This research investigated different types of convex contractions in the setting of extended $ b $-metric spaces from the point of view of the existence and uniqueness of their fixed points. The assumptions imposed on involved mappings refer to convexity of order $ 2 $, two-sided convexity or Ćirić-type convexity, which also fulfill a continuity type condition. An example was provided to emphasize the usability of the results.
Citation: Dan Ricinschi. Convex contractions on extended $ b $-metric spaces[J]. AIMS Mathematics, 2024, 9(7): 18163-18185. doi: 10.3934/math.2024887
This research investigated different types of convex contractions in the setting of extended $ b $-metric spaces from the point of view of the existence and uniqueness of their fixed points. The assumptions imposed on involved mappings refer to convexity of order $ 2 $, two-sided convexity or Ćirić-type convexity, which also fulfill a continuity type condition. An example was provided to emphasize the usability of the results.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[2] | R. Caccioppoli, Un teorema generale sull' esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Lincei, 11 (1930), 794–799. |
[3] | E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc., 13 (1962), 459–465. https://doi.org/10.1090/S0002-9939-1962-0148046-1 doi: 10.1090/S0002-9939-1962-0148046-1 |
[4] | D. Boyd, J. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464. https://doi.org/10.1090/S0002-9939-1969-0239559-9 doi: 10.1090/S0002-9939-1969-0239559-9 |
[5] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6 |
[6] | R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. |
[7] | V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80 (1975), 325–330. https://doi.org/10.1007/BF01472580 doi: 10.1007/BF01472580 |
[8] | S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulg. Sci., 25 (1972), 727–730. |
[9] | S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9 |
[10] | G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0 |
[11] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. |
[12] | H. Aydi, W. Shatanawi, M. Postolache, Z. Mustafa, N. Tahat, Theorems for Boyd-Wong-type contractions in ordered metric spaces, Abstr. Appl. Anal., 2012 (2012), 359054. https://doi.org/10.1155/2012/359054 doi: 10.1155/2012/359054 |
[13] | N. V. Luong, N. X. Thuan, Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric spaces, Fixed Point Theory Appl., 2011 (2011), 46. https://doi.org/10.1186/1687-1812-2011-46 doi: 10.1186/1687-1812-2011-46 |
[14] | B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290. https://doi.org/10.1090/S0002-9947-1977-0433430-4 doi: 10.1090/S0002-9947-1977-0433430-4 |
[15] | V. I. Istrăţescu, Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I, Ann. Mat. Pura Appl., 130 (1982), 89–104. https://doi.org/10.1007/BF01761490 doi: 10.1007/BF01761490 |
[16] | M. A. Miandaragh, M. Postolache, S. Rezapour, Approximate fixed points of generalized convex contractions, Fixed Point Theory Appl., 2013 (2013), 255. https://doi.org/10.1186/1687-1812-2013-255 doi: 10.1186/1687-1812-2013-255 |
[17] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[18] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inf. Univ. Ostraviensis, 1 (1993), 5–11. |
[19] | M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in $b$-metric spaces via new fixed point theorem, Nonlinear Anal. Modell. Control, 22 (2017), 17–30. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2 |
[20] | T. Kamran, M. Postolache, M. U. Ali, Q. Kiran, Feng and Liu type $F$-contraction in $b$-metric spaces with application to integral equations, J. Math. Anal., 7 (2016), 18–27. |
[21] | W. Shatanawi, A. Pitea, R. Lazović, Contraction conditions using comparison functions on $b$-metric spaces, Fixed Point Theory Appl., 2014 (2014), 135. https://doi.org/10.1186/1687-1812-2014-135 doi: 10.1186/1687-1812-2014-135 |
