The results of this work belong to the field of geometric function theory, being based on differential subordination methods. Using the idea of the q-calculus operators, we define the q-analogue of the multiplier- Ruscheweyh operator of a specific family of linear operators, Isq,μ(λ,ℓ). Our major goal is to build and investigate some analytic function subclasses using Isq,μ(λ,ℓ). Also, some differential subordination and superordination results are obtained. Moreover, based on the new theoretical results, several examples are constructed. For every differential superordination under investigation, the best subordinant is provided.
Citation: Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah. Subordinations and superordinations studies using q-difference operator[J]. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886
[1] | Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263 |
[2] | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, R. Sidaoui, Abdelkader Moumen . Inclusion properties for analytic functions of q-analogue multiplier-Ruscheweyh operator. AIMS Mathematics, 2024, 9(3): 6772-6783. doi: 10.3934/math.2024330 |
[3] | Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for q -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794 |
[4] | Shatha S. Alhily, Alina Alb Lupaş . Sandwich theorems involving fractional integrals applied to the q -analogue of the multiplier transformation. AIMS Mathematics, 2024, 9(3): 5850-5862. doi: 10.3934/math.2024284 |
[5] | Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi . Applications of fuzzy differential subordination theory on analytic p -valent functions connected with q-calculus operator. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031 |
[6] | Alina Alb Lupaş, Georgia Irina Oros . Differential sandwich theorems involving Riemann-Liouville fractional integral of q-hypergeometric function. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246 |
[7] | Ekram E. Ali, Georgia Irina Oros, Abeer M. Albalahi . Differential subordination and superordination studies involving symmetric functions using a q-analogue multiplier operator. AIMS Mathematics, 2023, 8(11): 27924-27946. doi: 10.3934/math.20231428 |
[8] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[9] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
[10] | Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with q-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336 |
The results of this work belong to the field of geometric function theory, being based on differential subordination methods. Using the idea of the q-calculus operators, we define the q-analogue of the multiplier- Ruscheweyh operator of a specific family of linear operators, Isq,μ(λ,ℓ). Our major goal is to build and investigate some analytic function subclasses using Isq,μ(λ,ℓ). Also, some differential subordination and superordination results are obtained. Moreover, based on the new theoretical results, several examples are constructed. For every differential superordination under investigation, the best subordinant is provided.
Some of the topics in geometric function theory are based on q-calculus operator and differential subordinations. Ismail et al. defined the class of q-starlike functions in 1990 [1], presenting the first uses of q-calculus in geometric function theory. Several authors focused on the q-analogue of the Ruscheweyh differential operators established in [2] and the q-analogue of the Sălăgean differential operators defined in [3]. Examples include the investigation of differential subordinations using a specific q-Ruscheweyh type derivative operator in [4].
In what follows, we recall the main concepts used in this research.
We denote by H the class of analytic functions in the open unit disc U:={ξ∈C:|ξ|<1}. Also, H[a,n] denotes the subclass of H, containing the functions f∈H given by
f(ξ)=a+anξn+an+1ξn+1+..., ξ∈U. |
Another well-known subclass of H is class A(n), which consists of f∈H and is given by
f(ξ)=ξ+∞∑κ=n+1aκξκ,ξ∈U, | (1.1) |
with n∈N={1,2,...}, and A=A(1).
The subclass K is defined by
K={f∈A:Re(ξf′′(ξ)f′(ξ)+1)>0, f(0)=0, f′(0)=1, ξ∈U}, |
means the class of convex functions in the unit disk U.
For two functions f,L (belong) to A(n), f given by (1.1), and L is given by the next form
L(ξ)=ξ+∞∑κ=n+1bκξκ,ξ∈U, |
the well-known convolution product was defined as: ∗: A→A
(f∗L)(ξ):=ξ+∞∑κ=n+1aκbκξκ,ξ∈U. |
In particular [5,6], several applications of Jackson's q-difference operator dq: A→A are defined by
dqf(ξ):={f(ξ)−f(qξ)(1−q)ξ(ξ≠0;0<q<1),f′(0)(ξ=0). | (1.2) |
Maybe we can put just κ∈N={1,2,3,..}. It is written once previously
dq{∞∑κ=1aκξκ}=∞∑κ=1[κ]qaκξκ−1, | (1.3) |
where
[κ]q=1−qκ1−q=1+κ−1∑n=1qn, limq→1−[κ]q=κ.[κ]q!={κ∏n=1[n]q, κ∈N, 1 κ=0. | (1.4) |
In [7], Aouf and Madian investigate the q-analogue Că tas operator Isq(λ,ℓ): A→ A (s∈N0,ℓ,λ≥0, 0<q<1) as follows:
Isq(λ,ℓ)f(ξ)=ξ+∞∑κ=2([1+ℓ]q+λ([κ+ℓ]q−[1+ℓ]q)[1+ℓ]q)saκξκ,(s∈N0,ℓ,λ≥0,0<q<1). |
Also, the q-Ruscheweyh operator ℜμqf(ξ) was investigated in 2014 by Aldweby and Darus [8]
ℜμqf(ξ)=ξ+∞∑κ=2[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (μ≥0,0<q<1), |
where [a]q and [a]q! are defined in (1.4).
