In this paper, we introduce a new concept of locally $ \alpha $-$ \psi $-contractive mapping, generalized $ \alpha-\psi $ rational contraction and establish fixed point theorems for such mappings in the setting of extended $ b $-metric space. Our main results extend and improve some results given by some authors. We also provide a non trivial example to show the validity of our main results. As an application, we derive some new fixed point result for $ \psi $-graphic contraction defined on an extended $ b $-metric space endowed with a graph.
Citation: Afrah A. N. Abdou, Maryam F. S. Alasmari. Fixed point theorems for generalized $ \alpha $-$ \psi $-contractive mappings in extended $ b $-metric spaces with applications[J]. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323
In this paper, we introduce a new concept of locally $ \alpha $-$ \psi $-contractive mapping, generalized $ \alpha-\psi $ rational contraction and establish fixed point theorems for such mappings in the setting of extended $ b $-metric space. Our main results extend and improve some results given by some authors. We also provide a non trivial example to show the validity of our main results. As an application, we derive some new fixed point result for $ \psi $-graphic contraction defined on an extended $ b $-metric space endowed with a graph.
[1] | S. Banach, Sur les operations dans les ensembles et leur application aux equation sitegrales, Fundam. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181 |
[2] | A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37. |
[3] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11. |
[4] | W. Shatanawi, A. Pitea, R. Lazovic, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl., 2014 (2014), 1–11. doi: 10.1186/1687-1812-2014-1 |
[5] | T. Kamran, M. Postolache, M. U. Ali, Q. Kiran, Feng and Liu type F-contraction in b-metric spaces with application to integral equations, J. Math. Anal., 7 (2016), 18–27. |
[6] | M. A. Kutbi, E. Karapinar, J. Ahmad, A. Azam, Some fixed point results for multi-valued mappings in b-metric spaces, J. Inequal. Appl., 2014 (2014), 126. doi: 10.1186/1029-242X-2014-126 |
[7] | T. Kamran, M. Samreen, Q. UL Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. doi: 10.3390/math5020019 |
[8] | S. K. Panda, A. Tassaddiq, R. P. Agarwal, A new approach to the solution of non-linear integral equations via various $F_{B_{e}}$ -contractions, Symmetry, 11 (2019), 206. doi: 10.3390/sym11020206 |
[9] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled Metric Type Spaces and the Related Contraction Principle, Mathematics, 6 (2018), 194. doi: 10.3390/math6100194 |
[10] | J. Ahmad, A. E. Al-Mazrooei, On Fixed Point Results in Controlled Metric Spaces, J. Funct. Spaces, 2020 (2020), 1–7. |
[11] | J. Ahmad, N. Hussain, A. Azam, M. Arshad, Common fixed point results in complex valued metric space with applications to system of integral equations, J. Nonlinear Convex A., 16 (2015), 855–871. |
[12] | A. Azam, N. Mehmood, J. Ahmad, S. Radenović, Multivalued fixed point theorems in cone b-metric spaces, J. Inequal. Appl., 582 (2013), 1–9. |
[13] | N. Hussain, J. Ahmad, New Suzuki-Berinde type fixed point results, Carpathian J. Math., 33 (2017), 59–72. |
[14] | A. Petrusel, G. Petrusel, Fixed point results for multi-valued locally contractive operators, Appl. Set-Valued Anal. Optim., 2 (2020), 175–181. |
[15] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $ \alpha $-$\psi $-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014 |
[16] | B. Samet, The class of ($\alpha $, $\psi $)-type contractions in $b$-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 1–17. doi: 10.1186/1687-1812-2015-1 |
[17] | BK. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math., 6 (1975), 1455–1458. |
[18] | W. Shatanawi, K. Abodayeh, A. Mukheimer, Some Fixed Point Theorems in Extended b-Metric Spaces, U.P.B. Sci. Bull., Series A, 80 (2018), 71–78. |
[19] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. |
[20] | C. Chifu, Common fixed point results in extended $b$-metric spaces endowed with a directed graph, Results in Nonlinear Analysis, 2 (2019), 18–24 |
[21] | F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895–3901. doi: 10.1016/j.na.2012.02.009 |
[22] | R. Espnola, W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topo. Appl., 153 (2006), 1046–1055. |
[23] | N. Hussain, S. Al-Mezel, P. Salimi, Fixed points for $\psi $-graphic contractions with application to integral equations, Abstr. Appl. Anal., 2013 (2013), 1–11. |