ψ(t, y1, y2, y3, . . . , yr).
The following procedures are applied to solve Eq (2.5):

(1) We begin with a variable transformation of the type ψ(t, y1, y2, y3, . . . , yr) ≡ Ψ(ϑ), where ϑ can be
written in several ways. This transformation converts the NFPDE (2.5) into the following NODE:

Q(Ψ,Ψ′Ψ,Ψ′, . . . ) = 0, (2.6)

where Ψ′ = dΨ
dϑ .

Equation (2.6) may occasionally be integrated to make the NODE suitable for the homogenous
balance principle.
(2) After that, by using the Riccati ODE, we consider the subsequent series-based solution to the NODE
in Eq (2.6):

Ψ(ϑ) =
q∑

σ=−q

pσζ(ϑ)σ. (2.7)
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In this context, pσ(σ = −q, ..., q) denotes the unknown constants, and ζ(ϑ) is the general solution of
the resulting ODE:

ζ′(ϑ) = λ + µζ(ϑ) + νζ(ϑ)2, (2.8)

where (λ, µ, ν) are invariable.
(3) By creating a homogeneous balance for Eq (2.6) between the largest nonlinearity and the highest-
order derivative, the positive integer q introduced in Eq (2.7) is finally obtained.
(4) After that, we insert Eq (2.7) into either Eq (2.6) or the equation that arises from the integration of
Eq (2.6) and combine the terms of ζ(ϑ) into equivalent orders. This method results in an equation that
includes ζ(ϑ). Then, the coefficients in this expression are set to zero, producing an algebraic system
of equations for the variables pσ(σ = −q, ..., q) and other associated parameters.
(5) We apply MAPLE to solve this system of nonlinear algebraic equations.
(6) Then, the analytical soliton solutions for Eq (2.5) are then derived by computing and substituting
the unknown values into Eq (2.7), together with the ζ(ϑ) (the solution of Eq (2.8)). We can create the
resulting families of soliton solutions using the general solution of Eq (2.8).
Family 1: For M

(
= µ2 − 4νλ

)
< 0 & ν , 0, we obtain the following:

ζ1(ϑ) = −
µ

2ν
+

√
−M
2ν

tan
(
1
2

√
−Mϑ

)
,

ζ2(ϑ) = −
µ

2ν
−

√
−M
2ν

cot
(
1
2

√
−Mϑ

)
,

ζ3(ϑ) = −
µ

2ν
+

√
−M
2ν

[
tan

(√
−Mϑ

)
+ sec

(√
−Mϑ

)]
,

ζ4(ϑ) = −
µ

2ν
−

√
−M
2ν

[
cot

(√
−Mϑ

)
+ csc

(√
−Mϑ

)]
,

ζ5(ϑ) = −
µ

2ν
+

√
−M
4ν

[
tan

(
1
4

√
−Mϑ

)
− cot

(
1
4

√
−Mϑ

)]
.

Family 2: For M > 0 & ν , 0, we obtain the following:

ζ6(ϑ) = −
µ

2ν
−

√
M

2ν
tanh

(
1
2

√
Mϑ

)
,

ζ7(ϑ) = −
µ

2ν
−

√
M

2ν
coth

(
1
2

√
Mϑ

)
,

ζ8(ϑ) = −
µ

2ν
−

√
M

2ν

[
tanh

(√
Mϑ

)
+ sech

(√
Mϑ

)]
,

ζ9(ϑ) = −
µ

2ν
−

√
M

2ν

[
coth

(√
Mϑ

)
+ csch

(√
Mϑ

)]
,

ζ10(ϑ) = −
µ

2ν
−

√
M

4ν

[
tanh

(
1
4

√
Mϑ

)
− coth

(
1
4

√
Mϑ

)]
.
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Family 3: For νλ > 0 & µ = 0, we obtain the following:

ζ11(ϑ) =

√
λ

ν
tan

(√
λνϑ

)
,

ζ12(ϑ) = −

√
λ

ν
cot

(√
λνϑ

)
,

ζ13(ϑ) =

√
λ

ν

[
tan

(
2
√
λνϑ

)
+ sec

(
2
√
λνϑ

)]
,

ζ14(ϑ) = −

√
λ

ν

[
cot

(
2
√
λνϑ

)
+ csc

(
2
√
λνϑ

)]
,

ζ15(ϑ) =
1
2

√
λ

ν

[
tan

(
1
2

√
λνϑ

)
− cot

(
1
2

√
λνϑ

)]
.

Family 4: For λν < 0 and µ = 0, we obtain the following:

ζ16(ϑ) = −

√
−
λ

ν
tanh

(√
−λνϑ

)
,

ζ17(ϑ) = −

√
−
λ

ν
coth

(√
−λνϑ

)
,

ζ18(ϑ) = −

√
−
λ

ν

[
tanh

(
2
√
−λνϑ

)
+ isech

(
2
√
−λνϑ

)]
,

ζ19(ϑ) = −

√
−
λ

ν

[
coth

(
2
√
−λνϑ

)
+ csch

(
2
√
−λνϑ

)]
,

ζ20(ϑ) = −
1
2

√
−
λ

ν

[
tanh

(
1
2

√
−λνϑ

)
+ coth

(
1
2

√
−λνϑ

)]
.

