Research article

The dynamics and harvesting strategies of a predator-prey system with Allee effect on prey

  • Received: 24 July 2023 Revised: 07 October 2023 Accepted: 18 October 2023 Published: 25 October 2023
  • MSC : 34D23, 37N25, 92B05

  • The study of harvesting mechanisms in predator-prey systems with an Allee effect on prey has always garnered significant attention. In this paper, the dynamics and harvesting strategies of a predator-prey system are investigated, where the prey is subject to the Allee effect. The positivity and boundedness of solutions, the existence and stability of equilibria are further studied. The existence of a Hopf bifurcation at the interior equilibrium point of the system is investigated and verified by numerical simulations. Furthermore, we investigate the maximum sustainable yield (MSY), maximum sustainable total yield (MSTY) and the optimal economic profit of the proposed system. We find that MSY can be attained through predator harvesting, while MSTY is observed when harvesting efforts are uniform across species. In these situations, the biological system maintains stability. Using the method of control parametrization, the optimal economic profit and harvesting strategy are obtained. The results show that the harvesting efforts can affect the stability of the system, resulting in several interesting biological phenomena. This research provides a theoretical basis for biological resource management.

    Citation: Chengchong Lu, Xinxin Liu, Zhicheng Li. The dynamics and harvesting strategies of a predator-prey system with Allee effect on prey[J]. AIMS Mathematics, 2023, 8(12): 28897-28925. doi: 10.3934/math.20231481

    Related Papers:

  • The study of harvesting mechanisms in predator-prey systems with an Allee effect on prey has always garnered significant attention. In this paper, the dynamics and harvesting strategies of a predator-prey system are investigated, where the prey is subject to the Allee effect. The positivity and boundedness of solutions, the existence and stability of equilibria are further studied. The existence of a Hopf bifurcation at the interior equilibrium point of the system is investigated and verified by numerical simulations. Furthermore, we investigate the maximum sustainable yield (MSY), maximum sustainable total yield (MSTY) and the optimal economic profit of the proposed system. We find that MSY can be attained through predator harvesting, while MSTY is observed when harvesting efforts are uniform across species. In these situations, the biological system maintains stability. Using the method of control parametrization, the optimal economic profit and harvesting strategy are obtained. The results show that the harvesting efforts can affect the stability of the system, resulting in several interesting biological phenomena. This research provides a theoretical basis for biological resource management.