Let be
fsq,λ,ℓ(ξ)=ξ+∞∑κ=2([1+ℓ]q+λ([κ+ℓ]q−[1+ℓ]q)[1+ℓ]q)sξκ. |
Now we define a new function fs,μq,λ,ℓ(ξ) in terms of the Hadamard product (or convolution) such that:
fsq,λ,ℓ(ξ)∗fs,μq,λ,ℓ(ξ)=ξ+∞∑κ=2[κ+μ−1]q![μ]q![κ−1]q!ξκ. |
Next, driven primarily by the q-Ruscheweyh operator and the q-Cătas operator, we now introduce the operator Isq,μ(λ,ℓ):A→A is defined by
Isq,μ(λ,ℓ)f(ξ)=fs,μq,λ,ℓ(ξ)∗f(ξ), | (1.5) |
where s∈N0,ℓ,λ,μ≥0,0<q<1. For f∈A and (1.5), it is obvious
Isq,μ(λ,ℓ)f(ξ)=ξ+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκ, | (1.6) |
where
ψ∗sq(κ,λ,ℓ)=([1+ℓ]q[1+ℓ]q+λ([κ+ℓ]q−[1+ℓ]q))s. |
We observe that:
(i) If s=0 and q→1−, we get ℜμf(ξ) is a Russcheweyh differential operator [9] investigated by numerous authors [10,11,12].
(ii) If we set q→1−, we obtain Imλ,ℓ,μf(ξ) which was presented by Aouf and El-Ashwah [13].
(iii) If we set μ=0 and q→1−, we obtain Jmp(λ,ℓ)f(ξ), presented by El-Ashwah and Aouf (with p=1) [14].
(iv) If μ=0, ℓ=λ=1, and q→1−, we get ℘αf(ξ), investigated by Jung et al. [15].
(v) If μ=0, λ=1,ℓ=0, and q→1−, we obtain Isf(ξ), presented by Sălă gean [16].
(vi) If we set μ=0 and λ=1, we obtain Iℓq,sf(ξ), presented by Shah and Noor [17].
(vii) If we set μ=0, λ=1, and q→1−, we obtain Jsq,ℓ Srivastava–Attiya operator: see [18,19].
(viii) I1q,0(1,0)=∫ξ0f(t)tdqt. (q-Alexander operator [17]).
(ix) I1q,0(1,ℓ)=[1+ρ]qξρ∫ξ0tρ−1f(t)dqt (q-Bernardi operator [20]).
(x) I1q,0(1,1)=[2]qξ∫ξ0f(t)dqt (q-Libera operator [20]).
Moreover, we have
(i) Isq,μ(1,0)f(ξ)=Isq,μf(ξ)
f(ξ)∈A:Isq,μf(ξ)=ξ+∞∑κ=2(1[κ]q)s[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (s∈N0,μ≥0,0<q<1,ξ∈U). |
(ii) Isq,μ(1,ℓ)f(ξ)=Is,ℓq,μf(ξ)
f(ξ)∈A:Is,ℓq,μf(ξ)=ξ+∞∑κ=2([1+ℓ]q[κ+ℓ]q)s[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (s∈N0,ℓ>0,μ≥0,0<q<1,ξ∈U). |
(iii) Isq,μ(λ,0)f(ξ)=Is,λq,μf(ξ)
f(ξ)∈A:Is,λq,μf(ξ)=ξ+∞∑κ=2(11+λ([κ]q−1))s[κ+μ−1]q![μ]q![κ−1]q!aκξκ, (s∈N0,λ>0,μ≥0,0<q<1,ξ∈U). |
Since the investigation of q-difference equations using function theory tools explores various properties, this direction has been considered in many works. Thus, several authors used the q-calculus based linear extended operators recently defined for investigating theories of differential subordination and subordination (see [21,22,23,24,25,26,27,28,29,30,31,32]). Applicable problems involving q-difference equations and q-analogues of mathematical physical problems are studied extensively for: Dynamical systems, q-oscillator, q-classical, and quantum models; q-analogues of mathematical-physical problems, including heat and wave equations; and sampling theory of signal analysis [33,34].
We denote by Φ the class of analytic univalent functions φ(ξ), which are convex functions with φ(0)=1 and Reφ(ξ)>0 in U.
The differential subordination theory, studied by Miller and Mocanu [35], is based on the following definitions:
f is subordinate to L in U, denote it as f≺L if there exists an analytic function ϖ, with ϖ(0)=0 and |ϖ(ξ)|<1 for all ξ∈U, such that f(ξ)=L(ϖ(ξ)). Moreover, if L is univalent in U, we have:
f(ξ)≺L(ξ)⇔f(0)=L(0)andf(U)⊂L(U). |
Let Φ(r,s,t;ξ):C3×U→C and let h in U be a univalent function. An analytic function λ in U, which validates the differential subordination, is a solution of the differential subordination
Φ(λ(ξ),ξλ′(ξ),ξ2λ′′(ξ);ξ)≺h(ξ). | (1.7) |
We call V a dominant of the solutions of the differential subordination in (1.7) if λ(ξ)≺V(ξ) for all λ satisfying (1.7). A dominant ˜ϰ is called the best dominant of (1.7) if ˜V(ξ)≺V(ξ) for all the dominants V.