Family 5: For λ = ν & µ = 0, we obtain the following:

ζ21(ϑ) = tan (λϑ) ,

ζ22(ϑ) = − cot (λϑ) ,

ζ23(ϑ) = tan (2 λϑ) + sec (2 λϑ) ,

ζ24(ϑ) = − cot (2 λϑ) + csc (2 λϑ) ,

and

ζ25(ϑ) =
1
2

tan
(
1
2
λϑ

)
−

1
2

cot
(
1
2
λϑ

)
.

Family 6: For ν = −λ & µ = 0, we obtain the following:

ζ26(ϑ) = − tanh (λϑ) ,
ζ27(ϑ) = − coth (λϑ) ,
ζ28(ϑ) = − tanh (2 λϑ) + isech (2 λϑ) ,
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ζ29(ϑ) = − coth (2 λϑ) + csch (2 λϑ) ,

ζ30(ϑ) = −
1
2

tanh
(
1
2
λϑ

)
−

1
2

coth
(
1
2
λϑ

)
.

Family 7: For M = 0, we obtain the following:

ζ31(ϑ) = −2
λ (µϑ + 2)

µ2ϑ
.

Family 8: For µ = τ, λ = hτ(h , 0) & ν = 0, we obtain the following:

ζ32(ϑ) = eτ ϑ − h.

Family 9: For µ = ν = 0, we obtain the following:

ζ33(ϑ) = ϑλ.

Family 10: For µ = λ = 0, we obtain the following:

ζ34(ϑ) = −
1
ϑ ν

.

Family 11: For λ = 0, µ , 0 & ν , 0, we obtain the following:

ζ35(ϑ) = −
µ

ν (1 + cosh (µϑ) − sinh (µϑ))
,

and

ζ36(ϑ) = −
µ
[
cosh (µϑ) + sinh (µϑ)

]
ν
[
cosh (µϑ) + sinh (µϑ) + 1

] .
Family 12: For µ = τ, ν = hτ(h , 0) & λ = 0, we obtain the following:

ζ37(ϑ) =
eυ ϑ

1 − heυϑ
.

3. Execution of EDAM to CEMCE

In this study phase, the EDAM is employed to create soliton solutions for the CEMCE, as depicted
in Eq (1.2). To initiate the technique, one must perform the following variable transformation:

ψ(x, y, t) ≡ Ψ(ϑ) with ϑ =
ϵxα

α
+
κyβ

β
−
ωtδ

δ
, (3.1)

which, with the help of Eqs (2.2) and (2.4), we have the following:

Dδ
tψ = Dδ

tΨ(ϑ) = Ψ′δt (ϑ) = −ωΨ′(ϑ),
Dδ

t (D
δ
tψ) = Dδ

t (−ωΨ
′(ϑ)) = −ωΨ′′δt ϑ = ω2Ψ′′(ϑ),

Dβ
yψ = Dβ

yΨ(ϑ) = Ψ′βy (ϑ) = κΨ′(ϑ),

Dβ
y(Dβ

yψ) = Dβ
y(κΨ′(ϑ)) = κΨ′′βy ϑ = κ2Ψ′′(ϑ),

Dβ
y(Dβ

y(Dβ
yψ)) = Dβ

y(κ2Ψ′′2Ψ′′′βy ϑ = κ3Ψ′′′(ϑ),

Dβ
y(Dβ

y(Dβ
y(Dβ

yψ))) = Dβ
y(κ3Ψ′′′3Ψ(iv)(ϑ)Dβ

yϑ = κ
4Ψ(iv)(ϑ),

Dδ
t (D

β
yψ) = Dδ

t (κΨ
′(ϑ)) = κΨ′′δt ϑ = −ωκΨ′′(ϑ),

Dδ
t (D

β
y(Dβ

y(Dβ
yψ))) = Dδ

t (κ
3Ψ′′′3Ψ(iv)(ϑ)Dδ

tϑ = −ωκ
3Ψ(iv)(ϑ).
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Now, by collecting all the above terms and adding them in Eq (1.2), the following NODE is obtained:

−κ3Ψ(iv) − 2κ2ϖΨ′Ψ′′ + ωΨ′′ = 0. (3.2)

It is essential to observe that the variable transformation (3.1) is expressed in a two-dimensional format,
although our problem is one-dimensional. Therefore, we can disregard the second dimension when
performing our computations, (i.e., ϑ = κyβ

β
− ωtδ

δ
).

The result obtained from a single integration of Eq (3.2) with a constant of integration of zero is as
follows:

−κ3Ψ′′′ − κ2ϖ
(
Ψ′

)2
+ ωΨ′ = 0. (3.3)

Upon constructing a homogeneous balancing condition between Ψ′′′ 7−→ (3q) and ((Ψ′)2
7−→(q + 2),

we conclude that q = 1. We obtain the following series-based solution for Eq (3.3) by substituting
q = 1 into Eq (2.7):

Ψ(ϑ) =
1∑

σ=−1

pσζ(ϑ)σ = p−1ζ(ϑ)−1 + p0 + p1ζ(ϑ). (3.4)

We obtain an expression in ζ(ϑ) by inserting Eq (3.4) into Eq (3.3) and accumulating the terms with
similar powers of ζ(ϑ). The procedure produces a set of algebraic nonlinear equations when the
coefficients are set to zero. When MAPLE is employed to solve this system, the two sets of solutions
provided are as follows:
Case 1.

p0 = p0, p1 = 0, p−1 = 3
κ λ

ϖ
,ω = κ3M, κ = κ. (3.5)

Case 2.

p0 = p0, p1 = p1, p−1 = 0, ω =
−ϖ3 p1

3M
27ν3 , κ =

−ϖ p1

3ν
. (3.6)

Now, we find all solutions for the two above cases.
Given case 1, we create the families of soliton solutions for the CEMCE (1.2) by employing

Eqs (3.1) and (3.4) and the associated solution of Eq (2.8):
Family 1.1: For M < 0 ν , 0, we obtain the following:

ψ1,1 =
3 κ λ
ϖ

−1
2
µ

ν
+

1
2

√
−M tan

(
1
2

√
−Mϑ

)
ν


−1

+ p0, (3.7)

ψ1,2 =
3 κ λ
ϖ

−1
2
µ

ν
−

1
2

√
−M cot

(
1
2

√
−Mϑ

)
ν


−1

+ p0, (3.8)

ψ1,3 =
3 κ λ
ϖ

−1
2
µ

ν
+

1
2

√
−M

(
tan

(√
−Mϑ

)
+ sec

(√
−Mϑ

))
ν


−1

+ p0, (3.9)

ψ1,4 =
3 κ λ
ϖ

−1
2
µ

ν
−

1
2

√
−M

(
cot

(√
−Mϑ

)
+ csc

(√
−Mϑ

))
ν


−1

+ p0, (3.10)
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and

ψ1,5 =
3 κ λ
ϖ

−1
2
µ

ν
+

1
4

√
−M

(
tan

(
1
4

√
−Mϑ

)
− cot

(
1
4

√
−Mϑ

))
ν


−1

+ p0. (3.11)

Family 1.2: For M > 0 ν , 0, we obtain the following:

ψ1,6 =
3 κ λ
ϖ

−1
2
µ

ν
−

1
2

√
M tanh

(
1
2

√
Mϑ

)
ν


−1

+ p0, (3.12)

ψ1,7 =
3 κ λ
ϖ

−1
2
µ

ν
−

1
2

√
M coth

(
1
2

√
Mϑ

)
ν


−1

+ p0, (3.13)

ψ1,8 =
3 κ λ
ϖ

−1
2
µ

ν
−

1
2

√
M

(
tanh

(√
Mϑ

)
+ isech

(√
Mϑ

))
ν


−1

+ p0, (3.14)

ψ1,9 =
3 κ λ
ϖ

−1
2
µ

ν
−

1
2

√
M

(
coth

(√
Mϑ

)
+ csch

(√
Mϑ

))
ν


−1

+ p0, (3.15)

and

ψ1,10 =
3 κ λ
ϖ

−1
2
µ

ν
−

1
4

√
M

[
tanh

(
1
4

√
Mϑ

)
− coth

(
1
4

√
Mϑ

)]
ν


−1

+ p0. (3.16)

Family 1.3: For λν > 0 and µ = 0, we obtain the following:

ψ1,11 =
3 κ
ϖ

√
λν

(
tan

(√
λ νϑ

))−1
+ p0, (3.17)

ψ1,12 = −
3 κ
ϖ

√
λν

(
cot

(√
λ νϑ

))−1
+ p0, (3.18)

ψ1,13 =
3 κ
ϖ

√
λν

(
tan

(
2
√
λ νϑ

)
+ sec

(
2
√
λ νϑ

))−1
+ p0, (3.19)

ψ1,14 = −
3 κ
ϖ

√
λν

(
cot

(
2
√
λ νϑ

)
+ csc

(
2
√
λ νϑ

))−1
+ p0, (3.20)

and

ψ1,15 =
6 κ
ϖ

√
λν

(
tan

(
1
2

√
λ νϑ

)
− cot

(
1
2

√
λ νϑ

))−1

+ p0. (3.21)

Family 1.4: For λν < 0 and µ = 0, we obtain the following:

ψ1,16 = −
3 κ
ϖ

√
−λν

(
tanh

(√
−λ νϑ

))−1
+ p0, (3.22)

ψ1,17 = −
3 κ
ϖ

√
−λν

(
coth

(√
−λ νϑ

))−1
+ p0, (3.23)

