The results of this work have a connection with the geometric function theory and they were obtained using methods based on subordination along with information on $ \mathfrak{q} $-calculus operators. We defined the $ \mathfrak{q} $-analogue of multiplier- Ruscheweyh operator of a certain family of linear operators $ I_{\mathfrak{q}, \mu }^{s}(\lambda, \ell) \mathfrak{f}(\varsigma) \; (s\in \mathbb{N}_{0} = \mathbb{N}\cup \{0\}, \mathbb{ N} = \left\{ 1, 2, 3, ..\right\}; \ell, \lambda, \mu \geq 0, 0 < \mathfrak{q} < 1) $. Our major goal was to build some analytic function subclasses using $ I_{ \mathfrak{q}, \mu }^{s}(\lambda, \ell)\mathfrak{f}(\varsigma) $ and to look into various inclusion relationships that have integral preservation features.
Citation: Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, R. Sidaoui, Abdelkader Moumen. Inclusion properties for analytic functions of $ q $-analogue multiplier-Ruscheweyh operator[J]. AIMS Mathematics, 2024, 9(3): 6772-6783. doi: 10.3934/math.2024330
The results of this work have a connection with the geometric function theory and they were obtained using methods based on subordination along with information on $ \mathfrak{q} $-calculus operators. We defined the $ \mathfrak{q} $-analogue of multiplier- Ruscheweyh operator of a certain family of linear operators $ I_{\mathfrak{q}, \mu }^{s}(\lambda, \ell) \mathfrak{f}(\varsigma) \; (s\in \mathbb{N}_{0} = \mathbb{N}\cup \{0\}, \mathbb{ N} = \left\{ 1, 2, 3, ..\right\}; \ell, \lambda, \mu \geq 0, 0 < \mathfrak{q} < 1) $. Our major goal was to build some analytic function subclasses using $ I_{ \mathfrak{q}, \mu }^{s}(\lambda, \ell)\mathfrak{f}(\varsigma) $ and to look into various inclusion relationships that have integral preservation features.
[1] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–172. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507 |
[2] | S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, New York, Basel: Marcel Dekker, 2000. |
[3] | T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, Cluj-Napoca: House of Scientific Book Publication, 2005. |
[4] | F. H. Jackson, On $\mathfrak{q}$-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[5] | F. H. Jackson, On $\mathfrak{q}$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[6] | R. D. Carmichael, The general theory of linear $\mathfrak{q}$ -difference equations, Amer. J. Math., 34 (1912), 147–168. |
[7] | T. E. Mason, On properties of the solution of linear $\mathfrak{q }$-difference equations with entire function coefficients, Amer. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216 |
[8] | W. J. Trjitzinsky, Analytic theory of linear difference equations, Acta Math., 61 (1933), 1–38. https://doi.org/10.1007/BF02547785 doi: 10.1007/BF02547785 |
[9] | M. E.-H. Ismail, E. Merkes, D. A Styer, generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[10] | H. M. Srivastava, Operators of basic (or $\mathfrak{q}$-) calculus and fractional $\mathfrak{q}$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[11] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[12] | H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the $\mathfrak{q}$ -Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822 |
[13] | E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a $\mathfrak{q}$-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184 |
[14] | E. E. Ali, A. Y. Lashin, A. M. Albalahi, Coefficient estimates for some classes of bi-univalent function associated with Jackson $\mathfrak{ q}$-difference Operator, J. Funct. Spaces, 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918 |
[15] | E. E. Ali, H. M. Srivastava, A. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the $\mathfrak{q}$-derivatives of the $\mathfrak{q}$-Binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.3390/math11112496 doi: 10.3390/math11112496 |
[16] | E. E. Ali, H. M. Srivastava, A. M. Albalahi, subclasses of $p-$ valent $k$-uniformly convex and starlike functions defined by the $\mathfrak{ q}$-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578 |
[17] | E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of $\mathfrak{q}$-Calculus Multiplier Operators and Subordination for the Study of Particular Analytic Function Subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705 |