The following definitions characterize both of the theories of differential superordination that Miller and Mocanu introduced in 2003 [36]:
f is superordinate to L, denotes as L ≺ f, if there exists an analytic function ϖ, with ϖ(0)=0 and |ϖ(ξ)|<1 for all ξ∈U, such that L(ξ)=f(ϖ(ξ)). For the univalent function f, we have
L(ξ)≺f(ξ)⇔f(0)=L(0)andL(U)⊂f(U). |
Let Φ(r,s;ξ):C2×U→C and let h in U be an analytic function. A solution of the differential superordination is the univalent function λ such that Φ(λ(ξ),ξλ′(ξ);ξ) is univalent in U satisfy the differential superordination
h(ξ)≺Φ(λ(ξ),ξλ′(ξ);ξ), | (1.8) |
then λ is called to be a solution of the differential superordination in (1.8). We call the function V a subordinant of the solutions of the differential superordination in (1.8) if V(ξ)≺ λ(ξ) for all λ satisfying (1.8). A subordinant ˜V is called the best subordinant of (1.8) if V(ξ)≺˜V(ξ) for all the subordinants V.
Let ℘ say the collection of injective and analytic functions on ¯U∖E(χ), with χ′(ξ)≠0 for ξ∈∂U∖E(χ) and
E(χ)={ς:ς∈∂U : limξ→ςχ(ξ)=∞}. |
Also, ℘(a) is the subclass of ℘ with χ(0)=a.
The proofs of our main results and findings in the upcoming sections can benefit from the usage of the following lemmas:
Lemma 1.1. (Miller and Mocanu [35]). Suppose g is convex in U, and
h(ξ)=nγξg′(ξ)+g(ξ), |
with ξ∈U, n is +ve integer and γ>0. When
g(0)+pnξn+pn+1ξn+1+....=p(ξ), ξ∈U, |
is analytic in U, and
γξp′(ξ)+p(ξ)≺h(ξ), ξ∈U, |
holds, then
p(ξ)≺g(ξ), |
holds as well.
Lemma 1.2. (Hallenbeck and Ruscheweyh [37], see also (Miller and Mocanu [38], Th. 3.1.b, p.71)). Let h be a convex with h(0)=a, and let γ∈C∗ with Re(γ)≥0. When p∈H[a,n] and
p(ξ)+ξp′(ξ)γ≺h(ξ), ξ∈U, |
holds, then
p(ξ)≺g(ξ)≺h(ξ), ξ∈U, |
holds for
g(ξ)=γnξ(γ/n)ξ∫0h(t)t(γ/n)−1dt, ξ∈U. |
Lemma 1.3. (Miller and Mocanu [35]) Let h be a convex with h(0)=a, and let γ∈C∗, with Re(γ)≥0. When p∈Q∩H[a,n], p(ξ)+ξp′(ξ)γ is a univalent in U and
h(ξ)≺p(ξ)+ξp′(ξ)γ, ξ∈U, |
holds, then
g(ξ)≺p(ξ), ξ∈U, |
holds as well, for g(ξ)=γnξ(γ/n)ξ∫0h(t)t(γ/n)−1dt, ξ∈U the best subordinant.
Lemma 1.4. (Miller and Mocanu [35]) Let a convex g be in U, and
h(ξ)=g(ξ)+ξg′(ξ)γ, ξ∈U, |
with γ∈C∗, Re(γ)≥0. If p∈Q∩H[a,n], p(ξ)+ξp′(ξ)γ is a univalent in U and
g(ξ)+ξg′(ξ)γ≺p(ξ)+ξp′(ξ)γ, ξ∈U, |
holds, then
g(ξ)≺p(ξ), ξ∈U, |
holds as well, for g(ξ)=γnξ(γ/n)ξ∫0h(t)t(γ/n)−1dt, ξ∈U the best subordinant.
For ˊa,ϱ,ˊc and ˊc(ˊc∉Z−0) let consider the following Gaussian hypergeometric function is
2F1(ˊa,ϱ;ˊc;ξ)=1+ˊaϱˊc.ξ1!+ˊa(ˊa+1)ϱ(ϱ+1)ˊc(ˊc+1).ξ22!+.... |
For ξ∈U, the above series completely converges to an analytic function in U, (see, for details, [ [39], Chapter 14]).
Lemma 1.5. [39] For ˊa,ϱ and ˊc (ˊc∉Z−0), complex parameters
1∫0tϱ−1(1−t)ˊc−ϱ−1(1−ξt)−ˊadt=Γ(ϱ)Γ(ˊc−ϱ)Γ(ˊc)2F1(ˊa,ϱ;ˊc;ξ)(Re(ˊc)>Re(ϱ)>0); |
2F1(ˊa,ϱ;ˊc;ξ)=2F1(ϱ,ˊa;ˊc;ξ); |
2F1(ˊa,ϱ;ˊc;ξ)=(1−ξ)−ˊa2F1(ˊa,ˊc−ϱ;ˊc;ξξ−1); |
2F1(1,1;2;ˊaξˊaξ+1)=(1+ˊaξ)ln(1+ˊaξ)ˊaξ; |
2F1(1,1;3;ˊaξˊaξ+1)=2(1+ˊaξ)ˊaξ(1−ln(1+ˊaξ)ˊaξ). |
A q-multiplier-Ruscheweyh operator is considered in the study reported in this paper to create a novel convex subclass of normalized analytic functions in the open unit disc U. Then, employing the techniques of differential subordination and superordination theory, this subclass is examined in more detail.
Isq,μ(λ,ℓ)f(ξ) given in (1.6) is a q-multiplier-Ruscheweyh operator that is applied to define the new class of normalized analytic functions in the open unit disc U.
Definition 2.1. Let α∈[0,1). The class Ssq,μ(λ,ℓ;α) involves of the function f∈A with
Re(Isq,μ(λ,ℓ)f(ξ))′>α, ξ∈U. | (2.1) |
We use the following denotations:
(i) Ssq,μ(λ,ℓ;0)=Ssq,μ(λ,ℓ).
(ii) S0q,0(λ,ℓ;α)=S(α) (Ref(ξ)′>α), see Ding et al. [40].
(iii) S0q,0(λ,ℓ;0)=S (Ref(ξ)′>0), see MacGregor [41].
The first result concerning the class Ssq,μ(λ,ℓ;α) establishes its convexity.
Theorem 2.1. The class Ssq,μ(λ,ℓ;α) is closed under convex combination.
Proof. Consider
fj(ξ)=ξ+∞∑κ=2ajκξκ,ξ∈U, j=1,2, |
being in the class Ssq,μ(λ,ℓ;α). It suffices to demonstrate that
f(ξ)=ηf1(ξ)+(1−η)f2(ξ), |
belongs to the class Ssq,μ(λ,ℓ;α), with η a positive real number.
f is given by:
f(ξ)=ξ+∞∑κ=2(ηa1κ+(1−η)a2κ)ξκ,ξ∈U, |
and
Isq,μ(λ,ℓ)f(ξ)=ξ+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!(ηa1κ+(1−η)a2κ)ξκ. | (2.2) |
Differentiating (2.2), we have
(Isq,μ(λ,ℓ)f(ξ))′=1+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!(ηa1κ+(1−η)a2κ)κξκ−1. |
Hence
Re(Isq,μ(λ,ℓ)f(ξ))′=1+Re(η∞∑κ=2κψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!a1κξκ−1)+Re((1−η)∞∑κ=2κψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!a2κξκ−1). | (2.3) |
Taking into account that f1,f2∈ Ssq,μ(λ,ℓ;α), we can write
Re(η∞∑κ=2κψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!ajκξκ−1)>η(α−1). | (2.4) |
Using relation (2.4), we get from relation (2.3):
Re(Isq,μ(λ,ℓ)f(ξ))′>1+η(α−1)+(1−η)(α−1)=α. |
It demonstrated that the set Ssq,μ(λ,ℓ;α) is convex.
Next, we study a class of differential subordinations Ssq,μ(λ,ℓ;α) and a q-multiplier-Ruscheweyh operator Isq,μ(λ,ℓ) involving convex functions.
Theorem 2.2. For g to be convex, we define
h(ξ)=g(ξ)+ξg′(ξ)a+2, a>0, ξ∈U. | (2.5) |
For f∈Ssq,μ(λ,ℓ;α), consider
F(ξ)=a+2ξa+1ξ∫0taf(t)dt, ξ∈U, | (2.6) |
then the differential subordination
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), | (2.7) |
implies the differential subordination
(Isq,μ(λ,ℓ)F(ξ))′≺g(ξ), |
for the best dominant.
Proof. We can write (2.6) as:
ξa+1F(ξ)=(a+2)ξ∫0taf(t)dt, ξ∈U, |
and differentiating it, we get
ξF′(ξ)+(a+1)F(ξ)=(a+2)f(ξ) |
and
ξ(Isq,μ(λ,ℓ)F(ξ))′+(a+1)Isq,μ(λ,ℓ)F(ξ)=(a+2)Isq,μ(λ,ℓ)f(ξ), ξ∈U. |
Differentiating the last relation, we obtain
ξ(Isq,μ(λ,ℓ)F(ξ))′′a+2+(Isq,μ(λ,ℓ)F(ξ))′=(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, |
and (2.7) can be written as
ξ(Isq,μ(λ,ℓ)F(ξ))′′a+2+(Isq,μ(λ,ℓ)F(ξ))′≺ξg′(ξ)a+2+g(ξ). | (2.8) |
Denoting
p(ξ)=(Isq,μ(λ,ℓ)F(ξ))′∈H[1,1], | (2.9) |
differential subordination (2.8) has the next type:
ξp′(ξ)a+2+p(ξ)≺ξg′(ξ)a+2+g(ξ). |
Through Lemma 1.1, we find
p(ξ)≺g(ξ), |
then
(Isq,μ(λ,ℓ)F(ξ))′≺g(ξ), |
where g is the best dominant.