ψ1,18 = −
3 κ
ϖ

√
−λν

(
tanh

(
2
√
−λ νϑ

)
+ isech

(
2
√
−λ νϑ

))−1
+ p0, (3.24)
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ψ1,19 = −
3 κ
ϖ

√
−λν

(
coth

(
2
√
−λ νϑ

)
+ csch

(
2
√
−λ νϑ

))−1
+ p0, (3.25)

and

ψ1,20 =
−6 κ
ϖ

√
−λν

(
tanh

(
1
2

√
−λ νϑ

)
+ coth

(
1
2

√
−λ νϑ

))−1

+ p0. (3.26)

Family 1.5: For ν = λ and µ = 0, we obtain the following:

ψ1,21 = 3
κ λ

ϖ tan (λϑ)
+ p0, (3.27)

ψ1,22 = −3
κ λ

ϖ cot (λϑ)
+ p0, (3.28)

ψ1,23 = 3
κ λ

ϖ (tan (2 λϑ) + sec (2 λϑ))
+ p0, (3.29)

ψ1,24 = 3
κ λ

ϖ (− cot (2 λϑ) − csc (2 λϑ))
+ p0, (3.30)

and
ψ1,25 = 3

κ λ

ϖ
(

1
2 tan

(
1
2 λϑ

)
− 1

2 cot
(

1
2 λϑ

)) + p0. (3.31)

Family 1.6: For ν = −λ and µ = 0, we obtain the following:

ψ1,26 = −3
κ λ

ϖ tanh (λϑ)
+ p0, (3.32)

ψ1,27 = −3
κ λ

ϖ coth (λϑ)
+ p0, (3.33)

ψ1,28 = 3
κ λ

ϖ (− tanh (2 λϑ) − isech (2 λϑ))
+ p0, (3.34)

ψ1,29 = 3
κ λ

ϖ (− coth (2 λϑ) − csch (2 λϑ))
+ p0, (3.35)

and
ψ1,30 = 3

κ λ

ϖ
(
−1

2 tanh
(

1
2 λϑ

)
− 1

2 coth
(

1
2 λϑ

)) + p0. (3.36)

Family 1.7: For M = 0, we get

ψ1,31 = −3/2
κ λ µ2ϑ

ϖλ (µϑ + 2)
+ p0. (3.37)

Family 1.8: For µ = τ, λ = hτ(h , 0) and ν = 0,

ψ1,32 =
3 κ hτ + p0ϖ eτ ϑ − p0ϖ h

ϖ
(
eτ ϑ − h

) . (3.38)

Family 1.9: For µ = ν = 0, we obtain the following:

ψ1,33 = 3
κ

ϖϑ
+ p0. (3.39)
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According to case 1, the value of ϑ reads

ϑ =
κyβ

β
−

(κ3M)tδ

δ
.

For case 2, and utilizing Eqs (3.1) and (3.4) with the corresponding solution of Eq (2.8), we construct
the following families of traveling wave solutions for Eq (1.2):
Family 2.1: For M < 0 ν , 0, we obtain the following:

ψ2,1 = p0 + p1

−1
2
µ

ν
+

1
2

√
−M tan

(
1
2

√
−Mϑ

)
ν

 , (3.40)

ψ2,2 = p0 + p1

−1
2
µ

ν
−

1
2

√
−M cot

(
1
2

√
−Mϑ

)
ν

 , (3.41)

ψ2,3 = p0 + p1

−1
2
µ

ν
+

1
2

√
−M

(
tan

(√
−Mϑ

)
+ sec

(√
−Mϑ

))
ν

 , (3.42)

ψ2,4 = p0 + p1

−1
2
µ

ν
−

1
2

√
−M

(
cot

(√
−Mϑ

)
+ csc

(√
−Mϑ

))
ν

 , (3.43)

and

ψ2,5 = p0 + p1

−1
2
µ

ν
+

1
4

√
−M

(
tan

(
1
4

√
−Mϑ

)
− cot

(
1/4
√
−Mϑ

))
ν

 . (3.44)

Family 2.2: For M > 0 ν , 0, we obtain the following:

ψ2,6 = p0 + p1

−1
2
µ

ν
−

1
2

√
M tanh

(
1
2

√
Mϑ

)
ν

 , (3.45)

ψ2,7 = p0 + p1

−1
2
µ

ν
−

1
2

√
M coth

(
1
2

√
Mϑ

)
ν

 , (3.46)

ψ2,8 = p0 + p1

−1
2
µ

ν
−

1
2

√
M

(
tanh

(√
Mϑ

)
+ isech

(√
Mϑ

))
ν

 , (3.47)

ψ2,9 = p0 + p1

−1
2
µ

ν
−

1
2

√
M

(
coth

(√
Mϑ

)
+ csch

(√
Mϑ

))
ν

 , (3.48)

and

ψ2,10 = p0 + p1

−1
2
µ

ν
−

1
4

√
M

(
tanh

(
1
4

√
Mϑ

)
− coth

(
1/4
√

Mϑ
))

ν

 . (3.49)
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Family 2.3: For λν > 0 and µ = 0, we obtain the following:

