Research article

Subordinations and superordinations studies using $ q $-difference operator

  • Received: 27 February 2024 Revised: 26 March 2024 Accepted: 07 April 2024 Published: 29 May 2024
  • MSC : 30C45, 30C80

  • The results of this work belong to the field of geometric function theory, being based on differential subordination methods. Using the idea of the $ \mathfrak{q} $-calculus operators, we define the $ \mathfrak{q} $-analogue of the multiplier- Ruscheweyh operator of a specific family of linear operators, $ I_{\mathfrak{q}, \mu }^{s}(\lambda, \ell). $ Our major goal is to build and investigate some analytic function subclasses using $ I_{\mathfrak{q}, \mu }^{s}(\lambda, \ell) $. Also, some differential subordination and superordination results are obtained. Moreover, based on the new theoretical results, several examples are constructed. For every differential superordination under investigation, the best subordinant is provided.

    Citation: Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah. Subordinations and superordinations studies using $ q $-difference operator[J]. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886

    Related Papers:

  • The results of this work belong to the field of geometric function theory, being based on differential subordination methods. Using the idea of the $ \mathfrak{q} $-calculus operators, we define the $ \mathfrak{q} $-analogue of the multiplier- Ruscheweyh operator of a specific family of linear operators, $ I_{\mathfrak{q}, \mu }^{s}(\lambda, \ell). $ Our major goal is to build and investigate some analytic function subclasses using $ I_{\mathfrak{q}, \mu }^{s}(\lambda, \ell) $. Also, some differential subordination and superordination results are obtained. Moreover, based on the new theoretical results, several examples are constructed. For every differential superordination under investigation, the best subordinant is provided.



    加载中


    [1] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [2] S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [3] M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving $\mathfrak{q}$-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5
    [4] B. Khan, H. M. Srivastava, S. Arjika, S. Khan, N. Khan, Q. Z. Ahmad, A certain $\mathfrak{q}$-Ruscheweyh type derivative operator and its applications involving multivalent functions, Adv. Differ. Equ., 279 (2021), 1–14. https://doi.org/10.1186/s13662-021-03441-6 doi: 10.1186/s13662-021-03441-6
    [5] F. H. Jackson, On $\mathfrak{q}$-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [6] F. H. Jackson, On $\mathfrak{q}$-definite integrals, Quart. J. Pure Appl. Math, 41 (1910), 193–203.
    [7] M. K. Aouf, S. M. Madian, Subordination factor sequence results for starlike and convex classes defined by $\mathfrak{q}$-Catas operator, Afr. Mat., 32 (2021), 1239–1251. https://doi.org/10.1007/s13370-021-00896-4 doi: 10.1007/s13370-021-00896-4
    [8] H. Aldweby, M. Darus, Some subordination results on $\mathfrak{q} $-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563
    [9] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. Ser. B, 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801
    [10] M. L. Mogra, Applications of Ruscheweyh derivatives and Hadamard product to analytic functions, Int. J. Math. Math. Sci., 22 (1999), 795–805. https://doi.org/10.1155/S0161171299227950 doi: 10.1155/S0161171299227950
    [11] K. I. Noor, S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl., 340 (2008), 1145–1152. https://doi.org/10.1016/j.jmaa.2007.09.038 doi: 10.1016/j.jmaa.2007.09.038
    [12] S. L. Shukla, V. Kumar, Univalent functions defined by Ruscheweyh derivatives, Int. J. Math. Math. Sci., 6 (1983) 483–486. https://doi.org/10.1155/S0161171283000435 doi: 10.1155/S0161171283000435
    [13] M. K. Aouf, R. M. El-Ashwah, Inclusion properties of certain subclass of analytic functions defined by multiplier transformations, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 63 (2009), 29–38. https://doi.org/10.2478/v10062-009-0003-0 doi: 10.2478/v10062-009-0003-0
    [14] R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Univ. Apul., 24 (2010), 51–61.
    [15] T. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
    [16] G. S. Salagean, Subclasses of univalent functions, Lect. Notes Math., 1013 (1983), 362–372. https://doi.org/10.1007/BFb0066543 doi: 10.1007/BFb0066543
    [17] S. A. Shah, K. Noor, Study on $\mathfrak{q}$-analogue of certain family of linear operators. Turkish J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
    [18] H. M. Srivastava, A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
    [19] H. M. Srivastava, J. Choi, Series associated with the zeta and related functions, Dordrecht, Boston and London: Kluwer Academic Publishers, 2001.
    [20] K. I. Noor, S. Riaz, M. A. Noor, On $\mathfrak{q}$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. Available from: https://www.researchgate.net/publication/313651478
    [21] R. D. Carmichael, The general theory of linear $\mathfrak{q}$-difference equations, Amer. J. Math., 34 (1912), 147–168. https://doi.org/10.2307/2369887 doi: 10.2307/2369887
    [22] T. E. Mason, On properties of the solution of linear $\mathfrak{ q}$-difference equations with entire function coefficients, Amer. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216
    [23] W. J. Trjitzinsky, Analytic theory of linear $\mathfrak{q}$-difference equations, Acta Math., 161 (1933), 1–38. Available from: http://archive.ymsc.tsinghua.edu.cn/pacm_download/117/5512-11511_2006_Article_BF02547785.pdf
    [24] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520.
    [25] H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the $\mathfrak{q}$-Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822
    [26] E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a $\mathfrak{q}$-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184
    [27] E. E. Ali, A. Y. Lashin, A. M. Albalahi, Coefficient estimates for some classes of bi-univalent function associated with Jackson $\mathfrak{ q}$-difference Operator, J. Funct. Spaces, 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
    [28] E. E. Ali, H. M. Srivastava, A. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the $\mathfrak{q}$-derivatives of the $\mathfrak{q}$-Binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.3390/math11112496 doi: 10.3390/math11112496
    [29] E. E. Ali, H. M. Srivastava, A. M. Albalahi, subclasses of $p$- valent $k$-uniformly convex and starlike functions defined by the $\mathfrak{ q}$-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578
    [30] E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of $\mathfrak{q}$-Calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
    [31] W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional $\mathfrak{q}$-calculus operator, Math. Bohem., 148 (2023), 131–148.
    [32] B. Wang, R. Srivastava, J. L. Liu, A certain subclass of multivalent analytic functions defined by the $\mathfrak{q}$-difference operator related to the Janowski functions, Mathematics, 9 (2021), 1706. https://doi.org/10.3390/math9141706 doi: 10.3390/math9141706
    [33] P. Cai, Yu Zhang, T. Jin, Y. Todo, S. Gao, Self-adaptive forensic-Based investigation algorithm with dynamic population for solving constraint optimization problems, Int. J. Comput. Intelligen. Sys., 17 (2024). https://doi.org/10.1007/s44196-023-00396-2 doi: 10.1007/s44196-023-00396-2
    [34] J. Gao, Z. Wang, T. Jin, J. Cheng, Z. Lei, S. Gao, Information gain ratio-based subfeature grouping empowers particle swarm optimization for feature selection, Knowl-Based Sys., 286 (2024), 111380. https://doi.org/10.1016/j.knosys.2024.111380 doi: 10.1016/j.knosys.2024.111380
    [35] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–171. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507
    [36] S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var., 48 (2003), 815–826. https://doi.org/10.1080/02781070310001599322 doi: 10.1080/02781070310001599322
    [37] D. J. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Proc. Am. Math. Soc., 52 (1975), 191–195. https://doi.org/10.1090/S0002-9939-1975-0374403-3 doi: 10.1090/S0002-9939-1975-0374403-3
    [38] S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [39] E. T. Whittaker, G. N. Watson, A course on modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge: Cambridge University Press, 1920.
    [40] S. S. Ding, Y. Ling, G. J. Bao, Some properties of a class of analytic functions, J. Math. Anal. Appl., 195 (1995), 71–81. https://doi.org/10.1006/JMAA.1995.1342 doi: 10.1006/JMAA.1995.1342
    [41] T. H. MacGregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532–537. https://doi.org/10.2307/1993803 doi: 10.2307/1993803
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(420) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog