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Abstract: In this contribution, the complicated dynamical behaviors and optimal harvesting policy of
a discrete-time predator–prey model with fear and refuge effects are formulated. Both the fear and prey
refuge effects refer to an interaction between predator and prey. In the first place, the existence and
local stability of three fixed points of proposed model are investigated by virtue of our methodology,
that is, the eigenvalues of the Jacobian matrix. One step further, it is worth mentioning that the model
undergoes flip bifurcation (i.e., period–doubling bifurcation) and Neimark–Sacker bifurcation at the
interior fixed point by the utilization of bifurcation theory and center manifold theory. Also, optimal
harvesting strategy is investigated, and the expressions of optimal harvesting efforts are determined.
Two examples, in the end, are put forward to prove that they are consistent with the previous theoretical
results.
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1. Introduction

The use of mathematical models to study the interaction between different biological elements is an
important area in ecosystems. The main purpose of the model is to explore the dynamical behaviors
between them, such as predation, symbiosis, parasitism, competition, and so on [1–3]. Since Lotka [4]
and Volterra [5] separately proposed the Lotka–Volterra model to describe the ecological interaction
by differential equation model, many mathematicians and biologists have been deeply interested
in studying such models, especially the predator–prey models. In biology and biomathematics,
the predation model is one of the important research topics, and it is also an important model of
ecosystems [6]. There is a large amount of literature on predator–prey models with different types
of functional responses. Holling [7–9] came up with three types of functional response functions to
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describe the relationship between the quantity of prey captured by predators and the density of prey.
Taking into account the living environment and situation of prey and predators in reality, the dwellings
of many prey have a certain protective effect, and their ability to resist natural enemies will be enhanced
with the increase of the density of prey, or prey will learn to hide themselves under the pursuit of natural
enemies, which will reduce the predation ability of natural enemies. Therefore, Andrews [10] proposed
the Holling–IV functional response function in 1968. Besides, Ajraldi [11] proposed a square–root
functional response to explain the aggregation behavior that plankton exhibit.

Recently, the discrete population models depicted by differential equations have been extensively
studied [12–14]. Discrete-time systems, compared with continuous–time versions, have obvious
advantages. On one side, data collection for biological samples is often on discrete time scales in
reality (either in a week, a month, or another certain time period) rather than on a day. On the other
side, assume that the population quantity of species does not overlap between successive generations;
these could offer more efficient calculation results for numerical simulations [15, 16]. Therefore, a
lot of mathematicians have studied the dynamical behaviors of the discrete-time model corresponding
to the continuous–time one. For instance, Agarwal [17] formulated bifurcation analysis of a discrete
predator–prey model incorporating prey refuge. Ahmed et al. [18] explored a class of discrete prey
predation models with fast–slow effects. Khan et al. [19] studied a class of discrete Rosenzweig–
Macarthur predator–prey models and analysed their chaos.

Since the fear effect was first put forward by Wang et al. [20], the research of models with the
fear effect has been paid more attention by many scholars [21–23]. The fear effect mainly refers to
the mutual relationship between prey and predators, which makes prey populations instinctively fear
predators, thereby reducing the birth rate of prey and thus achieving the purpose of reducing prey
capture. It is obvious that this is a kind of anti–predation behavior. In [20], the expression for the
fear effect is F(x, y) = 1/(1 + ky), where the parameter k represents the level of the fear effect, and
the prey population decreases as k goes up. Compared with the fear effect, the refuge effect is also an
anti–predation behavior. It is important to note that the prey cost most of their lives nearby or hiding
in shelters for avoiding predation, such as caves, crevices, dense vegetation, shells, or pipes. The
notion of prey sanctuary has caught ecologists and mathematicians’ attention since Gause et al. [24]
and Smith [25] brought in the parameter refer to refuge. In the ecology, prey refuge could reduce the
predation of the prey by the predator, thereby refraining from extinction of the prey population due to
the predation factor; see [26–30] in detail. Many scholars studied a type of continuous predator–prey
model with the fear effect or refuge effect [31–36]. For example, Pal et al. [32] added the fear effect,
the Allee effect, and the influence of external disturbances such as refuges into a continuous predator–
prey model. At the same time, the positivity, boundedness, stability of the equilibrium points, and
bifurcation phenomena of the continuous predator–prey model were analyzed. Wang et al. [34] mainly
considered the role of the fear effect and discussed the difference in stability with and without the fear
effect; besides, they also studied some bifurcation phenomena. Consider that some populations without
overlapping generations are not suitable for continuous models, so we can establish a type of discrete
predator–prey model with a fear effect and a prey refuge effect. First of all, a continuous version is put
forward as follows: 

dx
dt

=
rx

1 + ky
(1 −

x
K

) − c(x − R)y,

dy
dt

= y − dy + e(x − R).
(1.1)
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The discretization system (1.1) is obtained xn+1 = xn +
rxn

1 + kyn
(1 −

xn

K
) − c(xn − R)yn,

yn+1 = yn − dyn + e(xn − R)yn.
(1.2)

Where xn and yn are the population densities at nth generation of prey and predator, respectively.
r, k,K, c, d, e and R severally stand for the growth rate of prey, the level of the fear effect, the carrying
capacity of prey, the capture efficiency of the predator of prey, the natural mortality rate of the predator,
the rate of conversion of energy, and the quantity of prey using refuge. All of the above parameters are
strictly positive.

The dramatic increase in people’s demand for resources has led to biological resources being over-
exploited. It needs us to maintain sustainable development and maximize economic benefits for the
exploitation of ecological resources. Current research refers to the effect of harvesting and mainly
focuses on constant harvesting [37], proportional harvesting [38], and nonlinear harvesting [39]. We
introduce the type of proportional harvesting of prey and predator. Our system takes the following
form:  xn+1 = xn +

rxn

1 + kyn
(1 −

xn

K
) − c(xn − R)yn − q1E1xn,

yn+1 = yn − dyn + e(xn − R)yn − q2E2yn.
(1.3)

Here q1, q2 represent the catchability coefficients of the prey and predator, and E1, E2 mean the
harvesting efforts of the prey and predator, respectively.

The outline of the rest of this paper is in the following manner: Sections 2 and 3 explore the
existence and stability of all possible fixed points of system (1.3), respectively. In Sections 4
and 5, we investigate in detail two types of bifurcation analysis (Flip bifurcation and Neimark–Sacker
bifurcation) at the interior fixed point of system (1.3). Also, the optimal harvesting strategy is analysed
in Section 6. Numerical simulations are applied in Section 7 to illustrate our theoretical results analysed
above. Finally, Section 8 contains the conclusion and discussion of our manuscript.

2. The existence of fixed points

In this section, we are about to study the existence of possible fixed points, by solving the nonlinear
system given by  x⇒ x +

rx
1 + ky

(1 −
x
K

) − c(x − R)y − q1E1x,

y⇒ y − dy + e(x − R)y − q2E2y.
(2.1)

Theorem 2.1. Fixed points obtained are as follows:
(1) A1(0, 0) always exists.
(2) A2(W, 0) is feasible if r > q1E1, where W =

K(r−q1E1)
r .

(3) A3(Q, P) exists if S < 0 is satisfied, where Q =
d+q2E2+eR

e , P = −V+
√

V2−4ZS
Z and Z = ckQ − ckR,

V = cQ − cR + q1E1kQ, S = q1E1Q − rQ(1 − Q
K ).

Proof. Obviously, A1(0, 0) always holds true. For A2(W, 0), we just need to consider that W is
positive (i.e., r > q1E1). For interior fixed point A3, through simple calculation for system (2.1),
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we obtain Eq (2.2) 
Q = Q +

rQ
1 + ky

(1 −
Q
K

) − c(Q − R)y − q1E1Q,

Q =
d + q2E2 + eR

e
.

(2.2)

Appropriate transformation of the first term in Eq (2.2) yields

(ckQ − ckR)y2 + (cQ − cR + q1E1kQ)y + q1E1Q − rQ(1 −
Q
K

) = 0. (2.3)

Let’s define

F(y) = (ckQ − ckR)y2 + (cQ − cR + q1E1kQ)y + q1E1Q − rQ(1 −
Q
K

) = Zy2 + Vy + S .

And Z = ckQ − ckR, V = cQ − cR + q1E1kQ, and S = q1E1Q − rQ(1 − Q
K ), notice that

(i)V2 − 4ZS > 0 implies that there exist two roots for F(y) = 0;
(ii) Since Q =

d+q2E2+eR
e > R, V = c(Q − R) + q1E1kQ > 0 and Z = ck(Q − R) > 0 are valid, it indicates

the axis of symmetry y = − V
2Z < 0.

Now we only need to judge the constant term of F(y) to know whether F(y) has positive roots.
When S > 0, there are two negative roots, whereas when S < 0, there is a unique positive root

P =
−V +

√
V2 − 4ZS
Z

> 0.

At this point, we have completed the proof of Theorem 2.1.

3. Stability analysis

We investigate the local stability of the above fixed points of system (1.3). The Jacobian matrix
of (2.1) at (x, y) is given by

J(x, y) =

(
j1 j2

j3 j4

)
, (3.1)

where
j1 = 1 +

r
(1 + ky)

−
2rx

K(1 + ky)
− cy − q1E1,

j2 = −
krx

(1 + ky)2 (1 −
x
K

) − c(x − R),

j3 = ey, j4 = 1 − d + e(x − R) − q2E2.

(3.2)

The characteristic equation of this Jacobian matrix (3.1) is

F(λ) = λ2 − Tr(J)λ + Det(J) = 0, (3.3)

where
Tr(J) = j1 + j4, Det(J) = j1 j4 − j2 j3.

So as to the properties of fixed points of system (1.3), we provide the following lemma.
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Lemma 3.1. Assume that F(1) > 0. Then
(i) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and Det(J) < 1;
(ii) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and Det(J) > 1;
(iii) (|λ1| > 1 and |λ2| < 1) or (|λ1| < 1 and |λ2| > 1) if and only if F(−1) < 0 ;
(iv) |λ1| = 1 and |λ2| , 1 if and only if F(−1) = 0 and Tr(J) , 0, 2;
(v) λ1 and λ2 are conjugate complex roots, and |λ1| = |λ2| = 1 if and only if Tr(J)2 − 4Det(J) < 0 and
Det(J) = 1.
Proposition 3.1. The conclusions of fixed point A1(0, 0) are as follows:
(i) A1(0, 0) is sink if −2 < r − q1E1 < 0 and 0 < d + eR + q2E2 < 2;
(ii) A1(0, 0) is source (unstable) if r − q1E1 < −2 and d + eR + q2E2 > 2;
(iii) A1(0, 0) is saddle if r− q1E1 < −2, d + eR + q2E2 < 2 or −2 < r− q1E1 < 0 and d + eR + q2E2 > 2 ;
(iv) A1(0, 0) is non–hyperbolic if r − q1E1 = −2 and d + eR + q2E2 , 0 , 2.
Proof. At fixed point A1(0, 0), the Jacobian matrix is

J1 =

(
1 + r − q1E1 cR

0 1 − d − eR − q2E2

)
. (3.4)

From the above matrix, we can calculate Tr(J1) and Det(J1) as follows:

Tr(J1) = 2 + r − q1E1 − q2E2 − d − eR,

Det(J1) = 1 − d − eR − q2E2 + r − rd − erR − rq2E2 − q1E1 + dq1E1 + eRq1E1 + q1E1q2E2.

At the same time, we can derive the eigenvalues

λ1J1 = 1 + r − q1E1, λ2J1 = 1 − d − eR − q2E2.

By Lemma 3.1, A1(0, 0) is sink if | λ1J1,2J2 |<1 (−2 < r−q1E1 < 0 and 0 < d+eR+q2E2 < 2). Similarly,
A1(0, 0) is source if r− q1E1 < −2 and d + eR + q2E2 > 2, saddle if r− q1E1 < −2, d + eR + q2E2 < 2 or
−2 < r−q1E1 < 0 and d + eR + q2E2 > 2 and non–hyperbolic if r−q1E1 = −2 and d + eR + q2E2 , 0,2.
Proposition 3.2. The conclusions of fixed point A2(W, 0) are as follows:
(i) A2(W, 0) is sink if −2 < q1E1 − r < 0 and −2 + d + eR + q2E2 <

eK(r−q1E1)
r < d + eR + q2E2;

(ii) A2(W, 0) is source (unstable) if q1E1 − r < −2 and eK(r−q1E1)
r < −2 + d + eR + q2E2 (or eK(r−q1E1)

r >

d + eR + q2E2);

(iii) A2(W, 0) is saddle if q1E1 − r < −2 and −2 + d + eR + q2E2 < eK(r−q1E1)
r < d + eR + q2E2 or

−2 < q1E1 − r < 0 and eK(r−q1E1)
r > d + eR + q2E2 or eK(r−q1E1)

r < −2 + d + eR + q2E2 ;

(iv) A2(W, 0) is non–hyperbolic if q1E1 − r = −2 and eK(r−q1E1)
r , −2 + d + eR + q2E2 and eK(r−q1E1)

r ,

d + eR + q2E2.
Proof. Bring A2( K(r−q1E1)

r , 0) into (3.1), then we obtain

J2 =


1 − r + q1E1 −

kK(r − q1E1)
(1 + ky)2 (1 −

r − q1E1

r
) − c(

K(r − q1E1)
r

− R)

0 1 − d +
eK(r − q1E1)

r
− eR − q2E2

 . (3.5)
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At the same time, we can derive the eigenvalues λ1J2 and λ2J2 from the above matrix

λ1J2 = 1 − r + q1E1,

λ2J2 = 1 +
eK(r − q1E1)

r
− d − eR − q2E2.

By Lemma 3.1, if λ1J2=| 1 − r + q1E1 |< 1 and λ2J2=| 1 +
eK(r−q1E1)

r − d − eR − q2E2 |< 1, i.e.,
−2 < q1E1−r < 0 and −2+d+eR+q2E2 <

eK(r−q1E1)
r < d+eR+q2E2, then A2(W, 0) is sink. Analogously,

A2(W, 0) is source if q1E1 − r < −2 and eK(r−q1E1)
r < −2 + d + eR + q2E2 (or eK(r−q1E1)

r > d + eR + q2E2),
saddle if q1E1 − r < −2 and −2 + d + eR + q2E2 <

eK(r−q1E1)
r < d + eR + q2E2 or −2 < q1E1 − r < 0 and

eK(r−q1E1)
r > d + eR + q2E2 or eK(r−q1E1)

r < −2 + d + eR + q2E2 and non–hyperbolic if q1E1 − r = −2 and
eK(r−q1E1)

r , −2 + d + eR + q2E2 and eK(r−q1E1)
r , d + eR + q2E2.

Proposition 3.3. The conclusions of fixed point A3(Q, P) are as follows:
(i) A3(Q, P) is sink if 1 + Tr(J3) + Det(J3) > 0 and Det(J3) < 1;
(ii) A3(Q, P) is source (unstable) if 1 + Tr(J3) + Det(J3) > 0 and Det(J3) > 1;
(iii) A3(Q, P) is saddle if 1 + Tr(J3) + Det(J3) < 0;
(iv) A3(Q, P) is non–hyperbolic if 1 + Tr(J3) + Det(J3) = 0 and Tr(J3) , 0, 2 (or Det(J3) = 1 and
|Tr(J3)| < 2).

Proof. We put A3( d+q2E2+eR
e ,

−(cx−cR+q1E1kx)+
√

(cx−cR+q1E1kx)2−4ck(x−R)[q1E1 x−rx(1− x
R )]

2ck(x−R) ) into (3.1), and if q1E1Q−
rQ(1 − Q

K ) < 0 and 4ac < 0 are satisfied, then it yields that

J3 =


1 +

r
(1 + kP)2 −

2rQ
K(1 + kP)

− cP − q1E1 −
krQ

(1 + kP)2 (1 −
Q
K

) − c(Q − R))

eP 1 − d + e(Q − R) − q2E2

 . (3.6)

From the above matrix, we can calculate its Tr(J3) and Det(J3):

Tr(J3) = 2 +
r

1 + kP
−

2rQ
K(1 + kP)

− cP − q1E1 − d − q2E2 + e(Q − R),

Det(J3) = 1 + [
r(2Q − K)
K(1 + kP)

+ q1E1 − 1][d + q2E2 − e(Q − R)] − (cP + q1E1) +
r(K − 2Q)
K(1 + kP)

+cP(d + q2E2) +
kreQP

(1 + kP)2 (1 −
Q
K

).

The characteristic equation can be written as follows:

F(λ) = λ2 − Tr(J3)λ + Det(J3) = 0. (3.7)

By Lemma 3.1, A3(Q, P) is sink if F(−1) = 1 + Tr(J3) + Det(J3) > 0 and Det(J3) < 0. In the same
way, A3(Q, P) is source if 1 + Tr(J3) + Det(J3) > 0 and Det(J3) > 1, saddle if 1 + Tr(J3) + Det(J3) < 0
and non–hyperbolic if 1 + Tr(J3) + Det(J3) = 0 and Tr(J3) , 0, 2 (or Det(J3) = 1 and |Tr(J3)| < 2).
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4. Flip bifurcation

It is well known that flip bifurcation may occur when A3(Q, P) is non–hyperbolic. If
(r, k,K, c,R, q1, E1, d, q2, E2, e) ∈ FB, where

FB =

{
r, k,K, c,R, q1, E1, d, q2, E2, e > 0; 4 +

kreQP
(1+kP)2 (1 − Q

K ) +
2r(K−Q)
K(1+kP) + cP(d + q2E2) = [2 − q1E1 −

r(2Q−K)
K(1+kP) ][d + q2E2 − e(Q−R)]; r(K−2Q)

K(1+kP) , (cP + q1E1) + [d + q2E2 − e(Q−R)], (cP + q1E1) + [d + q2E2 −

e(Q − R)] − 2
}
.

In this section we consider the bifurcation case at A3. It is not difficult to find that system (1.3)
experiences flip bifurcation at A3 if e changes in a small range of e = ê. Giving e∗ (where e∗ � 1) of
the parameter e in a small range of e = ê to system (1.3), it yields that x⇒ x +

rx
1 + ky

(1 −
x
K

) − c(x − R)y − q1E1x,

y⇒ y − dy + (̂e + e∗)(x − R)y − q2E2y.
(4.1)

In order to translate A3 to the origin, we take the transformation u = x − Q and v = y − P, then the
system (4.1) transforms into the following form: u⇒ u +

r(u + Q)
1 + k(v + P)

(1 −
(u + Q)

K
) − c[(u + Q) − R](v + P) − q1E1(u + Q),

v⇒ v − d(v + P) + (̂e + e∗)[(u + Q) − R](v + P) − q2E2(v + P).
(4.2)

Taylor expansion of system (4.2) at (u, v, e∗) = (0, 0, 0) u⇒ a11u + a12v + a13u2 + a14uv + o(u, v)3,

v⇒ a21u + a22v + a23u2 + a24uv + a25e∗ + a26ve∗ + a27ue∗.
(4.3)

Further, we can obtain

a11 = 1 +
r

1 + ky
−

2rx
K(1 + ky)

− cy − q1E1, a12 =
krx

(1 + ky)2 (1 −
x
K

),

a13 = −
r

K(1 + ky)
, a14 = −

kr
2(1 + ky)2 +

rxkK
[K(1 + ky)]2 −

c
2
,

a21 = ey, a22 = 1 − d + e(x − R) − q2E2, a23 = 0, a24 =
e
2
,

a25 = (x − R)y, a26 =
(x − R)

2
, a27 = −

Ry
2
.

Subsequently, give an invertible matrix T as follows:

T =

(
a12 a12

−1 − a12 −1 − a12

)
.

Then using the following conversion (
u
v

)
=T

(
x
y

)
, (4.4)
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system (4.3) becomes (
x
y

)
=

(
−1 0
0 λ2

) (
u
v

)
+

(
f (u, v, e∗)
g(u, v, e∗)

)
,

where

f (u, v, e∗) =
1

Det(T )
{[(λ2 − a11)a13 − a12a13]u2 + [(λ2 − a11)a14 − a12a14]uv − a12a25e∗ − a12a26ve∗

−a12a27ue∗ + o(u, v, e∗)3},

g(u, v, e∗) =
1

Det(T )
{[(1 + a11)a13 − a12a13]u2 + [(1 + a11)a13 + a12a14]uv + a12a25e∗ + a12a26ve∗

+a12a27ue∗ + o(u, v, e∗)3}.

According to the theoretical knowledge related to the center manifold theorem [40,41], in a small range
e∗ = 0, it exists a center manifold Wc(0, 0) at the fixed point (0, 0) of system (1.3) of the form

Wc(0, 0) =

{
(x, y) : y = a1e∗ + a2x2 + a3xe∗ + a4e∗2 + o((|x|, |e∗|)3)

}
. (4.5)

With some simple transformations, we obtain

 u = a12(x + y),

v = −(1 + a11)x + (λ2 − a11)y,
(4.6)

with uv = −a12(1 + a11)x2 + a12(λ2 − 2a11 − 1)xy + a12(λ2 − a11)y2 and u2 = a2
12(x2 + 2xy + y2). By

combining the above (4.5) and (4.6), we can get the corresponding coefficients of (4.5)

a1 =
a25

1 − λ2
2

,

a2 =
1

(1 − λ2
2

{
[(1 + a11)a13 + a12a23]a12 − (1 + a11)[(λ2 − a11)a14 − a12a24]

}
,

a3 =
2a2a25 + (1 + a11)a26 − a12a27

(1 + λ2)2 ,

a4 =
a3a25

(1 − λ2)2 −
a2a2

25

(1 − λ2)(1 + λ2)2 .

Limiting the center manifold Wc(0, 0) to the map G∗

G∗(x, e∗) = −x + f (x, y, e∗) = −x + h0e∗ + h1x2 + h2xe∗ + h3e∗2 + h4x2e∗ + h5xe∗2

+h6x3 + h7e∗3 + O(|x| + |e∗|)3.
(4.7)
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The coefficients of the above system are as follows:

h0 = −
a25

(1 + λ2)
,

h1 =
1

a12(1 + λ2)

{
[(λ2 − a11)a13 − a12a13]a2

12 − [(λ2 − a11)a14 − a12a14]a12(1 + a11)
}
,

h2 =
1

a12(1 + λ2)

{
2[(λ2 − a11)a13 − a12a13]a2

12a1 − [(λ2 − a11)a14 − a12a14]a12(λ2 − 2a11 − 1)a1+

a12a26(1 + a11) − a2
12a27

}
,

h3 =
1

a12(1 + λ2)

{
[(λ2 − a11)a13 − a12a13]a2

12a2
1 + [(λ2 − a11)a14 − a12a14]a12(λ2 − a11)a2

1

−a12a26(λ2 − a11)a1 − a2
12a27a1

}
,

h4 =
1

a12(1 + λ2)

{
[(λ2 − a11)a13 − a12a13]a2

122(a3 + a1a2) + [(λ2 − a11)a14 − a12a24]

[a12(λ2 − 2a11 − 1)a3 + a12(λ2 − a11)2a1a2]
}
,

h5 =
1

a12(1 + λ2)

{
[(λ2 − a11)a13 − a12a13]a2

122a1a3 + [(λ2 − a11)a14 − a12a14]a12(λ2 − a11)2a1a3

}
,

h6 =
1

a12(1 + λ2)

{
[(λ2 − a11)a13 − a12a13]a2

122a2 + [(λ2 − a11)a14 − a12a14]a12(λ2 − 2a11 − 1)2a2

}
,

h7 =
1

a12(1 + λ2)

{
[(λ2 − a11)a13 − a12a13]a2

122a2 + [(λ2 − a11)a14 − a12a14]a12(λ2 − 2a11 − 1)2a2

−a12a26(λ2 − a11)a4 − a2
12a27a4

}
.

In order to make system (1.3) generate flip bifurcation, it is sufficient to ensure that both discriminatory
quantities Υ1 and Υ2 are not equal to 0, i.e.,

Υ1 =

(
2
∂2G∗

∂x∂e∗
+
∂G∗

∂e∗
×
∂2G∗

∂x2

)∣∣∣∣∣
(0,0)

= 2(h2 + h0h1) , 0,

Υ2 =

(1
2

(
∂2G∗

∂x2 )2 +
1
3

(
∂3G∗

∂x3 )
)∣∣∣∣∣

(0,0)
= 2(h6 + h2

1) , 0.
(4.8)

Theorem 4.1. System (1.3) exists flip bifurcation at A3 when e changes in a small range of ê and
Υ1 , 0 and Υ2 , 0 are satisfied. Moreover, if Υ2 > 0 (or Υ2 < 0), then the period–2 point of the
bifurcation from A3 is stable (or unstable).

By a similar method as above, k can be selected as the bifurcation parameter, and we can limit the
system (1.3) to

σ(x) = −x + ε1k∗ + ε2x2 + ε3k∗2 + ε4x2k∗ + ε5xk∗2 + ε6x3 + ε7k∗2 + o
{
(|x|, |k∗|)4

}
. (4.9)

Similarly, to ensure that flip bifurcation occurs in system (1.3), we set the two discriminants Ψ1 and Ψ2
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to be non-zero 
Ψ1 =

(
2
∂2σ

∂x∂k∗
+
∂σ

∂k∗
×
∂2σ

∂x2

)∣∣∣∣∣
(0,0)

= 2(ε2 + ε0h1) , 0,

Ψ1 =

(1
2

(
∂2σ

∂x2 )2 +
1
3

(
∂3σ

∂x3 )
)∣∣∣∣∣

(0,0)
= 2(ε6 + ε2

1 ) , 0.
(4.10)

The computational processes of Ψ1 and Ψ1 are shown in Appendix A.

5. Neimark–Sacker bifurcation

Here we focus on the Neimark–Sacker bifurcation of system (1.3) at A3. System (1.3) exists
Neimark–Sacker bifurcation at A3 if and only if all parameters belong to the set NS B ={
r, k,K, c,R, q1, E1, d, q2, E2, e > 0 | e =

(
r(2Q−K)
K(1+kP) +q1E1−1

)
(d+q1E1)−(cP+q1E1)+ r(K−2Q)

K(1+kP) +cP(d+q2E2)

(Q−R)
(

r(2Q−K)
K(1+kP) +q1E1−1

)
−

krQP
(1+kP)2

(1− Q
K )

, |2 + r
1+kP −

2rQ
K(1+kP) −cP−q1E1−d−q2E2 +e(Q−R)| < 2; q1E1− r(1− Q

k ) < 0 and r, k,K, c,R, q1, E1, d, q2, E2 > 0
}
.

The characteristic equation (3.3) associated with (3.1) at A3 is given by

F(λ) = λ2 − Tr(J3)λ + Det(J3) = 0.

There exists a pair of conjugate complex roots λ1, λ2 of the above characteristic equation at A3, i.e.,

λ1,2 =
Tr(J3) ± i

√
4Det(J3) − (Tr(J3))2

2
.

Given a parameter e∗ (where e∗ � 1) and e is located in a range of e = e in (3.1), we have

x⇒ x +
rx

1 + ky
(1 −

x
K

) − c(x − R)y − q1E1x,

y⇒ y − dy + (̂e + e∗)(x − R)y − q2E2y.
(5.1)

Moving A3 to the original point, we take the transformations γ = x − Q and δ = y − P, system (5.1)
transforms into the following form:

γ ⇒ γ +
r(γ + Q)

1 + k(δ + P)
(1 −

(γ + Q)
K

) − c[(γ + Q) − R](δ + P) − q1E1(γ + Q),

δ⇒ δ − d(δ + P) + (̂e + e∗)[(γ + Q) − R](δ + P) − q2E2(δ + P).
(5.2)

Taylor expansion of the above system (5.2)

γ ⇒ c11γ + c12δ + c13γ
2 + c14γδ + o(γ, δ)3,

δ⇒ c21γ + c22δ + c23γ
2 + c24γδ + c25e∗ + c26δe∗ + c27γe∗ + o(γ, δ)3.

(5.3)
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Parameters of (5.3) are as follows:

c11 = 1 +
r

1 + ky
−

2rx
K(1 + ky)

− cy − q1E1, c12 =
krx

(1 + ky)2 (1 −
x
K

),

c13 = −
r

K(1 + ky)
, c14 = −

kr
2(1 + ky)2 +

rxk
K(1 + ky)2 −

c
2
,

c21 = ey, c22 = 1 − d + e(x − R) − q2E2, c23 = 0, c24 =
e
2
,

c25 = (x − R)y, c26 =
(x − R)

2
, c27 = −

Ry
2
.

When (γ, δ) = (0, 0), the characteristic roots of (5.3) above are as follows:

λ1,2 =
TrJ(e∗) ± i

√
4DetJ(e∗) − (TrJ(e∗))2

2
.

So we have |λ1,2(e∗)| = [DetJ(e∗)]
1
2 . When e∗ = 0, then

θ1 =
d|λ1,2|

de

∣∣∣∣∣
e=e∗
, 0. (5.4)

Set α1 = Re(λ1,2) and β1 = Im(λ1,2). We obtain an invertible matrix N

N =

(
c12 0

α1 − c11 β1

)
.

Then use the following conversion: (
γ

δ

)
=N

(
x
y

)
. (5.5)

System (5.3) becomes (
x
y

)
=

(
α1 −β1

β α1

) (
γ

δ

)
+

(
F(γ, δ, e∗)
G(γ, δ, e∗)

)
,

where

F(γ, δ, e∗) = −
1

c12
[c12γ

2 + c14γδ + O(γ, δ)3],

G(γ, δ, e∗) = − 1
c12β1

{
(c11 − α1)c13γ

2 + (c11 − α1)c14γδ + c12c23γ
2 + c12c24γδ + c12c25e∗

+c12c26δe∗ + c12c27γe∗ + O(γ, δ)3
}
.

We can know from the transformation (5.5) that γ = c12x and δ = (α1 − c11)x − β1y, therefore

F(x, y, e∗) = −
1

c12

{
c12(c12x)2 + c14c12x[(α1 − c11)x − β1y] + O(γ, δ)3

}
,

G(x, y, e∗) = − 1
c12β1

{
[(c11 − α1)c13 + c12c23](c12x)2 + [(c11 − α1)c14 + c12c24](c12x)[(α1 − c11)x − β1y]

+c12c25e∗ + c12c26[(α1 − c11)x − β1y]e∗ + c12c27(c12x)e∗ + O(γ, δ)3
}
.
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The Neimark–Sacker bifurcation occurs on system (1.3) if the following condition is met:

l1 = −Re
{ (1 − 2λ)λ

2

1 − λ
ξ11ξ20

}
−

1
2
|ξ11|

2 − |ξ02|
2 + Re(λξ21) , 0, (5.6)

where

ξ11 =
1
4

[Fxx + Fyy + i(Gxx + Gyy)],

ξ20 =
1
8

[Fxx + Fyy + 2Gxy + i(Gxx −GYY − 2Fxy)],

ξ02 =
1
8

[Fxx + Fyy − 2Gxy + i(Gxx −Gyy + 2Fxy)],

ξ21 =
1

16
[Fxxx + Fxyy + Gyyy + Gxxy + i(Gxxx + Gxyy − Fxxy − Fyyy)].

By calculation we have

Fxx = 2[c12c13 + c13(α1 − c11)], Fyy = 0, Fxy = −c13β1, Fxxx = Fxyy = Fxxy = Fyyy = 0,

Gxx = −
2

c12β1

{
[(c11 − α1)c13 + c12c23]c2

12 − [(c11 − α1)c14 + c12c24]c12(α1 − c11)
}
, Gyy = 0,

Gxy = (c11 − α1)c14 + c12c24, Gxxx = Gxyy = Gxxy = Gyyy = 0.

Theorem 5.1. If l1 defined is nonzero, then system (1.3) exists Neimark–Sacker bifurcation at A3

provided that e changes in a small range of e = e∗. Moreover, if l1 < 1 (or l1 > 1), then an attractively
invariant closed curve bifurcates at A3.

Similarly, consider k as a bifurcation parameter, it can be obtained that

τ1 = −Re
{ (1 − 2λ)λ

2

1 − λ
ς11ς20

}
−

1
2
|ς11|

2 − |ς02|
2 + Re(λς21) , 0, (B.3)

Neimark–Sacker bifurcation occurs in system (1.3). The detailed calculation process of τ1 is shown in
Appendix B.

6. Optimal harvesting policy

Our aim is to maximize net returns and maintain ecological balance. Assign the net income function
as M =

∑
exp(−δt){(p1q1x − h1)E1(t) + (p2q2x − h2)E2(t)}, where δ expresses the discount rate. Thus

max
k∑

n=1

exp(−δn){(p1q1x − h1)E1(n) + (p2q2x − h2)E2(n)},

such that 
xn+1 = xn +

rxn

1 + kyn
(1 −

xn

K
) − c(xn − R)y − q1E1xn,

yn+1 = yn − dyn + (̂e + e∗)(xn − R)yn − q2E2yn,

x1 = x0, y1 = y0

0 ≤ E1(t) ≤ maxE1, 0 ≤ E2(t) ≤ maxE2.

(6.1)
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The Hamiltonian function could be written in the following form:

Hn = exp(−δn){(p1q1xn − h1)E1(n) + (p2q2xn − h2)E2(n)} + λ1(n+1)[xn +
rxn

1 + kyn
(1 −

xn

K
)

−c(xn − R)yn − q1E1xn] + λ2(n+1)[yn − dyn + (̂e + e∗)(xn − R)yn − q2E2yn].

According to the Pontryagin maximum principle, we have

∂H
∂Hi

= 0 (i = 1, 2);
dλ1(n+1)

dt
= −

∂H
dx

and
dλ2(n+1)

dt
= −

∂H
dy

.

Further we can obtain

∂H
∂H1

= 0⇒ exp(−δt)(p1q1xn − h1) − q1xnλ1(n+1) = 0⇒ λ1 = exp(−δt)(p1 −
h1

q1xn
),

∂H
∂H2

= 0⇒ exp(−δt)(p2q2xn − h2) − q2xnλ2(n+1) = 0⇒ λ2 = exp(−δt)(p2 −
h2

q2xn
),

λ1(n+1) = −
∂H
dx

= −exp(δt)p1q1E1 − λ1(n+1)[1 +
r

1 + ky
−

2rx
K(1 + ky)

− cy − q1E1] − λ2(n+1)ey,

λ2(n+1) = −
∂H
dy

= −exp(δt)p2q2E2 − λ1(n+1)[−
krx

(1 + ky)2 (1 −
x
K

) − c(x − R)y]

−λ2(n+1)[1 − d + e(x − R) − q2E2].

By combining the above equations that

E1 = −
x
h1
{(p1 −

h1

q1x
)[2 +

r
1 + ky

−
2rx

K(1 + ky)
− cy] + (p2 −

h2

q2y
)ey},

E2 = −
y
h1
{(p1 −

h1

q1x
)[−

krx
(1 + ky)2 (1 −

x
K

) − c(x − R)y] + (p2 −
h2

q2y
)[1 − d + e(x − R)]}.

7. Numerical simulations

Example 7.1. To verify the theoretical results numerically. First, we value all parameters in turn
r = 2.001, k = 0.57, K = 4.078, c = 0.743, R = 0.829, d = 0.8, q1 = 0.467, E1 = 0.201, q2 = 0.42,
E2 = 0.435, and e ⊂ (0, 3.5) with initial conditions (x0, y0) = (1, 1.5). By simple calculation, we can
know that | λ1,2 |= 1, Neimark–Sacker bifurcation may appear at (2.29572, 1.65075). We can see from
Figure 1 that Neimark–Sacker bifurcation occurs when e = 0.67. It follows that | λ1 |= 1 and | λ2 |, 1,
flip bifurcation may appear at (1.214, 1.8965). We can see from Figure 1 that flip bifurcation occurs
when e = 2.55.

From Figure 2(a) and (d), we can know that Neimark–Sacker bifurcation will appear when e = 0.67,
and when e belongs to (0,1) and is greater than 0.67, system (1.3) is stable at the internal fixed point
(2.29572, 1.65075), whereas when the bifurcation parameter e is less than 0.67, the system will lose
stability at the internal fixed point (2.29572, 1.65075). In view of the ecological perspective, when
e < 0.67, a fluctuation will occur, which means that the number of prey and predator populations
will continue to fluctuate periodically around a central value, rather than reaching a fixed point.
Such fluctuation may reflect seasonal changes in resources or other cyclical environmental factors
in the ecosystem. According to Figure 2(b) and (c), with the change of bifurcation parameters e,
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flip bifurcation will be generated in system (1.3) when its value reaches 2.55. When the bifurcation
parameter e belongs to (1,3.5) and is less than 2.55, system (1.3) is stable; conversely, when e is greater
than 2.55, the system will lose stability. Biologically speaking, when e > 2.55, the number of prey and
predators is no longer maintained at a constant level, whereas it presents a state of periodic fluctuation.
Such fluctuation could have an impact on the stability of ecosystems and lead to a large fluctuation in
the number of prey and predator populations, which can affect the overall ecosystem’s sustainability.

In the process from Figure 3(a) to (f), it is clearly shown that the stability of the system (1.3) varies
with the bifurcation parameter e when it belongs to the range of (1, 3.5).

(a) (b)
Figure 1. (a) Bifurcation diagram of system (1.3) in the (e, x)–plane for r = 2.001, k = 0.57,
K = 4.078, c = 0.743, R = 0.829, d = 0.8, q1 = 0.467, E1 = 0.201, q2 = 0.42, E2 = 0.435,
and e ⊂ (0, 3.5); (b) Bifurcation diagram of system (1.3) in the (e, y)–plane for r = 2.001,
k = 0.57, K = 4.078, c = 0.743, R = 0.829, d = 0.8, q1 = 0.467, E1 = 0.201, q2 = 0.42,
E2 = 0.435, and e ⊂ (0, 3.5).
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(a)

(c)

(b)

(d)
Figure 2. (a) Neimark–Sacker bifurcation diagram of system (1.3) in the (e, y)–plane for e ⊂
(0, 0.67); (b) Flip bifurcation diagram of system (1.3) in the (e, y)–plane for e ⊂ (0.67, 3.5);
(c) Flip bifurcation diagram of system (1.3) in the (e, x)–plane for e ⊂ (0.67, 3.5); (d)
Neimark–Sacker bifurcation diagram of system (1.3) in the (e, x)–plane for e ⊂ (0, 0.67).
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 3. Phase portraits of system (1.3) with different e.

Example 7.2. We take the parameters r = 3.5,K = 8, c = 0.69, k = 3.9, d = 3.6, e =
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0.77, q1 = 0.36, q2 = 0.21, p1 = 0.75, p2 = 3, h1 = 1.41, h2 = 1.8, and assign the initial value
(x0, y0, E10, E20)=(1.32, 3, 0.05, 0.37). Through Figure 4, with the increase of the refuge coefficient R,
harvesting effort E1 for prey will increase rapidly, when the refuge coefficient R = 0.03, the harvesting
of the prey will tend to a stable state. Due to the value of E1 for the prey population changing too
rapidly, as the refuge coefficient R increases, the prey population will show a downward trend; until
R = 0.03, the number of the prey population will tend to a stable state. For the predator population,
the harvesting E2 will also increase rapidly with increasing R. Compared with the prey population, the
number of predator populations is inherently smaller. Due to the rapid increase in the refuge coefficient
R and the harvesting E2, the predator population will be in a state of extinction. In general, whether it
is for predators or prey, the harvesting of both of them should be moderate, so as to better promote the
harmonious coexistence between humans and nature and ensure the maximum harvesting.

Figure 4. Optimal harvesting with respect to refuge coefficient R.

8. Conclusions and discussion

In this article, we mainly study the bifurcation behavior and optimal harvesting strategy of a discrete
predator–prey model in possession of fear and refuge effects. Firstly, the existence and stability of
three fixed points of system (1.3) are researched, respectively. At the same time, the flip bifurcation
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and Neimark–Sacker bifurcation are analysed at the internal fixed point in detail. Together with
Example 7.1, when the bifurcation parameter e = 0.67, Neimark–Sacker bifurcation will occur,
and when e = 2.55, flip bifurcation will appear. It is easy to observe that relying on the increasing
conversion rate of e, the unstable system turns stable, and then it becomes unstable again. Besides, the
predator populations gradually accumulate for the value of the conversion rate at a high level. Finally,
we analyze an optimal harvesting problem and theoretically get the value of the optimal harvesting
effort, which implies there exists a value of the harvesting effort guaranteeing maximization of the net
revenue. From Example 7.2, with the increase of the refuge coefficient R, xoptimal, yoptimal, Eoptimal

1 and
Eoptimal

2 change in the range.
Generally speaking, comparing the continuous–time predator–prey models with the corresponding

discrete versions, the conclusions on the existence and stability of equilibrium points (or fixed points)
can be studied. Also, bifurcation analysis of the models can be discussed. Relative to bifurcation
analysis, several bifurcation phenomena, such as Hopf bifurcation, saddle–node bifurcation, and
transcritical bifurcation, are mainly investigated in the continuous system. Otherwise, fold bifurcation,
flip bifurcation, and Neimark–Sacker bifurcation can be discussed in the discrete system. All in all,
whether discrete or continuous system, by studying these characteristics for the system, we can better
understand external disturbances, thereby achieving a better role in maintaining ecological balance.
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Appendix A

Assign k as a bifurcation parameter. We think about a transformation similar to the Section 4 for
system (1.3), and we obtain the Taylor expansion about system (1.3)

x⇒ x +
rx

1 + (̂k + k∗)y
(1 −

x
K

) − c(x − R)y − q1E1x,

y⇒ y − dy + e(x − R)y − q2E2y.
(A.1)

In order to transform the above system (A.1) to the origin, we take the following transformation ψ =

x − Q and ω = y − P. Taylor expansion of the system (A.1) at (ψ,ω, k∗) = (0, 0, 0) yields

ψ⇒ Λ11ψ + Λ12ω + Λ13ψ
2 + Λ14ψω + Λ15k∗ + Λ16ψk∗ + Λ17ωk∗ + o(ψ,ω)3,

ω⇒ Λ21ψ + Λ22ω + Λ23ψ
2 + Λ24ψω + o(ψ,ω)3.

(A.2)

Further, we obtain

Λ11 = 1 +
r

1 + ky
−

2rx
K(1 + ky)

− cY − q1E1,Λ12 = −
krx

(1 + ky)2 (1 −
x
K

) − c(x − R),

Λ13 = −
r

K(1 + ky)
,Λ14 = −

kr
2(1 + ky)2 +

rxk
K(1 + ky)2 −

c
2
,

Λ15 = −
rxy

(1 + ky)2 (1 −
x
K

),Λ16 = −
ry

2(1 + ky)2 (1 −
x
K

) +
rxy

2K(1 + ky)2 ,

Λ17 =
rx(ky − 1)
2(1 + ky)3 (1 −

x
K

),Λ21 = ey,Λ22 = 1 − d + e(x − R) − q2E2,Λ23 = 0,Λ24 =
e
2
.

Subsequently, an invertible matrix M is given by

M =

(
Λ12 Λ12

−1 − Λ11 λ2 − Λ11

)
.
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Then use the following conversion (
ψ

ω

)
=M

(
x
y

)
, (A.3)

the system (A.3) becomes

(
x
y

)
=

(
−1 0
0 λ2

) (
ψ

ω

)
+

(
m(ψ,ω, k∗)
n(ψ,ω, k∗)

)
, (A.4)

where

m(ψ,ω, k∗) =
1

Λ12(λ2 + 1)

{
[(λ2 − Λ11)Λ13 − Λ12Λ23]ψ2 + [(λ2 − Λ11)Λ14 − Λ12Λ24]ψω

+(λ2 − Λ11)Λ15k∗ + (λ2 − Λ11)Λ16ψk∗ + (λ2 − Λ11)Λ17ωk∗
}
,

n(ψ,ω, k∗) =
1

Λ12(λ2 + 1)

{
[(1 + Λ11)Λ13 + Λ12Λ23]ψ2 + [(1 + Λ11)Λ14 + Λ12Λ24]ψω

+(1 + Λ11)Λ15k∗ + (1 + Λ11)Λ16ψk∗ + (1 + Λ11)Λ17ωk∗
}
,

ψ = Λ12(X + Y), ω = −(1 + Λ11)x + (λ2 − Λ11)y, ψ2 = Λ2
12(x2 + 2xy + y2),

ψω = −Λ12(1 + Λ11)x2 + Λ12(λ2 − 2Λ11 − 1)xy + Λ12(λ2 − Λ11)y2.

Through the center manifold theorem and bifurcation theory, a center manifold Wc(0, 0) can be
determined for system (1.3) in neighborhood of k∗

Wc(0, 0) =

{
(x, y) : y = b1k∗ + b2x2 + b3xk∗ + b4k∗2 + o(|x|, |k∗|)3

}
. (A.5)

By simple calculation, (A.5) correlation coefficients can be obtained

b1 =
(1 + Λ11)Λ15

Λ12(1 − λ2
2)
,

b2 =
1

(1 − λ2
2)

{
[(1 + Λ11)Λ13 + Λ12Λ23]Λ12 − [(1 + Λ11)Λ14 + Λ12Λ24](1 + Λ11

}
,

b3 = −
2b2(λ2 − Λ11)Λ15

Λ12(1 + λ2)2 −
1

Λ12(1 + λ2)2

{
(1 + Λ11)Λ16Λ12 − (1 + Λ11)2Λ17

}
,

b4 = −
(λ2 − Λ11)2Λ2

15

Λ2
12(1 + λ2)2(1 − λ2)

.

Therefore, (A.4) can be restricted to center manifold Wc(0, 0)

σ(x) = −x + ε1k∗ + ε2x2 + ε3k∗2 + ε4x2k∗ + ε5xk∗2 + ε6x3 + ε7k∗2 + o
{
(|x|, |k∗|)4

}
.

AIMS Mathematics Volume 9, Issue 10, 26283–26306.



26305

Where
ε1 =

λ2 − Λ11Λ15

Λ12(1 + λ2)
,

ε2 =
1

Λ12(1 + λ2)

{
[(λ2 − Λ11)Λ13 − Λ12Λ23]Λ2

12 − Λ12(1 + Λ11)[(λ2 − Λ11)Λ14 − Λ12Λ24]
}
,

ε3 =
1

Λ12(1 + λ2)

{
[(λ2 − Λ11)Λ13 − Λ12Λ23]Λ2

12b2
1 − Λ12(1 + Λ11)[(λ2 − Λ11)Λ14 − Λ12Λ24]b2

1

+(λ2 − Λ11)Λ16Λ12b1 + (λ2 − Λ11)2Λ17b1

}
,

ε4 =
1

Λ12(1 + λ2)

{
[(λ2 − Λ11)Λ13 − Λ12Λ23]Λ2

12(2b3 + b1b2) + [(λ2 − Λ11) − Λ12Λ24]Λ12

(λ2 − 2Λ11 − 1)(b3 + 2b1b2) + (λ2 − Λ11)Λ16Λ12b2 + (λ2 − Λ11)2Λ17b2

}
,

ε5 =
1

Λ12(1 + λ2)

{
[(λ2 − Λ11)Λ13 − Λ12Λ23]Λ2

12(2b4 + b1b3) + [(λ2 − Λ11) − Λ12Λ24]Λ12

(λ2 − 2Λ11 − 1)(b4 + 2b1b3) + (λ2 − Λ11)Λ16Λ12b3 + (λ2 − Λ11)2Λ17b3

}
,

ε6 =
1

Λ12(1 + λ2)

{
[(λ2 − Λ11)Λ13 − Λ12Λ23]Λ2

122b2 + [(λ2 − Λ11)Λ14−

Λ14Λ24]Λ12(λ2 − 2Λ11 − 1)b2

}
,

ε7 =
1

Λ12(1 + λ2)

{
[(λ2 − Λ11)Λ13 − Λ12Λ23]Λ2

122b1b4 + [(λ2 − Λ11)Λ14 − Λ12Λ24]Λ12

(λ2 − Λ11)2b1b4 + (λ2 − Λ11)Λ12Λ16b4 + (λ2 − Λ11)2Λ17b4.

Appendix B

Choosing k as a bifurcation parameter. We think about a transformation similar to the Section 5 for
system (1.3). Taylor expansion of system (1.3) obtain

ι⇒ Λ11ι + Λ12κ + Λ13ι
2 + Λ14ικ + Λ15k∗ + Λ16ιk∗ + Λ17κk∗ + o(ι, κ)3,

κ ⇒ Λ21ι + Λ22κ + Λ23ι
2 + Λ24ικ + o(ι, κ)3.

(B.1)

When (ι, κ) = (0, 0), the characteristic roots of (B.1) above are as follows:

λ1,2 =
TrJ(e∗) ± i

√
4DetJ(e∗) − (TrJ(e∗))2

2
.

So we have |λ1,2(k∗)| = [DetJ(k∗)]
1
2 . When k∗ = 0, then

τ =
d|λ1,2|

dk

∣∣∣∣∣
k=k∗
, 0.

Set U1 = Re(λ1,2) and V1 = Im(λ1,2). We obtain an invertible matrix G

G =

(
Λ12 0

U1 − Λ11 −V1

)
.

Using the following conversion (
ι

κ

)
=G

(
x
y

)
. (B.2)
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Then the system (B.1) becomes to(
x
y

)
=

(
U1 −V1

V1 U1

) (
ι

κ

)
+

(
F(ι, κ, k∗)
G(ι, κ, k∗)

)
.

Where

F(ι, κ, k∗) =
1

Λ12

{
Λ13ι

2 + Λ14ικ + Λ15k∗ + Λ16ιk∗ + Λ17κk∗
}
,

G(ι, κ, k∗) = −
1

Λ12V1

{
[(Λ11 − U1)Λ13 − Λ12Λ23]ι2 + [(Λ11 − U1)Λ14 + Λ12Λ24]ικ

+(Λ11 − U1)Λ15k∗ + (Λ11 − U1)Λ16ιk∗ + (Λ11 − U1)Λ17κk∗
}
.

We can know from the transformation (B.2) that ι = Λ12x and κ = (U1 − Λ11)x − V1y. Therefore

F(x, y, k∗) = [Λ12Λ13 + (U1 − Λ11)Λ14]x2 − Λ14V1xy +
Λ15

Λ12
k∗ + [Λ16 +

Λ17

Λ12
(U1 − Λ11)]xk∗

−
Λ17V1

Λ12
yk∗ + o(x, y, k∗)3,

G(x, y, k∗) = −
1

Λ12V1

{
[(Λ11 − U1)Λ13 − Λ12Λ23](Λ12x)2 + [(Λ11 − U1)Λ14 + Λ12Λ24](U1 − Λ11)Λ12x2

− [(Λ11 − U1)Λ14 + Λ12Λ24]V1Λ12xy + (Λ11 − U1)Λ15k∗ + (Λ11 − U1)Λ16Λ12xk∗

+ (Λ11 − U1)Λ17[(U1 − Λ11)x − V1y]k∗ + o(x, y, k∗)3.

The system (1.3) will generate a Neimark–Sacker bifurcation if the following condition fulfills

τ1 = −Re
{ (1 − 2λ)λ

2

1 − λ
ς11ς20

}
−

1
2
|ς11|

2 − |ς02|
2 + Re(λς21) , 0, (B.3)

where
ς11 =

1
4

[Fxx + Fyy + i(Gxx + Gyy)],

ς20 =
1
8

[Fyy + Fyy + 2Gxy + i(Gxx −Gyy − 2Fxy)],

ς02 =
1
8

[Fxx + Fyy − 2Gxy + i(Gxx −Gyy + 2Fxy)],

ς21 =
1

16
[Fxxx + Fxyy + Gyyy + Gxxy + i(Gxxx + Gxyy − Fxxy − Fyyy)].

By calculation we have

Fxx = Λ12Λ12 + (U1 − Λ11)Λ14, Fyy = 0, Fxy = −Λ14V1, Fxxx = Fxyy = Fxxy = Fyyy = 0,

Gxx =
1

Λ12V1

{
[(Λ11 − U1)Λ13 − Λ12Λ23]Λ2

12 + [(Λ11 − U1)Λ14 + Λ12Λ24](U1 − Λ11)Λ12

}
,

Gyy = 0, Gxy = (Λ11 − U1)Λ14 + Λ12Λ24, Gxxx = Gxyyy = Gxxy = Gyyy = 0.
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