[18] | W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional $\mathfrak{q}$-calculus operator, Math. Bohem., 148 (2023), 131–148. https://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21 |
[19] | B. Wang, R. Srivastava, J.-L. Liu, A certain subclass of multivalent analytic functions defined by the $\mathfrak{q}$-difference operator related to the Janowski functions, Mathematics, 9 (2021), 1706. https://doi.org/10.3390/math9141706 doi: 10.3390/math9141706 |
[20] | L. Shi, Q. Khan, G. Srivastava, J.-L. Liu, M. Arif, A study of multivalent $\mathfrak{q}$-starlike functions connected with circular domain, Mathematics, 7 (2019), 670. https://doi.org/10.3390/math7080670 doi: 10.3390/math7080670 |
[21] | M. Ul-Haq, M. Raza, M. Arif, Q. Khan, H. Tang, $Q$-analogue of differential subordinations, Mathematics, 7 (2019), 724. https://doi.org/10.3390/math7080724 doi: 10.3390/math7080724 |
[22] | K. Ahmad, M. Arif, J.-L. Liu, Convolution properties for a family of analytic functions involving $\mathfrak{q}$-analogue of Ruscheweyh differential operator, Turkish J. Math., 43 (2019), 1712–1720. https://doi.org/10.3906/mat-1812-6 doi: 10.3906/mat-1812-6 |
[23] | S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9 |
[24] | K. I. Noor, S. Riaz, M. A. Noor, On $\mathfrak{q}$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[25] | M. K. Aouf, S. M. Madian, Subordination factor sequence results for starlike and convex classes defined by $\mathfrak{q}$-Catas operator, Afr. Mat., 32 (2021), 1239–1251. https://doi.org/10.1007/s13370-021-00896-4 doi: 10.1007/s13370-021-00896-4 |
[26] | H. Aldweby, M. Darus, Some subordination results on $\mathfrak{q }$-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563 |
[27] | S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801 |
[28] | M. L. Mogra, Applications of Ruscheweyh derivatives and Hadamard product to analytic functions, Int. J. Math. Math. Sci., 22 (1999), 978494. https://doi.org/10.1155/S0161171299227950 doi: 10.1155/S0161171299227950 |
[29] | K. Inayat Noor, S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl., 340 (2008), 1145–1152. https://core.ac.uk/download/pdf/82509351.pdf |
[30] | S. L. Shukla, V. Kumar, Univalent functions defined by Ruscheweyh derivatives, Int. J. Math. Math. Sci., 6 (1983), 670460. https://doi.org/10.1155/S0161171283000435 doi: 10.1155/S0161171283000435 |
[31] | M. K. Aouf, R. M. El-Ashwah, Inclusion properties of certain subclass of analytic functions defined by multiplier transformations, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 63 (2009), 29–38. https://doi.org/10.2478/v10062-009-0003-0 doi: 10.2478/v10062-009-0003-0 |
[32] | R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Univ. Apulensis, 24 (2010), 51–61. |
[33] | T. B. Jung, Y. C.Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operator, J. Math. Anal. Appl., 176 (1993), 138–147. |
[34] | G. S. Salagean, Subclasses of univalent functions, Lect. Notes Math., 1013 (1983), 362–372. https://doi.org/10.1007/BFb0066543 doi: 10.1007/BFb0066543 |
[35] | S. A. Shah, K. I. Noor, Study on $\mathfrak{q}$-analogue of certain family of linear operators, Turkish J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41 |
[36] | H. M. Srivastava, A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transforms Spec. Funct., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577 |
[37] | H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Boston, London: Kluwer Academic Publishers, 2001. https://doi.org/10.1007/978-94-015-9672-5 |
[38] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297–326. |
[39] | T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $\mathfrak{q}$-derivative operator, Abstr. Appl. Anal., 2014 (2014), 846719. |
[40] | K. I. Noor, Some classes of analytic functions associated with $ \mathfrak{q}$-Ruscheweyh differential operator, Facta Univ. Ser. Math. Inform., 33 (2018), 531–538. |
[41] | K. I. Noor, S. Riaz, Generalized $\mathfrak{q}$-starlike functions, Stud. Sci. Math. Hung., 54 (2017), 509–522. |
[42] | H. Shamsan, S. Latha, On genralized bounded Mocanu variation related to $\mathfrak{q}$-derivative and conic regions, Ann. Pure Appl. Math., 17 (2018), 67–83. https://doi.org/10.22457/apam.v17n1a8 doi: 10.22457/apam.v17n1a8 |