Research article

Bifurcation and optimal harvesting analysis of a discrete-time predator–prey model with fear and prey refuge effects

  • Received: 09 July 2024 Revised: 26 August 2024 Accepted: 04 September 2024 Published: 11 September 2024
  • MSC : 39A28, 39A30

  • In this contribution, the complicated dynamical behaviors and optimal harvesting policy of a discrete-time predator–prey model with fear and refuge effects are formulated. Both the fear and prey refuge effects refer to an interaction between predator and prey. In the first place, the existence and local stability of three fixed points of proposed model are investigated by virtue of our methodology, that is, the eigenvalues of the Jacobian matrix. One step further, it is worth mentioning that the model undergoes flip bifurcation (i.e., period–doubling bifurcation) and Neimark–Sacker bifurcation at the interior fixed point by the utilization of bifurcation theory and center manifold theory. Also, optimal harvesting strategy is investigated, and the expressions of optimal harvesting efforts are determined. Two examples, in the end, are put forward to prove that they are consistent with the previous theoretical results.

    Citation: Jie Liu, Qinglong Wang, Xuyang Cao, Ting Yu. Bifurcation and optimal harvesting analysis of a discrete-time predator–prey model with fear and prey refuge effects[J]. AIMS Mathematics, 2024, 9(10): 26283-26306. doi: 10.3934/math.20241281

    Related Papers:

  • In this contribution, the complicated dynamical behaviors and optimal harvesting policy of a discrete-time predator–prey model with fear and refuge effects are formulated. Both the fear and prey refuge effects refer to an interaction between predator and prey. In the first place, the existence and local stability of three fixed points of proposed model are investigated by virtue of our methodology, that is, the eigenvalues of the Jacobian matrix. One step further, it is worth mentioning that the model undergoes flip bifurcation (i.e., period–doubling bifurcation) and Neimark–Sacker bifurcation at the interior fixed point by the utilization of bifurcation theory and center manifold theory. Also, optimal harvesting strategy is investigated, and the expressions of optimal harvesting efforts are determined. Two examples, in the end, are put forward to prove that they are consistent with the previous theoretical results.



    加载中


    [1] G.-Q. Sun, J. Zhang, L.-P. Song, Z. Jin, B.-L.-Li, Pattern formation of a spatial predator–prey system, Appl. Math. Comput., 218 (2012), 11151–11162. http://doi.org/10.1016/j.amc.2012.04.071 doi: 10.1016/j.amc.2012.04.071
    [2] B. Dubey, B. Das, J. Hussain, A predator–prey interaction model with self and cross-diffusion, Ecol. Model., 141 (2001), 67–76. http://doi.org/10.1016/S0304-3800(01)00255-1 doi: 10.1016/S0304-3800(01)00255-1
    [3] G.-Q. Sun, Z. Jin, L. Li, M. Haque, B.-L.-Li, Spatial patterns of a predator–prey model with cross diffusion, Nonlinear Dyn., 69 (2012), 1631–1638. http://doi.org/10.1007/s11071-012-0374-6 doi: 10.1007/s11071-012-0374-6
    [4] A. J. Lotka, Elements of physical biology, Baltimore: Williams and Wilkins, 1925.
    [5] V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, ICES J. Mar. Sci., 3 (1928), 3–51. http://doi.org/10.1093/icesjms/3.1.3 doi: 10.1093/icesjms/3.1.3
    [6] E. Diz-Pita, M. V. Otero-Espinar, Predator–prey models: a review of some recent advances, Mathematics, 9 (2021), 1783. http://doi.org/10.3390/math9151783 doi: 10.3390/math9151783
    [7] C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the european pine sawfly, Can. Entomol., 91 (1959), 293–320. http://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5
    [8] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, The Memoirs of the Entomological Society of Canada, 97 (1965), 5–60. http://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [9] C. S. Holling, The functional response of invertebrate predators to prey density, The Memoirs of the Entomological Society of Canada, 98 (1966), 5–86. https://doi.org/10.4039/entm9848fv doi: 10.4039/entm9848fv
    [10] J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707–723. http://doi.org/10.1002/bit.260100602 doi: 10.1002/bit.260100602
    [11] P. A. Braza, Predator–prey dynamics with square root functional responses, Nonlinear Anal. Real World Appl., 13 (2012), 1837–1843. http://doi.org/10.1016/j.nonrwa.2011.12.014 doi: 10.1016/j.nonrwa.2011.12.014
    [12] P. Chakraborty, U. Ghosh, S. Sarkar, Stability and bifurcation analysis of a discrete prey–predator model with square-root functional response and optimal harvesting, J. Biol. Syst., 28 (2020), 91–110. http://doi.org/10.1142/S0218339020500047 doi: 10.1142/S0218339020500047
    [13] X. Li, X. Shao, Flip bifurcation and Neimark–Sacker bifurcation in a discrete predator–prey model with Michaelis–Menten functional response, Electron. Res. Arch., 31 (2023), 37–57. http://doi.org/10.3934/era.2023003 doi: 10.3934/era.2023003
    [14] X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator–prey system, Chaos Soliton. Fract., 32 (2007), 80–94. http://doi.org/10.1016/j.chaos.2005.10.081 doi: 10.1016/j.chaos.2005.10.081
    [15] J. D. Murray, Mathematical biology: II: spatial models and biomedical applications, New York: Springer, 2003. https://doi.org/10.1007/b98869
    [16] R. P. Agarwal, P. J. Y. Wong, Advanced topics in difference equations, Dordrecht: Springer, 1997. http://doi.org/10.1007/978-94-015-8899-7
    [17] A. Q. Khan, I. M. Alsulami, Complicate dynamical analysis of a discrete predator–prey model with a prey refuge, AIMS Math., 8 (2023), 15035–15057. http://doi.org/10.3934/math.2023768 doi: 10.3934/math.2023768
    [18] R. Ahmed, N. Tahir, N. A. Shah, An analysis of the stability and bifurcation of a discrete-time predator–prey model with the slow–fast effect on the predator, Chaos, 34 (2024), 033127. https://doi.org/10.1063/5.0185809 doi: 10.1063/5.0185809
    [19] A. Q. Khan, A. Maqbool, T. D. Alharbi, Bifurcations and chaos control in a discrete rosenzweig–macarthur prey–predator model, Chaos, 34 (2024), 033111. https://doi.org/10.1063/5.0165828 doi: 10.1063/5.0165828
    [20] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol., 73 (2016), 1179–1204. http://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [21] A. Das, G. P. Samanta, Stochastic prey–predator model with additional food for predator, Physica A, 512 (2018), 121–141. https://doi.org/10.1016/j.physa.2018.08.138 doi: 10.1016/j.physa.2018.08.138
    [22] N. Pettorelli, T. Coulson, S. M. Durant, J.-M. Gaillard, Predation, individual variability and vertebrate population dynamics, Oecologia, 167 (2011), 305–314. https://doi.org/10.1007/s00442-011-2069-y doi: 10.1007/s00442-011-2069-y