    加载中


    [1] R. J. Han, L. N. Guin, B. X. Dai, Consequences of refuge and diffusion in a spatiotemporal predator-prey model, Nonlinear Anal. Real, 60 (2021), 103311. https://doi.org/10.1016/j.nonrwa.2021.103311 doi: 10.1016/j.nonrwa.2021.103311
    [2] L. N. Guin, P. K. Mandal, Effect of prey refuge on spatiotemporal dynamics of the reaction-diffusion system, Comput. Math. Appl., 68 (2014), 1325–1340. https://doi.org/10.1016/j.camwa.2014.08.025 doi: 10.1016/j.camwa.2014.08.025
    [3] X. X. Liu, Q. D. Huang, Dynamics of a predator-prey system with inducible defense and disease in the prey, Nonlinear Anal. Real, 71 (2023), 103802. https://doi.org/10.1016/j.nonrwa.2022.103802 doi: 10.1016/j.nonrwa.2022.103802
    [4] D. M. Johnson, A. M. Liebhold, P. C. Tobin, O. N. Bjørnstad, Allee effects and pulsed invasion by the gypsy moth, Nature, 444 (2006), 361–363. https://doi.org/10.1038/nature05242 doi: 10.1038/nature05242
    [5] L. Hammann, B. Silliman, B. Blasius, Optimal planting distance in a simple model of habitat restoration with an Allee effect, Front. Mar. Sci., 7 (2021), 610412. https://doi.org/10.3389/fmars.2020.610412 doi: 10.3389/fmars.2020.610412
    [6] R. A. Morris, A. Hernández-Flores, F. Aranceta-Garza, A. Cuevas-Jiménez, K. Kitson-Walters, Allee effect considerations to support the spatial management of a sedentary marine species: The queen conch (Aliger gigas) on the Pedro Bank, Jamaica, Mar. Freshwater Res., 74 (2023), 375–386. https://doi.org/10.1071/MF22140 doi: 10.1071/MF22140
    [7] D. W. Morris, Measuring the Allee effect: positive density dependence in small mammals, Ecology, 83 (2002), 14–20. https://doi.org/10.1890/0012-9658(2002)083[0014:MTAEPD]2.0.CO;2 doi: 10.1890/0012-9658(2002)083[0014:MTAEPD]2.0.CO;2
    [8] G. Mandal, S. Das, L. N. Guin, S. Chakravarty, Dynamic response of a system of interactive species influenced by fear and Allee consequences, Eur. Phys. J. Plus, 138 (2023), 661. https://doi.org/10.1140/epjp/s13360-023-04246-0 doi: 10.1140/epjp/s13360-023-04246-0
    [9] J. Gascoigne, L. Berec, S. Gregory, F. Courchamp, Dangerously few liaisons: A review of mate-finding Allee effects, Popul. Ecol., 51 (2009), 355–372. https://doi.org/10.1007/s10144-009-0146-4 doi: 10.1007/s10144-009-0146-4
    [10] D. Sen, S. Ghorai, S. Sharma, M. Banerjee, Allee effect in prey's growth reduces the dynamical complexity in prey-predator model with generalist predator, Appl. Math. Model., 91 (2021), 768–790. https://doi.org/10.1016/j.apm.2020.09.046 doi: 10.1016/j.apm.2020.09.046
    [11] J. P. Tripathi, P. S. Mandal, A. Poonia, V. P. Bajiya, A widespread interaction between generalist and specialist enemies: The role of intraguild predation and Allee effect, Appl. Math. Model., 89 (2021), 105–135. https://doi.org/10.1016/j.apm.2020.06.074 doi: 10.1016/j.apm.2020.06.074
    [12] D. W. Goodsman, M. A. Lewis, The minimum founding population in dispersing organisms subject to strong Allee effects, Methods Ecol. Evol., 7 (2016), 1100–1109. https://doi.org/10.1111/2041-210X.12573 doi: 10.1111/2041-210X.12573
    [13] C. Zhang, X. Y. Li, Dynamics of a discrete Leslie-Gower model with harvesting and Holling-Ⅱ functional response, Mathematics, 11 (2023), 3303. https://doi.org/10.3390/math11153303 doi: 10.3390/math11153303
    [14] Z. W. Xiao, X. D. Xie, Y. L. Xue, Stability and bifurcation in a Holling type Ⅱ predator-prey model with Allee effect and time delay, Adv. Differ. Equ., 2018 (2018), 288. https://doi.org/10.1186/s13662-018-1742-4 doi: 10.1186/s13662-018-1742-4
    [15] W. X. Wang, Y. B. Zhang, C. Z Liu, Analysis of a discrete-time predator prey system with Allee effect, Ecol. Complex., 8 (2011), 81–85. https://doi.org/10.1016/j.ecocom.2010.04.005 doi: 10.1016/j.ecocom.2010.04.005
    [16] X. Q. Wang, Y. L. Cai, H. H. Ma, Dynamics of a diffusive predator-prey model with Allee effect on predator, Discrete Dyn. Nat. Soc., 2013 (2013), 984960. https://doi.org/10.1155/2013/984960 doi: 10.1155/2013/984960
    [17] R. D. Parshad, E. Quansah, K. Black, R. K. Upadhyay, S. K. Tiwari, N. Kumari, Long time dynamics of a three-species food chain model with Allee effect in the top predator, Comput. Math. Appl., 71 (2016), 503–528. https://doi.org/10.1016/j.camwa.2015.12.015 doi: 10.1016/j.camwa.2015.12.015
    [18] E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma, R. Ramos-Jiliberto, Multiple stability and uniqueness of the limit cycle in a Gause-type predator-prey model considering the Allee effect on prey, Nonlinear Anal. Real, 12 (2011), 2931–2942. https://doi.org/10.1016/j.nonrwa.2011.04.003 doi: 10.1016/j.nonrwa.2011.04.003
    [19] H. Y. Liu, H. G. Yu, C. J. Dai, Z. L. Ma, Q. Wang, M. Zhao, Dynamical analysis of an aquatic amensalism model with non-selective harvesting and Allee effect, Math. Biosci. Eng., 18 (2021), 8857–8882. https://doi.org/10.3934/mbe.2021437 doi: 10.3934/mbe.2021437
    [20] J. F. Wang, J. P. Shi, J. J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, J. Differ. Equations, 251 (2021), 1276–1304. https://doi.org/10.1016/j.jde.2011.03.004 doi: 10.1016/j.jde.2011.03.004
    [21] M. Y. Hamada, T. El-Azab, H. El-Metwally, Allee effect in a Ricker type predator-prey model, J. Math. Comput. Sci-JM., 29 (2023), 239–251. https://doi.org/10.22436/jmcs.029.03.03 doi: 10.22436/jmcs.029.03.03
    [22] S. Rana, S. Bhattacharya, S. Samanta, Spatiotemporal dynamics of Leslie-Gower predator-prey model with Allee effect on both populations, Math. Comput. Simulat., 200 (2022), 32–49. https://doi.org/10.1016/j.matcom.2022.04.011 doi: 10.1016/j.matcom.2022.04.011
    [23] J. Zu, M. Mimura, The impact of Allee effect on a predator-prey system with Holling type Ⅱ functional response, Appl. Math. Comput., 217 (2010), 3542–3556. https://doi.org/10.1016/j.amc.2010.09.029 doi: 10.1016/j.amc.2010.09.029
    [24] J. A. Dunne, R. J. Williams, N. D. Martinez, Network structure and biodiversity loss in food webs: Robustness increases with connectance, Ecol. Lett., 5 (2002), 558–567. https://doi.org/10.1046/j.1461-0248.2002.00354.x doi: 10.1046/j.1461-0248.2002.00354.x
    [25] B. Ghosh, T. K. Kar, Sustainable use of prey species in a prey-predator system: Jointly determined ecological thresholds and economic trade-offs, Ecol. Model., 272 (2014), 49–58. https://doi.org/10.1016/j.ecolmodel.2013.09.013 doi: 10.1016/j.ecolmodel.2013.09.013
    [26] X. X. Liu, Q. D. Huang, Analysis of optimal harvesting of a predator-prey model with Holling type Ⅳ functional response, Ecol. Complex., 42 (2020), 100816. https://doi.org/10.1016/j.ecocom.2020.100816 doi: 10.1016/j.ecocom.2020.100816
    [27] X. X. Liu, Q. D. Huang, Dynamics and optimal control of a Monod-Haldane predator-prey system with mixed harvesting, Int. J. Bifurcat. Chaos, 30 (2020), 2050243. https://doi.org/10.1142/S0218127420502430 doi: 10.1142/S0218127420502430
    [28] T. Das, R. N. Mukherjee, K. S. Chaudhuri, Harvesting of a prey-predator fishery in the presence of toxicity, Appl. Math. Model., 33 (2009), 2282–2292. https://doi.org/10.1016/j.apm.2008.06.008 doi: 10.1016/j.apm.2008.06.008