[22] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014. https://doi.org/10.1007/978-3-319-10927-5 |
[23] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/pmd.2000.2133 doi: 10.5486/pmd.2000.2133 |
[24] | P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3–7. |
[25] | F. Khojasteh, E. Karapınar, S. Radenovic, $\theta$-metric space: a generalization, Math. Probl. Eng., 2013 (2013), 504609. https://doi.org/10.1155/2013/504609 doi: 10.1155/2013/504609 |
[26] | N. V. Dung, Further results on $\theta$-metric spaces, Fixed Point Theory, 25 (2024), 99–110. |
[27] | M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7 doi: 10.1186/s13663-015-0312-7 |
[28] | M. Jleli, B. Samet, On a new generalization of metric spaces, Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6 |
[29] | T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019 |
[30] | M. Samreen, T. Kamran, M. Postolache, Extened $b$-metric space, extended $b$-comparison function and nonlinear contractions, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar., 80 (2018), 21–28. |
[31] | M. Samreen, Q. Kiran, T. Kamran, Fixed point theorems for $\varphi$-contractions, J. Inequal. Appl., 2014 (2014), 266. https://doi.org/10.1186/1029-242X-2014-266 doi: 10.1186/1029-242X-2014-266 |
[32] | P. D. Proinov, A generalization of the Banach contraction principle with high order of convergence of succesive approximations, Nonlinear Anal., 67 (2007), 2361–2369. https://doi.org/10.1016/j.na.2006.09.008 doi: 10.1016/j.na.2006.09.008 |
[33] | T. L. Hicks, B. E. Rhoades, A Banach type fixed point theorem, Math. Japonica, 24 (1979), 327–330. |
[34] | B. Alqahtani, A. Fulga, E. Karapınar, Common fixed point results on an extended $b$-metric space, J. Inequal. Appl., 2018 (2018), 158. https://doi.org/10.1186/s13660-018-1745-4 doi: 10.1186/s13660-018-1745-4 |
[35] | T. Abdeljawad, R. P. Agarwal, E. Karapınar, S. K. Panda, Solution of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended $b$-metric space, Symmetry, 11 (2019), 686. https://doi.org/10.3390/sym11050686 doi: 10.3390/sym11050686 |
[36] | W. Shatanawi, K. Abodayeh, A. Mukheimer, Some fixed point theorems in extended $b$-metric spaces, UPB Sci. Bull., 80 (2018), 71–78. |
[37] | B. Alqahtani, A. Fulga, E. Karapınar, Non-unique fixed point results in extended $b$-metric space, Mathematics, 6 (2018), 68. https://doi.org/10.3390/math6050068 doi: 10.3390/math6050068 |
[38] | Z. D. Mitrović, H. Işik, S. Radenović, The new results in extended $b$-metric spaces and applications, Int. J. Nonlinear Anal. Appl., 11 (2020), 473–482. https://doi.org/10.22075/IJNAA.2019.18239.1998 doi: 10.22075/IJNAA.2019.18239.1998 |
[39] | S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475 |
[40] | H. Huang, Y. M. Singh, M. S. Khan, S. Radenović, Rational type contractions in extended $b$-metric spaces, Symmetry, 13 (2021), 614. https://doi.org/10.3390/sym13040614 doi: 10.3390/sym13040614 |
[41] | B. Alqahtani, A. Fulga, E. Karapınar, V. Rakočević, Contractions with rational inequalities in the extended $b$-metric space, J. Inequal. Appl., 2019 (2019), 220. https://doi.org/10.1186/s13660-019-2176-6 doi: 10.1186/s13660-019-2176-6 |
[42] | Q. Kiran, N. Alamgir, N. Mlaiki, H. Aydi, On some new fixed-point results in complete extended $b$-metric spaces, Mathematics, 7 (2019), 476. https://doi.org/10.3390/math7050476 doi: 10.3390/math7050476 |
[43] | N. Haokip, N. Goswami, B. C. Tripathy, Common fixed point results for ($\alpha$-$\beta$)-orbital-cyclic admissible triplet in extended $b$-metric spaces, Thai J. Math., 20 (2022), 563–576. |
[44] | L. B. Ćirić, On contraction type mappings, Math. Balkanica, 1 (1971), 52–57. |
[45] | H. Aydi, A. Felhi, T. Kamran, E. Karapınar, M. U. Ali, On nonlinear contractions in new extended $b$-metric spaces, Appl. Appl. Math., 14 (2019), 537–547. |
[46] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194 |
[47] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org//10.3390/math6120320 doi: 10.3390/math6120320 |