Theorem 2.3. Denoting
Ia(f)(ξ)=a+2ξa+1ξ∫0taf(t)dt, a>0, | (2.10) |
then,
Ia[Ssq,μ(λ,ℓ;α)]⊂Ssq,μ(λ,ℓ;α∗), | (2.11) |
where
α∗=(2α−1)−(α−1)2F1(1,1,a+3;12). | (2.12) |
Proof. Using Theorem 2.2 for h(ξ)=1−(2α−1)ξ1−ξ, and using the identical procedures as Theorem 2.2, proof then
ξp′(ξ)a+2+p(ξ)≺h(ξ), |
holds, with p defined by (2.9).
Through Lemma 1.2, we find
p(ξ)≺g(ξ)≺h(ξ), |
similar to
(Isq,μ(λ,ℓ)F(ξ))′≺g(ξ)≺h(ξ), |
where
g(ξ)=a+2ξa+2∫ξ0ta+11−(2α−1)t1−tdt=(2α−1)−2(a+2)(α−1)ξa+2∫ξ0ta+11−tdt. |
By using Lemma 1.5, we get
g(ξ)=(2α−1)−2(α−1)(1−ξ)−12F1(1,1,a+3;ξξ−1). |
Since g is a convex function and g(U) is symmetric around the real axis, we have
Re(Isq,μ(λ,ℓ)F(ξ))′≥min|ξ|=1Reg(ξ)=Reg(−1)=α∗=(2α−1)−(α−1)2F1(1,1,a+3;12). |
If we put α=0, in Theorem 2.3, we obtain
Corollary 2.1. Let
Ia(f)(ξ)=a+2ξa+1∫ξ0taf(t)dt, a>0, |
then,
Ia[Ssq,μ(λ,ℓ)]⊂Ssq,μ(λ,ℓ;α∗), |
where
α∗=−1+ 2F1(1,1,a+3;12). |
Example 2.1. If a=0 in Corollary 2.1, we get:
I0(f)(ξ)=2ξ∫ξ0f(t)dt, |
then,
I0[Ssq,μ(λ,ℓ)]⊂Ssq,μ(λ,ℓ;α∗), |
where
α∗=−1+2F1(1,1,3;12)=3−4ln2. |
Theorem 2.4. Let g be the convex with g(0)=1, we define
h(ξ)=ξg′(ξ)+g(ξ), ξ∈U. |
If f∈A verifies
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, | (2.13) |
then the sharp differential subordination
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ), ξ∈U, | (2.14) |
holds.
Proof. Considering
p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ=ξ+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκξ=1+p1ξ+p2ξ2+...., ξ∈U, |
clearly p∈H[1,1], this we can write
ξp(ξ)=Isq,μ(λ,ℓ)f(ξ), |
and differentiating it, we obtain
(Isq,μ(λ,ℓ)f(ξ))′=ξp′(ξ)+p(ξ). |
Subordination (2.13) takes the form
ξp′(ξ)+p(ξ)≺h(ξ)=ξg′(ξ)+g(ξ), | (2.15) |
Lemma 1.1, allows us to have p(ξ)≺g(ξ), then (2.14) holds.
Theorem 2.5. Let h be the convex and h(0)=1, if f∈A verifies
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, | (2.16) |
then we obtain the subordination
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ), ξ∈U, |
for the convex function g(ξ)=(2α−1)+2(α−1)ξln(1−ξ), being the best dominant.
Proof. Let
p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ=1+∞∑κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκ−1∈H[1,1], ξ∈U. |
By differentiating it, we get
(Isq,μ(λ,ℓ)f(ξ))′=ξp′(ξ)+p(ξ), |
and differential subordination (2.16) becomes
ξp′(ξ)+p(ξ)≺h(ξ), |
Lemma 1.2 allows us to have
p(ξ)≺g(ξ)=1ξ∫ξ0h(t)dt, |
then
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ)=(2α−1)+2(α−1)ξln(1−ξ), |
for g is the best dominant.
If we put α=0 in Theorem 2.5, we have
Corollary 2.2. Considering the convex h with h(0)=1, if f∈A verifies
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, |
then we obtain the subordination
Isq,μ(λ,ℓ)f(ξ)ξ≺g(ξ)=−1−2ξln(1−ξ), ξ∈U, |
for the convex function g(ξ), which is the best dominant.
Example 2.2. From Corollary 2.2, if
(Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, |
we obtain
Re(Isq,μ(λ,ℓ)f(ξ))′≥min|ξ|=1Reg(ξ)=Reg(−1)=−1+2ln2, |
Theorem 2.6. Let g be a convex function with g(0)=1. We define h(ξ)=ξg′(ξ)+g(ξ), ξ∈U. If f∈A verifies
(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′≺h(ξ), ξ∈U, | (2.17) |
then
Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)≺g(ξ), ξ∈U, | (2.18) |
holds.
Proof. For
p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)=ξ+∑∞κ=2ψ∗s+1q(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκξ+∑∞κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκ. |
By differentiating it, we get
p′(ξ)=(Is+1q,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ)−p(ξ)(Isq,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ). |
then
ξp′(ξ)+p(ξ)=(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′. |
Differential subordination (2.17), then we obtain (2.15), and Lemma 1.1 allows us to have p(ξ)≺g(ξ), then (2.18) holds.
This section examines differential superordinations with respect to a first-order derivative of a q-multiplier-Ruscheweyh operator Isq,μ(λ,ℓ). For every differential superordination under investigation, we provide the best subordinant.
Theorem 3.1. Considering f∈A, a convex h in U such that h(0)=1, and F(ξ) defined in (2.6). We assume that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent in U, (Isq,μ(λ,ℓ)f(ξ))′∈Q∩H[1,1]. If
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.1) |
holds, then
g(ξ)≺(Isq,μ(λ,ℓ)F(ξ))′, ξ∈U, |
with g(ξ)=a+2ξa+2∫ξ0ta+1h(t)dt the best subordinant.
Proof. Differentiating (2.6), then ξF′(ξ)+(a+1)F(ξ)=(a+2)f(ξ) can be expressed as
ξ(Isq,μ(λ,ℓ)F(ξ))′+(a+1)Isq,μ(λ,ℓ)F(ξ)=(a+2)Isq,μ(λ,ℓ)f(ξ), |
which, after differentiating it again, has the form
ξ(Isq,μ(λ,ℓ)F(ξ))′′(a+2)+(Isq,μ(λ,ℓ)F(ξ))′=(Isq,μ(λ,ℓ)f(ξ))′. |
Using the final relation, (3.1) can be expressed
h(ξ)≺ξ(Isq,μ(λ,ℓ)F(ξ))′′(a+2)+(Isq,μ(λ,ℓ)F(ξ))′. | (3.2) |
Define
p(ξ)=(Isq,μ(λ,ℓ)F(ξ))′, ξ∈U, | (3.3) |
and putting (3.3) in (3.2), we obtain h(ξ)≺ξp′(ξ)(a+2)+p(ξ), ξ∈U. Using Lemma 1.3, given n=1, and α=a+2, it results in g(ξ)≺p(ξ), similar g(ξ)≺(Isq,μ(λ,ℓ)F(ξ))′, with the best subordinant g(ξ)=a+2ξa+2∫ξ0ta+1h(t)dt convex function.
Theorem 3.2. Let f∈A, F(ξ)=a+2ξa+1∫ξ0taf(t)dt, and h(ξ)=1−(2α−1)ξ1−ξ where Rea>−2, α∈[0,1). Suppose that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent in U, (Isq,μ(λ,ℓ)F(ξ))′∈Q∩H[1,1] and
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.4) |
then
g(ξ)≺(Isq,μ(λ,ℓ)F(ξ))′, ξ∈U, |
is satisfied for the convex function g(ξ)=(2α−1)−2(α−1)(1−ξ)−12F1(1,1,a+3;ξξ−1) as the best subordinant.
Proof. Let p(ξ)=(Isq,μ(λ,ℓ)F(ξ))′. We can express (3.4) as follows when Theorem 3.1 is proved:
h(ξ)=1−(2α−1)ξ1−ξ≺ξp′(ξ)a+2+p(ξ). |
By using Lemma 1.4, we obtain g(ξ)≺p(ξ), with
g(ξ)=a+2ξa+2∫ξ01−(2α−1)t1−tta+1dt=(2α−1)−2(α−1)(1−ξ)−12F1(1,1,a+3;ξξ−1)≺(Isq,μ(λ,ℓ)F(ξ))′, |
g is convex and the best subordinant.
Theorem 3.3. Let f∈A and h be a convex function with h(0)=1. Assuming that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent and Isq,μ(λ,ℓ)f(ξ)ξ∈Q∩H[1,1], if
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.5) |
holds, then
g(ξ)≺Isq,μ(λ,ℓ)f(ξ)ξ, ξ∈U, |
is satisfied for the convex function g(ξ)=1ξ∫ξ0h(t)dt, the best subordinant.
Proof. Denoting
p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ=ξ+∑∞κ=2ψ∗sq(κ,λ,ℓ)[κ+μ−1]q![μ]q![κ−1]q!aκξκξ∈H[1,1], |
we can write Isq,μ(λ,ℓ)f(ξ)=ξp(ξ) and differentiating it, we have
(Isq,μ(λ,ℓ)f(ξ))′=ξp′(ξ)+p(ξ). |
With this notation, differential superordination (3.5) becomes
h(ξ)≺ξp′(ξ)+p(ξ). |
Using Lemma 1.3, we obtain
g(ξ)≺p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ for g(ξ)=1ξ∫ξ0h(t)dt, |
convex and the best subordinant.