ψ2,11 = p0 + p1

√
λ

ν
tan

(√
λ νϑ

)
, (3.50)

ψ2,12 = p0 − p1

√
λ

ν
cot

(√
λ νϑ

)
, (3.51)

ψ2,13 = p0 + p1

√
λ

ν

(
tan

(
2
√
λ νϑ

)
+ sec

(
2
√
λ νϑ

))
, (3.52)

ψ2,14 = p0 − p1

√
λ

ν

(
cot

(
2
√
λ νϑ

)
+ csc

(
2
√
λ νϑ

))
, (3.53)

and

ψ2,15 = p0 +
1
2

p1

√
λ

ν

(
tan

(
1
2

√
λ νϑ

)
− cot

(
1
2

√
λ νϑ

))
. (3.54)

Family 2.4: For λν < 0 and µ = 0, we obtain the following:

ψ2,16 = p0 − p1

√
−
λ

ν
tanh

(√
−λ νϑ

)
, (3.55)

ψ2,17 = p0 − p1

√
−
λ

ν
coth

(√
−λ νϑ

)
, (3.56)

ψ2,18 = p0 − p1

√
−
λ

ν

(
tanh

(
2
√
−λ νϑ

)
+ isech

(
2
√
−λ νϑ

))
, (3.57)

ψ2,19 = p0 − p1

√
−
λ

ν

(
coth

(
2
√
−λ νϑ

)
+ csch

(
2
√
−λ νϑ

))
, (3.58)

and

ψ2,20 = p0 −
1
2

p1

√
−
λ

ν

(
tanh

(
1
2

√
−λ νϑ

)
+ coth

(
1
2

√
−λ νϑ

))
. (3.59)

Family 2.5: For ν = λ and µ = 0, we obtain the following:

ψ2,21 = p0 + p1 tan (λϑ) , (3.60)

ψ2,22 = p0 − p1 cot (λϑ) , (3.61)

ψ2,23 = p0 + p1 (tan (2 λϑ) + sec (2 λϑ)) , (3.62)

ψ2,24 = p0 + p1 (− cot (2 λϑ) − csc (2 λϑ)) , (3.63)

and

ψ2,25 = p0 + p1

(
1
2

tan
(
1
2
λϑ

)
−

1
2

cot
(
1
2
λϑ

))
. (3.64)

Family 2.6: For ν = −λ and µ = 0, we obtain the following:

ψ2,26 = p0 − p1 tanh (λϑ) , (3.65)
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ψ2,27 = p0 − p1 coth (λϑ) , (3.66)

ψ2,28 = p0 + p1 (− tanh (2 λϑ) − isech (2 λϑ)) , (3.67)

ψ2,29 = p0 + p1 (− coth (2 λϑ) − csch (2 λϑ)) , (3.68)

and

ψ2,30 = p0 + p1

(
−

1
2

tanh
(
1
2
λϑ

)
−

1
2

coth
(
1
2
λϑ

))
. (3.69)

Family 2.7: For M = 0, we obtain the following:

ψ2,31 = p0 − 2
p1λ (µϑ + 2)

µ2ϑ
. (3.70)

Family 2.8: For λ = µ = 0, we obtain the following:

ψ2,32 = p0 −
p1

ν ϑ
. (3.71)

Family 2.9: For λ = 0, µ , 0 and ν , 0, we obtain the following:

ψ2,33 = p0 −
p1µ

ν (cosh (µϑ) − sinh (µϑ) + 1)
, (3.72)

and
ψ2,34 = p0 −

p1µ (cosh (µϑ) + sinh (µϑ))
ν (cosh (µϑ) + sinh (µϑ) + 1)

. (3.73)

Family 2.10: For µ = τ, ν = hτ(h , 0) and λ = 0, we obtain the following:

ψ2,35 = p0 +
p1eτ ϑ

1 − heτ ϑ
. (3.74)

According to case 2, the value of ϑ reads obtain the following:

ϑ =
(−ϖ p1

3ν )yβ

β
−

(−ϖ
3 p1

3 M
27ν3 )tδ

δ
.

4. Discussion and graphs

This section provides graphic representations of various wave patterns for the model under
consideration. The obtained solutions for different wave structures have been numerically examined
in 3D and 2D forms using suitable values of the related parameters. We show that the obtained soliton
solutions appear as periodic and kink wave solitons. Carefully choosing the parameters results in
unique and educational visuals. Furthermore, the study’s results are novel because, to the best of our
knowledge, there is no prior literature that utilized this technique’s results and applied them to the
CEMCE. Moreover, it is essential to note that our analytical findings can be related to those derived
from other approaches, such as the Riccati ODE expanding techniques, the F-expansion method, the
tanh-method, and other related approaches, within specific limitations. Our work might be interpreted
as a generalization of existing techniques, providing a more comprehensive framework from which
these particular techniques can be drawn or comprehended.
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The results obtained from the numerical investigations indicate that the soliton solutions developed
can be classified into two main categories: Kink waves are distinguished by a restricted disruption
or deflection in the wave pattern, which frequently retains its form throughout propagation; a
periodic soliton is an autonomous wave propagating through a medium while preserving its shape
and magnitude at regular intervals. Periodic, kink, and shock waves can display characteristics similar
to wave breaking in shallow water waves. Wave breaking is a phenomenon that typically occurs near
shorelines or other water barriers, and results in the sudden conversion of a wave into turbulent water.
As a result, the generated soliton solutions provide valuable insights into the complex dynamics of the
CEMCE and illustrate the fundamental principles that govern the interaction and propagation of the
wave. By examining these solutions, academic researchers can enhance their comprehension of the
model’s performance in many contexts. These provide insights into phenomena such as the dispersion
of configurations in liquid droplets and the behavior of waves in shallow water.