    [29] S. G. Mortoja, P. Panja, S. K. Mondal, Stability analysis of plankton-fish dynamics with cannibalism effect and proportionate harvesting on fish, Mathematics, 11 (2023), 3011. https://doi.org/10.3390/math11133011 doi: 10.3390/math11133011
    [30] C. J. Wei, L. S. Chen, Periodic solution and heteroclinic bifurcation in a predator-prey system with Allee effect and impulsive harvesting, Nonlinear Dyn., 76 (2014), 1109–1117. https://doi.org/10.1007/s11071-013-1194-z doi: 10.1007/s11071-013-1194-z
    [31] Z. C. Shang, Y. H. Qiao, Multiple bifurcations in a predator-prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting, Math. Comput. Simulat., 205 (2023), 745–764. https://doi.org/10.1016/j.matcom.2022.10.028 doi: 10.1016/j.matcom.2022.10.028
    [32] D. Y. Wu, H. Y. Zhao, Y. Yuan, Complex dynamics of a diffusive predator-prey model with strong Allee effect and threshold harvesting, J. Math. Anal. Appl., 469 (2019), 982–1014. https://doi.org/10.1016/j.jmaa.2018.09.047 doi: 10.1016/j.jmaa.2018.09.047
    [33] S. S. Yu, J. Liu, X. J. Lin, Multiple positive periodic solutions of a Gause-type predator-prey model with Allee effect and functional responses, Aims Math., 5 (2020), 6135–6148. https://doi.org/10.3934/math.2020394 doi: 10.3934/math.2020394
    [34] R. P. Gupta, D. K. Yadav, Role of Allee effect and harvesting of a food-web system in the presence of scavengers, J. Biol. Syst., 30 (2022), 149–181. https://doi.org/10.1142/S021833902250005X doi: 10.1142/S021833902250005X
    [35] B. Barman, B. Ghosh, Dynamics of a spatially coupled model with delayed prey dispersal, Int. J. Model. Simul., 42 (2021), 400–414. https://doi.org/10.1080/02286203.2021.1926048 doi: 10.1080/02286203.2021.1926048
    [36] C. Roberts, Ordinary differential equations: Applications, models, and computing, New York: Chapman and Hall, 2011. https://doi.org/10.1201/b15111
    [37] Y. A. Kuznetsov, Elements of applied bifurcation theory, New York: Springer, 2004. https://doi.org/10.1007/978-1-4757-3978-7
    [38] L. Perko, Differential equations and dynamical systems, New York: Springer, 1991. https://doi.org/10.1007/978-1-4684-0392-3
    [39] B. Ghosh, T. K. Kar, T. Legović, Sustainability of exploited ecologically interdependent species, Popul. Ecol., 56 (2014), 527–537. http://doi.org/10.1007/s10144-014-0436-3 doi: 10.1007/s10144-014-0436-3
    [40] B. Ghosh, D. Pal, T. Legović, T. K. Kar, Harvesting induced stability and instability in a tri-trophic food chain, Math. Biosci., 304 (2018), 89–99. http://doi.org/10.1016/j.mbs.2018.08.003 doi: 10.1016/j.mbs.2018.08.003
    [41] B. Ghosh, T. K. Kar, T. Legović, Relationship between exploitation, oscillation, MSY and extinction, Math. Biosci., 256 (2014), 1–9. http://doi.org/10.1016/j.mbs.2014.07.005 doi: 10.1016/j.mbs.2014.07.005
    [42] L. S. Pontryagin, Mathematical theory of optimal processes, London: Routledge, 1987. https://doi.org/10.1201/9780203749319
    [43] C. W. Clark, Mathematical bioeconomics: The optimal management of renewable resources, 1990.
    [44] A. Rojas-Palma, E. González-Olivares, Optimal harvesting in a predator-prey model with Allee effect and sigmoid functional response, Appl. Math. Model., 36 (2012), 1864–1874. https://doi.org/10.1016/j.apm.2011.07.081 doi: 10.1016/j.apm.2011.07.081
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1249) PDF downloads(113) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog