We construct the generalized Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, and derive three kinds of (1+1)-dimensional nonisospectral integrable hierarchies. Moreover, we obtain their Hamiltonian structures. Finally, based on Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, by using the semi-direct sum decomposition of Lie algebras, we construct three kinds of integrable coupling systems associated with these three Lie algebras.
Citation: Baiying He, Siyu Gao. The nonisospectral integrable hierarchies of three generalized Lie algebras[J]. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329
We construct the generalized Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, and derive three kinds of (1+1)-dimensional nonisospectral integrable hierarchies. Moreover, we obtain their Hamiltonian structures. Finally, based on Lie algebras $ \mathfrak{sp}(4) $, $ \mathfrak{so}(5) $, and $ \mathfrak{so}(3, 2) $, by using the semi-direct sum decomposition of Lie algebras, we construct three kinds of integrable coupling systems associated with these three Lie algebras.
[1] | M. Ablowitz, P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge: Cambridge University Press, 1991. |
[2] | P. Drazin, R. Johnson, Solitons: An introduction, Cambridge: Cambridge University Press, 1989. |
[3] | C. Gu, Soliton theory and its applications, Springer, 1995. |
[4] | F. Calogero, A method to generate solvable nonlinear evolution equations, Lett. Nuovo Cimento, 14 (1975), 443–447. https://doi.org/10.1007/BF02763113 doi: 10.1007/BF02763113 |
[5] | S. Chen, X. Lü, Lump and lump-multi-kink solutions in the (3+1)-dimensions, Commun. Nonlinear Sci., 109 (2022), 106103. https://doi.org/10.1016/j.cnsns.2021.106103 doi: 10.1016/j.cnsns.2021.106103 |
[6] | S. Bai, X. Yin, N. Cao, L. Xu, A high dimensional evolution model and its rogue wave solution, breather solution and mixed solutions, Nonlinear Dyn., 111 (2023), 12479–12494. https://doi.org/10.1007/s11071-023-08467-x doi: 10.1007/s11071-023-08467-x |
[7] | N. Cao, X. Yin, S. Bai, L. Xu, Breather wave, lump type and interaction solutions for a high dimensional evolution model, Chaos, Soliton Fract., 172 (2023), 113505. https://doi.org/10.1016/j.chaos.2023.113505 doi: 10.1016/j.chaos.2023.113505 |
[8] | G. Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems, J. Math. Phys., 30 (1989), 330–338. https://doi.org/10.1063/1.528449 doi: 10.1063/1.528449 |
[9] | H. Dong, A subalgebra of Lie algebra $A_2$ and its associated two types of loop algebra, as well as Hamiltonian structures of integrable hierarchy, J. Math. Phys., 50 (2009), 053519. https://doi.org/10.1063/1.3122667 doi: 10.1063/1.3122667 |
[10] | F. Guo, Three new integrable hierarchies of equations, Commun. Theor. Phys. (Beijing), 48 (2007), 769–772. https://doi.org/10.1088/0253-6102/48/5/001 doi: 10.1088/0253-6102/48/5/001 |
[11] | F. Guo, Y. Zhang, Two unified formulae, Phys. Lett. A, 366 (2007), 403–410. https://doi.org/10.1016/j.physleta.2007.02.062 |
[12] | W. Ma, A multi-component Lax integrable hierarchy with Hamiltonian structure, Pac. J. Appl. Math., 1 (2008), 69–75. Available from: https://www.researchgate.net/publication/255659001 |
[13] | Y. Zhang, E. Fan, H. Tam, A few expanding Lie algebras of the Lie algebra $A_1$ and applications, Phys. Lett. A, 359 (2006), 471–480. https://doi.org/10.1016/j.physleta.2006.07.003 doi: 10.1016/j.physleta.2006.07.003 |
[14] | G. Tu, R. Andrushkiw, X. Huang, A trace identity and its application to integrable systems of 1+2 dimensions, J. Math. Phys., 32 (1991), 1900–1907. https://doi.org/10.1063/1.529204 doi: 10.1063/1.529204 |
[15] | S. Lou, M. Jia, X. Tang, F. Huang, Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation, Phys. Rev. E, 75 (2007), 056318. http://dx.doi.org/10.1103/PhysRevE.75.056318 doi: 10.1103/PhysRevE.75.056318 |
[16] | Q. Zha, Z. Li, Darboux transformation and bidirectional soliton solutions of a new (2+1)-dimensional soliton equation, Phys. Lett. A, 372 (2008), 1422–1428. https://doi.org/10.1016/j.chaos.2008.02.039 doi: 10.1016/j.chaos.2008.02.039 |
[17] | Y. Zhang, J. Gao, G. Wang, Two (2+1)-dimensional hierarchies of evolution equations and their Hamiltonian structures, Appl. Math. Comput., 243 (2014), 601–606. https://doi.org/10.1016/j.amc.2014.06.012 doi: 10.1016/j.amc.2014.06.012 |
[18] | Y. Zhang, L. Wu, Two (2+1)-dimensional expanding dynamical systems associated to the mKP hierarchy, Appl. Math. Comput., 268 (2015), 561–574. https://doi.org/10.1016/j.amc.2015.06.112 doi: 10.1016/j.amc.2015.06.112 |
[19] | B. Ren, J. Lin, A new (2+1)-Dimensional integrable equation, Commun. Theor. Phys., 51 (2009), 13–16. https://doi.org/10.1088/0253-6102/51/1/03 doi: 10.1088/0253-6102/51/1/03 |
[20] | Y. Zhang, J. Mei, H. Guan, A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries, J. Geom. Phys., 147 (2020), 103538. https://doi.org/10.1016/j.geomphys.2019.103538 doi: 10.1016/j.geomphys.2019.103538 |
[21] | Y. Zhang, X. Zhang, A scheme for generating nonisospectral integrable hierarchies and its related applications, Acta Math. Sinica, Engl. Ser. Mar., 37 (2021), 707–730. https://doi.org/10.1007/s10114-021-0392-8 doi: 10.1007/s10114-021-0392-8 |
[22] | H. Wang, Y. Zhang, A new multi-component integrable coupling and its application to isospectral and nonisospectral problems, Commun. Nonlinear Sci., 105 (2022), 106075. https://doi.org/10.1016/j.cnsns.2021.106075 doi: 10.1016/j.cnsns.2021.106075 |
[23] | J. Yu, H. Wang, C. Li, A type of multi-component nonisospectral generalized nonlinear Schrodinger hierarchies, Theor. Math. Phys., 215 (2023), 837–861. https://doi.org/10.1134/S0040577923060077 doi: 10.1134/S0040577923060077 |
[24] | H. Wang, B. He, A class of extended Lie superalgebras and their applications, Chaos, Soliton Fract., 168 (2023), 113145. https://doi.org/10.1016/j.chaos.2023.113145 doi: 10.1016/j.chaos.2023.113145 |
[25] | H. Wang, B. He, 2+1 dimensional nonisospectral super integrable hierarchies associated with a class of extended Lie superalgebras, Chaos, Soliton Fract., 171 (2023), 113443. https://doi.org/10.1016/j.chaos.2023.113443 doi: 10.1016/j.chaos.2023.113443 |
[26] | W. Ma, M. Chen, Hamiltonian and quasi-Hamiltonian structures associated with semidirect sums of Lie algebras, J. Phys. A: Math. Gen., 39 (2006), 10787–10801. https://doi.org/10.1088/0305-4470/39/34/013 doi: 10.1088/0305-4470/39/34/013 |
[27] | W. Ma, X. Xu, Y. Zhang, Semi-direct sums of Lie algebras and continuous integrable couplings, Phys. Lett. A, 351 (2006), 125–130. https://doi.org/10.1016/j.physleta.2005.09.087 doi: 10.1016/j.physleta.2005.09.087 |
[28] | W. Ma, X. Xu, Y. Zhang, Semidirect sums of Lie algebras and discrete integrable couplings, J. Math. Phys., 47 (2006), 053501. https://doi.org/10.1063/1.2194630 doi: 10.1063/1.2194630 |
[29] | H. Wang, Y. Zhang, A kind of generalized integrable couplings and their bi-Hamiltonian structure, Inter. J. Theor. Phys., 60 (2021), 1797–1812. https://doi.org/10.1007/s10773-021-04799-9 doi: 10.1007/s10773-021-04799-9 |
[30] | H. Wang, Y. Zhang, A kind of nonisospectral and isospectral integrable couplings and their Hamiltonian systems, Commun. Nonlinear Sci., 99 (2021), 105822. https://doi.org/10.1016/j.cnsns.2021.105822 doi: 10.1016/j.cnsns.2021.105822 |
[31] | H. Sun, Q. Han, Lie algebras and lie superalgebras and their applications in physics, Beijing: Peking University Press, 1999. |
[32] | S. Bradlow, O. Garcia-Prada, P. Gothen, Deformations of maximal representations in $Sp(4, R)$, Q. J. Math., 63 (2012), 795–843. https://doi.org/10.1093/qmath/har010 doi: 10.1093/qmath/har010 |
[33] | D. Alina, O. Anatol, Integrable systems related to deformed $so(5)$, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), 18pp. https://doi.org/10.3842/SIGMA.2014.056 doi: 10.3842/SIGMA.2014.056 |