    [23] E. L. Preisser, D. I. Bolnick, The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations, PLOS ONE, 3 (2008), e2465. http://doi.org/10.1371/journal.pone.0002465 doi: 10.1371/journal.pone.0002465
    [24] G. F. Gause, N. P. Smaragdova, A. A. Witt, Further studies of interaction between predators and prey, J. Anim. Ecol., 5 (1936), 1–18. https://doi.org/10.2307/1087 doi: 10.2307/1087
    [25] J. M. Smith, Models in ecology, Cambridge: Cambridge University Press, 1974.
    [26] A. Sih, Prey refuges and predator–prey stability, Theor. Popul. Biol., 31 (1987), 1–12. http://doi.org/10.1016/0040-5809(87)90019-0 doi: 10.1016/0040-5809(87)90019-0
    [27] A. R. Ives, A. P. Dobson, Antipredator behavior and the population dynamics of simple predator–prey systems, Am. Nat., 130 (1987), 431–447. https://doi.org/10.1086/284719 doi: 10.1086/284719
    [28] G. D. Ruxton, Short term refuge use and stability of predator–prey models, Theor. Popul. Biol., 47 (1995), 1–17. http://doi.org/10.1006/tpbi.1995.1001 doi: 10.1006/tpbi.1995.1001
    [29] M. E. Hochberg, R. D. Holt, Refuge evolution and the population dynamics of coupled host–parasitoid associations, Evol. Ecol., 9 (1995), 633–661. http://doi.org/10.1007/BF01237660 doi: 10.1007/BF01237660
    [30] E. G. Olivares, R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166 (2003), 135–146. http://doi.org/10.1016/S0304-3800(03)00131-5 doi: 10.1016/S0304-3800(03)00131-5
    [31] S. A. A. Hamdallah, A. A. Arafa, Stability analysis of filippov prey–predator model with fear effect and prey refuge, J. Appl. Math. Comput., 70 (2024), 73–102. http://doi.org/10.1007/s12190-023-01934-z doi: 10.1007/s12190-023-01934-z
    [32] S. Pal, P. Panday, N. Pal, A. K. Misra, J. Chattopadhyay, Dynamical behaviors of a constant prey refuge ratio-dependent prey–predator model with allee and fear effects, Int. J. Biomath., 17 (2024), 2350010. http://doi.org/10.1142/S1793524523500109 doi: 10.1142/S1793524523500109
    [33] J.-G. Wang, X.-Y. Meng, L. Lv, J. Li, Stability and bifurcation analysis of a Beddington–DeAngelis prey–predator model with fear effect, prey refuge and harvesting, Int. J. Bifurcat. Chaos, 33 (2023), 2350013. http://doi.org/10.1142/S021812742350013X doi: 10.1142/S021812742350013X
    [34] J. Wang, Y. Cai, S. Fu, W. Wang, The effect of the fear factor on the dynamics of a predator–prey model incorporating the prey refuge, Chaos, 29 (2019), 083109. http://doi.org/ 10.1063/1.5111121 doi: 10.1063/1.5111121
    [35] N. Sk, P. K. Tiwari, S. Pal, M. Martcheva, A delay non-autonomous model for the combined effects of fear, prey refuge and additional food for predator, J. Biol. Dynam., 15 (2021), 588–622. http://doi.org/10.1080/17513758.2021.2001583 doi: 10.1080/17513758.2021.2001583
    [36] F. Rao, Y. Kang, Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects, Chaos Soliton. Fract., 175 (2023), 113935. https://doi.org/10.1016/j.chaos.2023.113935 doi: 10.1016/j.chaos.2023.113935
    [37] B. Sahoo, S. Poria, Diseased prey predator model with general holling type interactions, Appl. Math. Comput., 236 (2014), 83–100. http://doi.org/10.1016/j.amc.2013.10.013 doi: 10.1016/j.amc.2013.10.013
    [38] A. Das, M. Pal, Theoretical analysis of an imprecise prey–predator model with harvesting and optimal control, J. Optim., 2019 (2019), 9512879. http://doi.org/10.1155/2019/9512879 doi: 10.1155/2019/9512879
    [39] G. Lan, Y. Fu, C. Wei, S. Zhang, Dynamical analysis of a ratio-dependent predator–prey model with holling Ⅲ type functional response and nonlinear harvesting in a random environment, Adv. Differ. Equ., 2018 (2018), 198. http://doi.org/10.1186/s13662-018-1625-8 doi: 10.1186/s13662-018-1625-8
    [40] J. Guckenheimer, P. Holmes, K. K. Lee, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Phys. Today, 38 (1985), 102–105. https://doi.org/10.1063/1.2814774 doi: 10.1063/1.2814774
    [41] H. Shu, J. Wei, Bifurcation analysis in a discrete BAM network model with delays, J. Differ. Equ. Appl., 17 (2011), 69–84. https://doi.org/10.1080/10236190902953771 doi: 10.1080/10236190902953771
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(75) PDF downloads(37) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog