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Abstract: The results of this work have a connection with the geometric function theory and they
were obtained using methods based on subordination along with information on q-calculus operators.
We defined the q-analogue of multiplier- Ruscheweyh operator of a certain family of linear operators
I s
q,µ(λ, `)f(ς) (s ∈ N0 = N ∪ {0},N = {1, 2, 3, ..} ; `, λ, µ ≥ 0, 0 < q < 1). Our major goal was to build

some analytic function subclasses using I s
q,µ(λ, `)f(ς) and to look into various inclusion relationships

that have integral preservation features.
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1. Introduction

Denote A as the normalized analytical function f(z) in the open unit disk U = {z : |z| < 1} such that

f(z) = z +

∞∑
κ=2

aκzκ. (1.1)

Subordination of two functions f and = is denoted by f ≺ = and defined as f(z) = =(χ(z)), where
χ(z) is the Schwartz function in U (see [1–3]). Let S , S ∗, and C stand for the respective univalent,
starlike, and convex subclasses of A.

Here, we review the fundamental q-calculus definitions and information that is used in this paper.
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The use of q-difference equations in the setting of the geometric function theory was pioneered by
Jackson [4, 5], Carmichael [6], Mason [7], and Trijitzinsky [8]. Ismail et al. [9] introduced certain
q-function theory-related characteristics for the first time. Additionally, various q-calculus applications
related to generalized subclasses of analytic functions have been researched by numerous authors;
see [10–19]. Motivated by these q-developments in the geometric function theory, many authors added
their contributions in this direction, which has made this research area much more attractive in works
like [20–22]. The Jackson’s q-difference operator dq : A→ A is defined by

dqf(z) :=


f(z)−f(qz)

(1−q)z

(
z , 0; 0 < q < 1

)
f′(0)

(
z = 0

)
.

(1.2)

It comes to light that, for κ ∈ N and z ∈ U,

dq

 ∞∑
κ=1

aκzκ
 =

∞∑
κ=1

[κ]q aκzκ−1, (1.3)

where

[κ]q =
1 − qκ

1 − q
= 1 +

κ−1∑
n=1

q
n, [0]q = 0,

[κ]q! =

{
[κ]q [κ − 1]q ......... [2]q [1]q κ = 1, 2, 3, ...

1 κ = 0.
(1.4)

The q-difference operator is subject to the following basic laws:

dq (cf (z) ± d~ (z)) = cdqf (z) ± ddq~ (z) (1.5)

dq (f (z) ~ (z)) = f (qz) dq (~ (z)) + ~(z)dq (f (z)) (1.6)

dq

(
f (z)
~(z)

)
=
dq (f (z)) ~(z) − f (z) dq (~(z))

~(qz)~(z)
, ~(qz)~(z) , 0 (1.7)

dq
(
log f (z)

)
=

ln q
q−1
dq (f (z))
f (z)

, (1.8)

where f, ~ ∈ A, and c and d are real or complex constants.
Jackson in [5] introduced the q-integral of f as:∫ z

0
f(t)dqt = z(1 − q)

∞∑
κ=0

q
κ
f(zqκ)

and
lim

q→1−

∫ z

0
f(t)dqt =

∫ z

0
f(t)dt,

where
∫ z

0
f(t)dt, is the ordinary integral.

The discipline of the geometric function theory has the great advantage of studying linear operators.
The introduction and analysis of such linear operators with reference to q-analogues has recently piqued
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the interest of numerous renowned academics. The authors of [23] investigated the q-analogue of the
Ruscheweyh derivative operator and looked at some of its characteristics. The q-Bĕrnardi integral
operator was first introduced by Noor et al. [24].

In [25], Aouf and Madian investigate the q-analogue Ĉătas operator I s
q(λ, `) : A→ A (s ∈ N0, `, λ ≥

0, 0 < q < 1) as follows:

I s
q(λ, `)f(z) = z +

∞∑
κ=2

(
[1 + `]q + λ([κ + `]q − [1 + `]q)

[1 + `]q

)s

aκzκ

(s ∈ N0, `, λ ≥ 0, 0 < q < 1).

Also, in 2014, Aldweby and Darus [26] investigated the q-analogue of the Ruscheweyh operator
<

µ
q f(z):

<
µ
q f(z) = z +

∞∑
κ=2

[κ + µ − 1]q
[µ]q![κ − 1]q!

aκzκ, (µ ≥ 0, 0 < q < 1),

where [a]q and [a]q! are defined in (1.4).
Set

f
s
q,λ,`(z) = z +

∞∑
κ=2

(
[1 + `]q + λ([κ + `]q − [1 + `]q)

[1 + `]q

)s

zκ.

Now, we define a new function fs,µ
q,λ,`(z) in terms of the Hadamard product ( or convolution ) by:

f
s
q,λ,`(z) ∗ fs,µ

q,λ,`(z) = z +

∞∑
κ=2

[κ + µ − 1]q!
[µ]q![κ − 1]q!

zκ.

Motivated essentially by the q-analogue of the Ŕuscheweyh operator and the q-analogue Cătas
operator, we now introduce the operator I s

q,µ(λ, `) : A→ A defined by

I s
q,µ(λ, `)f(z) = f

s,µ
q,λ,`(z) ∗ f(z) (1.9)

where s ∈ N0, `, λ, µ ≥ 0, 0 < q < 1. For f ∈ A; and (1.9), it is clear that

I s
q,µ(λ, `)f(z) = z +

∞∑
κ=2

(
[1 + `]q

[1 + `]q + λ([κ + `]q − [1 + `]q)

)s [κ + µ − 1]q!
[µ]q![κ − 1]q!

aκzκ. (1.10)

We use (1.10) to deduce the following:

zdq
(
I s+1
q,µ (λ, `)f(z)

)
=

[` + 1]q
λq`

I s
q,µ(λ, `)f(z) −

(
[` + 1]q
λq`

− 1
)

I s+1
q,µ (λ, `)f(z),

(λ > 0), (1.11)
q
µzdq

(
I s
q,µ(λ, `)f(z)

)
=

[
µ + 1

]
q I s
q,µ+1(λ, `)f(z) −

[
µ
]
q I s
q,µ(λ, `)f(z). (1.12)

We note that :
(i) If s = 0 and q → 1−, we get <µf(z) as the Ŕusscheweyh differential operator [27], which has

been investigated by numerous authors [28–30];
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(ii) If we set q→ 1−, we obtain Im
λ,`,µf(z), which was presented by Aouf and El-Ashwah [31];

(iii) If we set µ = 0 and q → 1−, we obtain Jm
p (λ, `)f(z), which was presented by El-Ashwah and

Aouf (with p = 1) [32];
(iv) If µ = 0, ` = λ = 1, and q→ 1−, we obtain Iαf(z), which was investigated by Jung et al [33];
(v) If µ = 0, λ = 1, ` = 0, and q→ 1−, we obtain I sf(z), which was presented by Salagean [34];
(vi) If we set µ = 0 and λ = 1, we obtain I`q,sf(z), which was presented by Shah and Noor [35];
(vii) If we set µ = 0, λ = 1, and q→ 1−, we obtain J s

q,`, the Srivastava–Attiya operator; see [36,37];
(vii) I1

q,0(1, 0) =
∫ z

0
f(t)
t dqt. (q-Alexander operator [35]);

(viii) I1
q,0(1, `) =

[1+%]q
z%

∫ z

0
t%−1f(t)dqt (q-Bernardi operator [24]);

(ix) I1
q,0(1, 1) =

[2]q
z

∫ z

0
f(t)dqt (q-Libera operator [24]).

We also observe that:
(i) I s

q,µ(1, 0)f(z) = I s
q,µf(z)

f(z) ∈ A :I s
q,µf(z) = z +

∞∑
κ=2

(
1

[κ]q

)s [κ + µ − 1]q!
[µ]q![κ − 1]q!

aκzκ, (s ∈ N0, µ ≥ 0, 0 < q < 1, z ∈ U).

(ii) I s
q,µ(1, `)f(z) = I s,`

q,µf(z)

f(z) ∈ A :I s,`
q,µf(z) = z +

∞∑
κ=2

(
[1 + `]q
[κ + `]q

)s [κ + µ − 1]q!
[µ]q![κ − 1]q!

aκzκ,

(s ∈ N0, ` > 0, µ ≥ 0, 0 < q < 1, z ∈ U).

(iii) I s
q,µ(λ, 0)f(z) = I s,λ

q,µf(z)

f(z) ∈ A :I s,λ
q,µf(z) = z +

∞∑
κ=2

(
1

1 + λ([κ]q − 1)

)s [κ + µ − 1]q!
[µ]q![κ − 1]q!

aκzκ,

(s ∈ N0, λ > 0, µ ≥ 0, 0 < q < 1, z ∈ U).

With ϕ(0) = 1 and<ϕ(z) > 0 in U, Φ is the class of analytic functions ϕ(z) and is a set of univalent
convex functions in U.

Definition 1.1. f ∈ A is definitely in the class S Tq(ϕ) if it satisfies:

zdq (f(z))
f(z)

≺ ϕ(z),

where dq is the q-difference operator.
Analogously, f ∈ A is definitely in the class CVq(ϕ) if

zdq (f(z)) ∈ S Tq(ϕ). (1.13)

By using the operators defined above, we determine the next part:
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Definition 1.2. Suppose that f ∈ A, s is real, and ` > −1, then

f ∈ S T s
q,µ(λ, `) (ϕ)⇔ I s

q,µ(λ, `)f(z) ∈ S Tq (ϕ) ,

and
f ∈ CV s

q,µ(λ, `) (ϕ)⇔ I s
q,µ(λ, `)f(z) ∈ CVq (ϕ) . (1.14)

It is clear that
f ∈ CV s

q,µ(λ, `) (ϕ)⇔ z(dqf) ∈ S T s
q,µ(λ, `) (ϕ) . (1.15)

Special cases:
(i) If s = 0, µ = 0, and ϕ(z) = 1+Mz

1+Nz (−1 ≤ N < M ≤ 1), then S T s
q,µ(λ, `) (ϕ) decreases to the class

S ∗q (M,N) , investigated by Noor et al. [24]. Moreover, if q → 1−, then S ∗q (M,N) coincides with
S ∗ [M,N] (see [38]).

(ii) If s = 0, µ = 0, and ϕ(z) = 1+Mz
1+Nz (−1 ≤ N < M ≤ 1), then CV s

q,µ(λ, `) (ϕ) decreases to the class
Kq (M,N) , introduced by Seoudy and Aouf. [39]. Moreover, if q → 1−, then CV∗q (M,N) coincides
with the class CV∗ [M,N] (see [38]).

(iii) If s = 0, µ = 0, and ϕ(z) = 1
1−qz , then S T s

q,µ(λ, `) (ϕ) reduces to the class S Tq, investigated by
Noor [40].

(iv) If s = 0, µ = 0, and ϕ(z) = 1+z
1−qz , then S T s

q,µ(λ, `) (ϕ) decreases to the class S ∗q, investigated by
Noor et al. [41].

2. Inclusion results

The next lemma is required to demonstrate our findings:

Lemma 2.1. [42] Suppose that γ and δ are complex numbers with γ , 0 and let }(z) be analytic in U
with }(0) = 1 and Re{γ}(z) + δ} > 0. If ω(z) = 1 + ω1z + ω2z2 + ....is analytic in U, then

ω(z) +
zdqω(z)
γω(z) + δ

≺ }(z),

and ω(z) ≺ }(z).

Theorem 2.1. Assume that ϕ(z) is an analytic and convex univalent function with ϕ(0) = 1 and
Re(ϕ(z)) > 0 for z ∈ U, then, for positive real s and `, µ ≥ 0, λ > 0, 0 < q < 1 with [` + 1]q > λq`,

S T s
q,µ+1(λ, `) (ϕ) ⊂ S T s

q,µ(λ, `) (ϕ) ⊂ S T s+1
q,µ (λ, `) (ϕ) .

Proof. Let f ∈ S T s
q,µ(λ, `) (ϕ) , and we set

ω(z) =
zdq

(
I s+1
q,µ (λ, `)f(z)

)
I s+1
q,µ (λ, `)f(z)

, (2.1)

where ω(z) is analytic in U ω(0) = 1.
From identity (1.11) and (2.1), we can easily write

zdq
(
I s+1
q,µ (λ, `)f(z)

)
I s+1
q,µ (λ, `)f(z)

=
[` + 1]q
λq`

I s
q,µ(λ, `)f(z)

I s+1
q,µ (λ, `)f(z)

−

(
[` + 1]q
λq`

− 1
)
, λ > 0,
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or, equivalently,
[` + 1]q
λq`

I s
q,µ(λ, `)f(z)

I s+1
q,µ (λ, `)f(z)

= ω(z) + ηq (2.2)

where ηq =
( [`+1]q

λq`
− 1

)
.

On the q-logarithmic differentiation of (2.2), we have

zdq
(
I s
q,µ(λ, `)f(z)

)
I s
q,µ(λ, `)f(z)

= ω(z) +
zdqω(z)
ω(z) + ηq

. (2.3)

Since f ∈ S T s
q,µ(λ, `) (ϕ), from (2.3) we have

ω(z) +
zdqω(z)
ω(z) + ηq

≺ ϕ(z).

By applying Lemma 2.1, we conclude that ω(z) ≺ ϕ(z). Consequently,

zdq
(
I s+1
q,µ (λ, `)f(z)

)
I s+1
q,µ (λ, `)f(z)

≺ ϕ(z),

then f ∈ S T s+1
q,µ (λ, `) (ϕ) . To prove the first part, let f ∈ S T s

q,µ+1(λ, `) (ϕ) and set

χ(z) =
zdq

(
I s
q,µ(λ, `)f(z)

)
I s
q,µ(λ, `)f(z)

,

where χ is analytic in U χ(0) = 1. It follows χ ≺ ϕ by applying the same arguments as those described
before with (1.12). Theorem 2.1’s proof is now complete. �

Theorem 2.2. Suppose that ϕ(z) is an analytic and convex univalent function with ϕ(0) = 1 and
Re(ϕ(z)) > 0 for z ∈ U, then, for positive real s and `, µ ≥ 0, λ > 0, 0 < q < 1 with [` + 1]q > λq`,

CV s
q,µ+1(λ, `) (ϕ) ⊂ CV s

q,µ(λ, `) (ϕ) ⊂ CV s+1
q,µ (λ, `) (ϕ) .

Proof. Let CV s
q,µ(λ, `) (ϕ). Applying (1.15), we show that

f ∈ CV s
q,µ(λ, `) (ϕ)⇔ I s

q,µ(λ, `)f(z) ∈ CVq (ϕ)

⇔ zdq
(
I s
q,µ(λ, `)f(z)

)
∈ S Tq (ϕ)

⇔ z(dqf) ∈ S T s
q,µ(λ, `) (ϕ)

⇔ z(dqf) ∈ S T s+1
q,µ (λ, `) (ϕ)

⇔ zdq
(
I s+1
q,µ (λ, `)f(z)

)
∈ S Tq (ϕ)

⇔ I s+1
q,µ (λ, `)(z(dqf)) ∈ S Tq (ϕ)

⇔ I s+1
q,µ (λ, `)f(z) ∈ CVq (ϕ)

⇔ f ∈ CV s+1
q,µ (λ, `) (ϕ) .

We can demonstrate the first part using arguments similar to those described above. Theorem 2.2’s
proof is now complete. �
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Corollary 2.1. Suppose that s is a positive real and `, λ, µ ≥ 0, 0 < q < 1 with [` + 1]q > λq`, then, for
ϕ(z) = 1+Mz

1+Nz (−1 ≤ N < M ≤ 1),

S T s
q,µ+1(λ, `)

(
1 + Mz
1 + Nz

)
⊂ S T s

q,µ(λ, `)
(
1 + Mz
1 + Nz

)
⊂ S T s+1

q,µ (λ, `)
(
1 + Mz
1 + Nz

)
,

CV s
q,µ+1(λ, `) (ϕ)

(
1 + Mz
1 + Nz

)
⊂ CV s

q,µ(λ, `) (ϕ)
(
1 + Mz
1 + Nz

)
⊂ CV s+1

q,µ (λ, `) (ϕ)
(
1 + Mz
1 + Nz

)
Furthermore, for M = 0 and N = −q, and for M = 1 and N = −q,

S T s
q,µ+1(λ, `)

(
1

1 − qz

)
⊂ S T s

q,µ(λ, `)
(

1
1 − qz

)
⊂ S T s+1

q,µ (λ, `)
(

1
1 − qz

)
and

S T s
q,µ+1(λ, `)

(
1 + z
1 − qz

)
⊂ S T s

q,µ(λ, `)
(

1 + z
1 − qz

)
⊂ S T s+1

q,µ (λ, `)
(

1 + z
1 − qz

)
,

respectively.

By employing the same justifications as before, the following conclusions can be demonstrated.

3. The classes uniformity under q−Bernardi integral operator

We introduce the q-Bernardi integral operator for analytic functions in this section by applying an
aspect of q-calculus as stated by:

Iq,%f(z) =

[
1 + %

]
q

z%

∫ z

0
t%−1
f(t)dqt (3.1)

=

∞∑
κ=1

(
[1 + %]q
[κ + %]q

)
aκzκ, % = 1, 2, 3, ... .

We note that, for % = 1 in (3.1), there is the q-Łibera integral operator defined as

Iqf(z) =
[2]q

z

∫ z

0
f(t)dqt

=

∞∑
κ=1

(
[2]q(1 − q)

1 − qκ+1

)
aκzκ, (0 < q < 1).

For 0 < q < 1, we have

lim
q→1−
Iq,%f(z) =

∞∑
κ=1

(1 + %)
(κ + %)

aκzκ,

lim
q→1−
Iqf(z) =

∞∑
κ=1

2
(κ + 1)

aκzκ,

which are defined in [27].
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Theorem 3.1. Let f ∈ S T s
q,µ(λ, `) (ϕ) , ϕ(0) = 1, % ≥ −1, and Re(ϕ(z)) > 0, then Iq,%f ∈ S T s

q,µ(λ, `) (ϕ),
where Iq,%f(z) is called a q-Bernardi integral operator defined in (3.1).

Proof. Let f ∈ S T s
q,µ(λ, `) (ϕ). If we put F(z) = Iq,%f(z),

zdq(I s
q,µ(λ, `)F(z))

I s
q,µ(λ, `)F(z)

= ℵ(z), (3.2)

where ℵ(z) is analytic in U with ℵ(0) = 1.
From (3.1), we show that

dq(z%F(z))[
1 + %

]
q

= z%−1
f(z).

Applying the q-difference operator’s products, we get

zdqF(z) =

(
1 +

[
%
]
q

q%

)
f(z) −

[
%
]
q F(z). (3.3)

From (2.3), (3.3), and (1.10) there is

ℵ(z) =

(
1 +

[
%
]
q

q%

) zdq(I s
q,µ(λ, `)f(z))

I s
q,µ(λ, `)F(z)

−
[
%
]
q .

On q-logarithmic differentiation, we get

zdq(I s
q,µ(λ, `)f(z))

I s
q,µ(λ, `)f(z)

= ℵ(z) +
zdqℵ(z)
ℵ(z) +

[
%
]
q

. (3.4)

Since f ∈ S T s
q,µ(λ, `) (ϕ), we can revise (3.4) as

ℵ(z) +
zdqℵ(z)
ℵ(z) +

[
%
]
q

≺ ϕ(z).

Now, by using Lemma 2.1, we conclude ℵ(z) ≺ ϕ(z). Consequently,
zdq(I s

q,µ(λ,`)F(z))
I s
q,µ(λ,`)F(z) ≺ ϕ(z). Hence,

F(z) ∈ S T s
q,µ(λ, `) (ϕ). �

The following conclusion can be demonstrated by employing reasons that are similar to those in
Theorem 3.1.

Theorem 3.2. Assume that f ∈ CV s
q,µ(λ, `) (ϕ), then Iq,%f(z) ∈ CV s

q,µ(λ, `) (ϕ), where Iq,%f(z) is defined
by (3.1).

Remark 3.1. (i) If we set q → 1−, we can get the results investigated by Aouf and El-Ashwah ( [33];
Theorems 1, 2 at η = 0);

(ii) If we put µ = 0 and λ = 1, we can get the results investigated by Shah and Noor ( [35]; Theorems
2.2, 2.3, 2.6);

(iii) Through the use of the specialization of the parameters s, µ, λ, `, and q, we get all the results
connecting with all the operators mentioned in the introduction.
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4. Conclusions

The novel findings in this study are connected to new classes of analytic normalized functions in
U. To introduce some subclasses of univalent functions, we develop the q-analogue
multiplier-Ruscheweyh operatorI s

q,µ(λ, `) using the notion of a q-difference operator. The q-analogue
of the Ruscheweyh operator and the q-analogue of the Cătas operator are also used to introduce and
study distinct subclasses. We looked into the integral preservation property and the inclusion
outcomes for the newly defined classes. In the future, this work will motivate other authors to
contribute in this direction for many generalized subclasses of q-close-to-convex, Quasi-convex
univalent, and generalized operators for multivalent functions.
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