In this instance, we have conducted a graphical analysis of several derived aforementioned solutions
to gain insights into the wave propagation mechanics and to enhance the reader’s comprehension of
the concept. For case (1), we numerically analyzed some of its solutions, as illustrated in Figures 1–5.
In these figures, we studied and examined the effect of the fractional parameters (β, δ) on the wave
profile described by these solutions. For instance, solution (3.12) was numerically analyzed , as shown
in Figure 1. The periodic wave solution (3.16) was analyzed, and the influence of the time-fractional
parameter δ on the wave’s behavior was investigated, as depicted in Figure 2. Additionally, the impact
of δ on the profile of the shock wave was investigated. Moreover, an investigation was conducted
to examine the impact of δ on the characteristics of shock waves and solitons as specified by the
solution (3.24). It is essential to acknowledge that the solution (3.24) exhibits complexity since it is
comprised of both real and imaginary components. Figure 3 illustrates the shock wave, represented
by the real part, and Figure 4 illustrates the solitons, represented by the imaginary part. Moreover,
the absolute value of the solution (3.24) against δ was investigated, as shown in Figure 5. The results
obtained from the numerical analysis demonstrate that the time-fractional parameter exerts a substantial
influence on the characteristics of both the shock waves and the soliton profiles. Additionally, another
solution (3.26) for case (1) was examined, as depicted in Figure 6. In this figure, we also studied the
effect of δ on the profile of the shock waves described by solution (3.26).
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ψ1,6

δ=1

δ=0.85

δ=0.7

Figure 1. The shock wave solution (3.12) ψ1,6 is numerically investigated: (a) 3D graph in
(y, t)−plane for (β, δ) = (1, 0.7), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.85), (c) 3D
graph in (y, t)−plane for (β, δ) = (1, 1), and (d) the solution (3.12) is plotted against y for
different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = 0.01, µ = 4,
ν = 0.1, ϖ = 1, p0 = 10, and k = 1.
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Figure 2. The periodic solution (3.16) ψ1,10 is numerically examined: (a) 3D graph in
(y, t)−plane for (β, δ) = (1, 0.2), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.4), (c) 3D
graph in (y, t)−plane for (β, δ) = (1, 1), and (d) the solution (3.16) is plotted against y for
different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = ν = 0.1,
µ = 0, ϖ = 1, p0 = 10, and k = 10.
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Figure 3. The real part of solution (3.24) Re
[
ψ1,18

]
is numerically examined: (a) 3D graph for

shock waves in (y, t)−plane for (β, δ) = (1, 0.2), (b) 3D graph for shock waves in (y, t)−plane
for (β, δ) = (1, 0.4), (c) 3D graph for shock waves in (y, t)−plane for (β, δ) = (1, 1), and (d)
the real part of shock wave solution (3.24) is plotted against y for different values of time-
fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = −2, ν = 1, µ = 0, ϖ = 3, p0 = 0.1,
and k = 0.25.

-10 -5 5 10

y
d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im[ψ1,18]

δ=1

δ=0.2

δ=0.1

Figure 4. The imaginary part of solution (3.24) Im
[
ψ1,18

]
is numerically examined: (a)

3D graph for shock waves in (y, t)−plane for (β, δ) = (1, 0.2), (b) 3D graph for shock
waves in (y, t)−plane for (β, δ) = (1, 0.4), (c) 3D graph for shock waves in (y, t)−plane for
(β, δ) = (1, 1), and (d) the imaginary part of shock wave solution (3.24) is plotted against y for
different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = −2, ν = 1,
µ = 0, ϖ = 3, p0 = 0.1, and k = 0.25.
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Figure 5. The absolute value of solution (3.24)
∣∣∣ψ1,18

∣∣∣ is numerically examined: (a) 3D
graph for shock waves in (y, t)−plane for (β, δ) = (1, 0.2), (b) 3D graph for shock waves in
(y, t)−plane for (β, δ) = (1, 0.4), (c) 3D graph for shock waves in (y, t)−plane for (β, δ) =
(1, 1), and (d) the absolute value of shock wave solution (3.24) is plotted against y for different
values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = −2, ν = 1, µ = 0,
ϖ = 3, p0 = 0.1, and k = 0.25.
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Figure 6. Solution (3.26) ψ1,20 is numerically investigated: (a) 3D graph in (y, t)−plane for
(β, δ) = (1, 0.1), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.2), (c) 3D graph in (y, t)−plane
for (β, δ) = (1, 1), and (d) the solution (3.26) is plotted against y for different values of time-
fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = −2, µ = 0, ν = 1, ϖ = 3, p0 = 0.10,
and k = 0.25.

AIMS Mathematics Volume 9, Issue 8, 21212–21238.



21229

To investigate the impact of the space-fractional parameter β on the behavior of various solutions,
we analyzed solutions (3.12), (3.16), (3.24), and (3.26), as depicted in Figure 7. This diagram
illustrates the susceptibility of these solutions to β, which significantly influences the alteration of
the waves behavior represented by these solutions. Furthermore, in this investigation, an examination
was conducted on several solutions of case (2), as depicted in Figures 8–16. For instance, we analyzed
solution (3.45) and examined the impact of the time-fractional parameter on the properties of the shock
waves described by this solution, as depicted in Figure 8. Additionally, we analyzed the complex
solution (3.47) and studied the effect of δ on the profile of the real and imaginary parts of this solution,
as well as its absolute value, as illustrated in Figures 9–11, respectively. Moreover, we analyzed
solutions (3.55), (3.65), (3.72), and (3.73) and examined the impact of the time-fractional parameter
on the characteristics of shock waves, as depicted in Figures 12–15, respectively.
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Figure 7. The impact of space-fractional parameter β on the profile of solutions (3.12),
(3.16), (3.24), and (3.26) is numerically investigated: (a) solution (3.12) for λ = 0.01, µ = 4,
ν = 0.1, ϖ = 1, p0 = 10, k = 1, y = 0.1, and δ = 1, (b) solution (3.16) for λ = ν = 0.1, µ = 0,
ϖ = 1, p0 = 10, k = 10, y = 0.1, and δ = 1, (c) solution (3.24) for λ = −2, ν = 1, µ = 0,
ϖ = 3, p0 = 0.1, k = 0.25, y = 0.1, and δ = 1, (d) solution (3.26) for λ = −2, µ = 0, ν = 1,
ϖ = 3, p0 = 0.10, k = 0.25, y = 0.1, and δ = 1.
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Figure 8. The shock wave solution (3.45) ψ2,6 is numerically investigated: (a) 3D graph in
(y, t)−plane for (β, δ) = (1, 0.7), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.85), (c) 3D
graph in (y, t)−plane for (β, δ) = (1, 1), and (d) the solution (3.45) is plotted against y for
different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = 1, µ = 4,
ν = 1, ϖ = 2, and p0 = 1.
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Figure 9. The real part of solution (3.47) Re
[
ψ2,8

]
is numerically examined: (a) 3D graph for

shock waves in (y, t)−plane for (β, δ) = (1, 0.4), (b) 3D graph for shock waves in (y, t)−plane
for (β, δ) = (1, 0.6), (c) 3D graph for shock waves in (y, t)−plane for (β, δ) = (1, 1), and (d)
the real part of shock wave solution (3.47) is plotted against y for different values of time-
fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = 1, ν = 1, µ = 4, ϖ = 2, p0 = 0.1,
and p1 = 1.
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Figure 10. The imaginary part of solution (3.47) Im
[
ψ2,8

]
is numerically examined: (a)

3D graph for solitons in (y, t)−plane for (β, δ) = (1, 0.4), (b) 3D graph for shock waves in
(y, t)−plane for (β, δ) = (1, 0.6), (c) 3D graph for shock waves in (y, t)−plane for (β, δ) =
(1, 1), and (d) the imaginary part of solution (3.47) is plotted against y for different values
of time-fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = 1, ν = 1, µ = 4, ϖ = 2,
p0 = 0.1, and p1 = 1.
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Figure 11. The absolute value of solution (3.47)
∣∣∣ψ2,8

∣∣∣ is numerically examined: (a) 3D
graph for shock waves in (y, t)−plane for (β, δ) = (1, 0.4), (b) 3D graph for shock waves
in (y, t)−plane for (β, δ) = (1, 0.6), (c) 3D graph for shock waves in (y, t)−plane for
(β, δ) = (1, 1), and (d) the imaginary part of shock wave solution (3.47) is plotted against y
for different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here, λ = 1, ν = 1,
µ = 4, ϖ = 2, p0 = 0.1, and p1 = 1.
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Figure 12. The shock wave solution (3.55) ψ2,16 is numerically investigated: (a) 3D graph
in (y, t)−plane for (β, δ) = (1, 0.4), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.6), (c) 3D
graph in (y, t)−plane for (β, δ) = (1, 1), and (d) the shock wave solution (3.55) is plotted
against y for different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here,
λ = 1, µ = 0, ν = −1, ϖ = 2, p0 = 3, and p1 = 2.
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Figure 13. The shock wave solution (3.65) ψ2,26 is numerically investigated: (a) 3D graph
in (y, t)−plane for (β, δ) = (1, 0.4), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.6), (c) 3D
graph in (y, t)−plane for (β, δ) = (1, 1), and (d) the shock wave solution (3.65) is plotted
against y for different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here,
λ = 1, µ = 0, ν = −1, ϖ = 2, p0 = 3, and p1 = 2.
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Figure 14. The shock wave solution (3.72) ψ2,33 is numerically investigated: (a) 3D graph
in (y, t)−plane for (β, δ) = (1, 0.4), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.6), (c) 3D
graph in (y, t)−plane for (β, δ) = (1, 1), and (d) the shock wave solution (3.72) is plotted
against y for different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here,
λ = 0, µ = 1, ν = 1, ϖ = 2, p0 = 3, and p1 = 2.
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Figure 15. The shock wave solution (3.73) ψ2,34 is numerically investigated: (a) 3D graph
in (y, t)−plane for (β, δ) = (1, 0.4), (b) 3D graph in (y, t)−plane for (β, δ) = (1, 0.6), (c) 3D
graph in (y, t)−plane for (β, δ) = (1, 1), and (d) the shock wave solution (3.73) is plotted
against y for different values of time-fractional parameter δ and for (t, β) = (0.1, 1). Here,
λ = 0, µ = 1, ν = 1, ϖ = 2, p0 = 3, and p1 = 2.
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Figure 16. The impact of space-fractional parameter β on the profile of solutions (3.55),
(3.65), (3.72), and (3.73) is numerically investigated: (a) solution (3.55) for λ = 1, µ = 0,
ν = −1, ϖ = 2, p0 = 3, p1 = 2, y = 0.1, and δ = 1, (b) solution (3.65) for λ = 1, µ = 0,
ν = −1, ϖ = 2, p0 = 3, p1 = 2, y = 0.1, and δ = 1, (c) solution (3.72) for λ = 0, µ = 1, ν = 1,
ϖ = 2, p0 = 3, p1 = 2, y = 0.1, and δ = 1, (d) solution (3.73) for λ = 0, µ = 1, ν = 1, ϖ = 2,
p0 = 3, and p1 = 2, y = 0.1, and δ = 1.

To see how β changed the behavior of different solutions, we numerically examined the
solutions (3.55), (3.65), (3.72), and (3.73) and saw how this parameter changed their behavior, as
shown in Figure 16. This figure shows the sensitivity of these solutions to β, which has a strong effect
on changing the behavior of the waves described by these solutions.

5. Conclusions and future work

The EDAM has been utilized to study and solve the nonlinear, space-time CEMCE. This approach
used a suitable methodology to transform CEMCE into NODEs under the assumption of a finite
series solution by utilizing Riccati ODEs. By solving the obtained equation, we received a series
of different traveling wave solutions derived in the from of rational, exponential, trigonometric, and
hyperbolic functions. We effectively and numerically analyzed some derived solutions using suitable
values for the related parameters. Our analysis revealed that these solutions manifest as shock waves,
solitons, periodic waves (cnoidal waves), and many different types of traveling wave solutions. The
solutions obtained from the soliton simulations demonstrated the underlying principles that governed
the interaction and propagation of the wave. These solutions offer valuable insights into the intricate
dynamics of the CEMCE. By examining these solutions, scholars can enhance their understanding
of the model’s behavior in various settings, thus shedding light on issues such as wave dynamics
in shallow water and the dispersion of configurations in liquid droplets. Therefore, the results of our
study are of the utmost importance in addressing the practical challenges of studying different nonlinear
structures that appear in shallow water. They contribute to our comprehension of the dynamics within
these settings and have the potential to be utilized in predicting and manipulating essential fluid
mechanics phenomena.

Furthermore, the suggested EDAM solves NFPDEs without requiring linearization or iterative
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techniques, and it is both user-friendly and efficient. While the EDAM has substantially increased our
understanding of soliton dynamics and their impact on the models of interest, realizing the technique’s
limits is vital, mainly when the nonlinear term and the largest derivative are not homogeneously
balanced. Despite this limitation, the work highlights the gaps in our understanding of soliton dynamics
and nonlinear behaviors and presents novel opportunities for further investigations in future studies.

The obtained results demonstrated that the methodology used exhibited a notable abundance
of solutions, thus enabling several researchers to employ this approach to model diverse physical
and engineering issues. This method is anticipated to effectively analyze and model various
evolution equations derived from fluid equations for diverse plasma systems. For instance, it
can be utilized to analyze the family of fractional KdV-type equations [32, 33], thus enabling an
investigation into the fractional parameters’ influence on the derived solutions’ profile. Moreover,
this method can examine the higher-order nonlinearity and derivative evolution equations that emerge
in plasma, fluid mechanics, and nonlinear optics, such as the family of fractional Kawahara-type
equations [34,35]. Additionally, we expect this method to successfully analyze fractional Schrödinger-
type equations [36, 37] and derive new modulated envelope solutions.
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