Theorem 3.4. Suppose that h(ξ)=1−(2α−1)ξ1−ξ with α∈[0,1). For f∈A, assume that (Isq,μ(λ,ℓ)f(ξ))′ is a univalent and Isq,μ(λ,ℓ)f(ξ)ξ∈Q∩H[1,1]. If
h(ξ)≺(Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.6) |
holds, then
g(ξ)≺Isq,μ(λ,ℓ)f(ξ)ξ, ξ∈U, |
where
g(ξ)=(2α−1)+2(α−1)ξln(1−ξ). |
Proof. After presenting Theorem 3.3's proof for p(ξ)=Isq,μ(λ,ℓ)f(ξ)ξ, superordination (3.6) takes the form
h(ξ)=1−(2α−1)ξ1−ξ≺ξp′(ξ)+p(ξ). |
By using Lemma 1.3, we obtain g(ξ)≺p(ξ), with
g(ξ)=1ξ∫ξ01−(2α−1)t1−tdt=(2α−1)+2(α−1)ξln(1−ξ)≺Isq,μ(λ,ℓ)f(ξ)ξ, |
g is convex and the best subordinant.
Theorem 3.5. Let h be a convex function, with h(0)=1. For f∈A, let (ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′ is univalent in U and Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)∈Q∩H[1,1]. If
h(ξ)≺(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.7) |
holds, then
g(ξ)≺Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), ξ∈U, |
where the convex g(ξ)=1ξ∫ξ0h(t)dt is the best subordinant.
Proof. Let
p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), |
after differentiating it, we can write
p′(ξ)=(Is+1q,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ)−p(ξ)(Isq,μ(λ,ℓ)f(ξ))′Isq,μ(λ,ℓ)f(ξ), |
in the form ξp′(ξ)+p(ξ)=(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′.
Differential superordination (3.7) becomes h(ξ)≺ξp′(ξ)+p(ξ). Applying Lemma 1.3, we obtain g(ξ)≺p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), with the convex g(ξ)=1ξ∫ξ0h(t)dt, the best subordinant.
Theorem 3.6. Assume that h(ξ)=1−(2α−1)ξ1−ξ with α∈[0,1). For f∈A, suppose that (ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′is univalent and Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ)∈Q∩H[1,1]. If
h(ξ)≺(ξIs+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ))′, ξ∈U, | (3.8) |
holds, then
g(ξ)≺Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), ξ∈U, |
where
g(ξ)=(2α−1)+2(α−1)ξln(1−ξ). |
Proof. By using p(ξ)=Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), differential superordination (3.8) takes the form
h(ξ)=1−(2α−1)ξ1−ξ≺ξp′(ξ)+p(ξ). |
By using Lemma 1.3, we get g(ξ)≺p(ξ), with
g(ξ)=1ξ∫ξ01−(2α−1)t1−tdt=(2α−1)+2(α−1)ξln(1−ξ)≺Is+1q,μ(λ,ℓ)f(ξ)Isq,μ(λ,ℓ)f(ξ), |
g is convex and the best subordinant.
A new class of analytical normalized functions Ssq,μ(λ,ℓ;α), given in Definition 2.1, is related to the novel findings proven in this study given in Definition 2.1. To introduce some subclasses of univalent functions, we develop the q-analogue multiplier-Ruscheweyh operator Isq,μ(λ,ℓ) using the notion of a q-difference operator. The q-Ruscheweyh operator and the q-C ătas operator are also used to introduce and study distinct subclasses. In Section 2, these subclasses are subsequently examined in more detail utilizing differential subordination theory methods. Regarding the q-analogue multiplier-Ruscheweyh operatorIsq,μ(λ,ℓ) and its derivatives of first and second order, we derive differential superordinations in Section 3. For every differential superordination under investigation, the best subordinant is provided.
The authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by "Decembrie 1918" University of Alba Iulia, through the scientific research funds.
The authors declare that they have no conflicts of interest.
[1] |
M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
![]() |
[2] |
S. Kanas, D. Raducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
![]() |
[3] |
M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5
![]() |
[4] |
B. Khan, H. M. Srivastava, S. Arjika, S. Khan, N. Khan, Q. Z. Ahmad, A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions, Adv. Differ. Equ., 279 (2021), 1–14. https://doi.org/10.1186/s13662-021-03441-6 doi: 10.1186/s13662-021-03441-6
![]() |
[5] |
F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[6] | F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math, 41 (1910), 193–203. |
[7] |
M. K. Aouf, S. M. Madian, Subordination factor sequence results for starlike and convex classes defined by q-Catas operator, Afr. Mat., 32 (2021), 1239–1251. https://doi.org/10.1007/s13370-021-00896-4 doi: 10.1007/s13370-021-00896-4
![]() |
[8] |
H. Aldweby, M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563
![]() |
[9] |
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. Ser. B, 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801
![]() |
[10] |
M. L. Mogra, Applications of Ruscheweyh derivatives and Hadamard product to analytic functions, Int. J. Math. Math. Sci., 22 (1999), 795–805. https://doi.org/10.1155/S0161171299227950 doi: 10.1155/S0161171299227950
![]() |
[11] |
K. I. Noor, S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl., 340 (2008), 1145–1152. https://doi.org/10.1016/j.jmaa.2007.09.038 doi: 10.1016/j.jmaa.2007.09.038
![]() |
[12] |
S. L. Shukla, V. Kumar, Univalent functions defined by Ruscheweyh derivatives, Int. J. Math. Math. Sci., 6 (1983) 483–486. https://doi.org/10.1155/S0161171283000435 doi: 10.1155/S0161171283000435
![]() |
[13] |
M. K. Aouf, R. M. El-Ashwah, Inclusion properties of certain subclass of analytic functions defined by multiplier transformations, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 63 (2009), 29–38. https://doi.org/10.2478/v10062-009-0003-0 doi: 10.2478/v10062-009-0003-0
![]() |
[14] | R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Univ. Apul., 24 (2010), 51–61. |
[15] |
T. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
![]() |
[16] |
G. S. Salagean, Subclasses of univalent functions, Lect. Notes Math., 1013 (1983), 362–372. https://doi.org/10.1007/BFb0066543 doi: 10.1007/BFb0066543
![]() |
[17] |
S. A. Shah, K. Noor, Study on q-analogue of certain family of linear operators. Turkish J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
![]() |
[18] |
H. M. Srivastava, A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
![]() |
[19] | H. M. Srivastava, J. Choi, Series associated with the zeta and related functions, Dordrecht, Boston and London: Kluwer Academic Publishers, 2001. |
[20] | K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. Available from: https://www.researchgate.net/publication/313651478 |
[21] |
R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 34 (1912), 147–168. https://doi.org/10.2307/2369887 doi: 10.2307/2369887
![]() |
[22] |
T. E. Mason, On properties of the solution of linear q-difference equations with entire function coefficients, Amer. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216
![]() |
[23] | W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Math., 161 (1933), 1–38. Available from: http://archive.ymsc.tsinghua.edu.cn/pacm_download/117/5512-11511_2006_Article_BF02547785.pdf |
[24] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[25] |
H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822
![]() |
[26] |
E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a q-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184
![]() |
[27] |
E. E. Ali, A. Y. Lashin, A. M. Albalahi, Coefficient estimates for some classes of bi-univalent function associated with Jackson q-difference Operator, J. Funct. Spaces, 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918
![]() |
[28] |
E. E. Ali, H. M. Srivastava, A. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the q-derivatives of the q-Binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.3390/math11112496 doi: 10.3390/math11112496
![]() |
[29] |
E. E. Ali, H. M. Srivastava, A. M. Albalahi, subclasses of p- valent k-uniformly convex and starlike functions defined by the q-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578
![]() |
[30] |
E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of q-Calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
![]() |
[31] | W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional q-calculus operator, Math. Bohem., 148 (2023), 131–148. |
[32] |
B. Wang, R. Srivastava, J. L. Liu, A certain subclass of multivalent analytic functions defined by the q-difference operator related to the Janowski functions, Mathematics, 9 (2021), 1706. https://doi.org/10.3390/math9141706 doi: 10.3390/math9141706
![]() |
[33] |
P. Cai, Yu Zhang, T. Jin, Y. Todo, S. Gao, Self-adaptive forensic-Based investigation algorithm with dynamic population for solving constraint optimization problems, Int. J. Comput. Intelligen. Sys., 17 (2024). https://doi.org/10.1007/s44196-023-00396-2 doi: 10.1007/s44196-023-00396-2
![]() |
[34] |
J. Gao, Z. Wang, T. Jin, J. Cheng, Z. Lei, S. Gao, Information gain ratio-based subfeature grouping empowers particle swarm optimization for feature selection, Knowl-Based Sys., 286 (2024), 111380. https://doi.org/10.1016/j.knosys.2024.111380 doi: 10.1016/j.knosys.2024.111380
![]() |
[35] |
S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–171. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507
![]() |
[36] |
S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var., 48 (2003), 815–826. https://doi.org/10.1080/02781070310001599322 doi: 10.1080/02781070310001599322
![]() |
[37] |
D. J. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Proc. Am. Math. Soc., 52 (1975), 191–195. https://doi.org/10.1090/S0002-9939-1975-0374403-3 doi: 10.1090/S0002-9939-1975-0374403-3
![]() |
[38] | S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
[39] | E. T. Whittaker, G. N. Watson, A course on modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge: Cambridge University Press, 1920. |
[40] |
S. S. Ding, Y. Ling, G. J. Bao, Some properties of a class of analytic functions, J. Math. Anal. Appl., 195 (1995), 71–81. https://doi.org/10.1006/JMAA.1995.1342 doi: 10.1006/JMAA.1995.1342
![]() |
[41] |
T. H. MacGregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532–537. https://doi.org/10.2307/1993803 doi: 10.2307/1993803
![]() |
1. | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, Rabab Sidaoui, Marwa Ennaceur, Miguel Vivas-Cortez, Convolution Results with Subclasses of p-Valent Meromorphic Function Connected with q-Difference Operator, 2024, 12, 2227-7390, 3548, 10.3390/math12223548 | |
2. | Ekram E. Ali, Rabha M. El-Ashwah, Abeer M. Albalahi, Application of Fuzzy Subordinations and Superordinations for an Analytic Function Connected with q-Difference Operator, 2025, 14, 2075-1680, 138, 10.3390/axioms14020138 |