Research article Special Issues

Extended rectangular fuzzy $ b $-metric space with application

  • Received: 20 April 2022 Revised: 16 June 2022 Accepted: 23 June 2022 Published: 04 July 2022
  • MSC : 47H10, 54H25

  • In this paper, we introduce an extended rectangular fuzzy $ b $-metric space which generalizes rectangular fuzzy $ b $-metric space and rectangular fuzzy metric space. We show that an extended rectangular fuzzy $ b $-metric space is not Hausdorff. A Banach fixed point theorem is proved as a special case of our main result where a Ćirić type contraction was employed. Our main result generalizes some comparable results in rectangular fuzzy $ b $-metric space and rectangular fuzzy metric space. We provide some examples to support the concepts and results presented herein. As an application of our result, we obtain the existence of the solution of the integral equation.

    Citation: Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad. Extended rectangular fuzzy $ b $-metric space with application[J]. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885

    Related Papers:

  • In this paper, we introduce an extended rectangular fuzzy $ b $-metric space which generalizes rectangular fuzzy $ b $-metric space and rectangular fuzzy metric space. We show that an extended rectangular fuzzy $ b $-metric space is not Hausdorff. A Banach fixed point theorem is proved as a special case of our main result where a Ćirić type contraction was employed. Our main result generalizes some comparable results in rectangular fuzzy $ b $-metric space and rectangular fuzzy metric space. We provide some examples to support the concepts and results presented herein. As an application of our result, we obtain the existence of the solution of the integral equation.



    加载中


    [1] M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://dx.doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. http://dx.doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
    [3] T. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal.-Theor., 65 (2006), 1379–1393. http://dx.doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
    [4] L. Ćirić, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. http://dx.doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2
    [5] H. Huang, Z. Mitrovic, K. Zoto, S. Radenovic, On convex $F$-contraction in $b$-metric spaces, Axioms, 10 (2021), 71. http://dx.doi.org/10.3390/axioms10020071 doi: 10.3390/axioms10020071
    [6] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67 (1979), 261–273. http://dx.doi.org/10.1016/0022-247X(79)90023-4 doi: 10.1016/0022-247X(79)90023-4
    [7] M. Nashed, J. Wong, Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations, J. Math. Mec., 18 (1969), 767–777.
    [8] L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [9] M. Abbas, N. Saleem, K. Sohail, Optimal coincidence best approximation solution in $b$-fuzzy metric spaces, Commun. Nonlinear Anal., 6 (2019), 1–12.
    [10] J. Buckley, T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy set. syst., 105 (1999), 241–248. http://dx.doi.org/10.1016/S0165-0114(98)00323-6 doi: 10.1016/S0165-0114(98)00323-6
    [11] M. De la Sen, M. Abbas, N. Saleem, On optimal fuzzy best proximity coincidence points of fuzzy order preserving proximal $\Psi(\sigma, \alpha)$-lower-bounding asymptotically contractive mappings in non-Archimedean fuzzy metric spaces, Springer Plus, 5 (2016), 1478. http://dx.doi.org/10.1186/s40064-016-3116-2 doi: 10.1186/s40064-016-3116-2
    [12] O. Kaleva, Fuzzy differential equations, Fuzzy set. syst., 24 (1987), 301–317. http://dx.doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [13] M. Puri, D. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. http://dx.doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
    [14] N. Saleem, M. Abbas, M. De la Sen, Optimal approximate solution of coincidence point equations in fuzzy metric spaces, Mathematics, 7 (2019), 327. http://dx.doi.org/10.3390/MATH7040327 doi: 10.3390/MATH7040327
    [15] N. Saleem, M. Abbas, Z. Raza, Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces, Iran. J. Fuzzy Syst., 13 (2016), 113–124.
    [16] I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [17] K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. USA, 28 (1942), 535–537. http://dx.doi.org/10.1073/pnas.28.12.535 doi: 10.1073/pnas.28.12.535
    [18] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy set. syst., 27 (1988), 385–389. http://dx.doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [19] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy set. syst., 64 (1994), 395–399. http://dx.doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [20] M. Abbas, F. Lael, N. Saleem, Fuzzy $b$-metric spaces: fixed point results for $\psi$-contraction correspondences and its application, Axioms, 9 (2020), 36. http://dx.doi.org/10.3390/axioms9020036 doi: 10.3390/axioms9020036
    [21] S. Furqan, H. Isik, N. Saleem, Fuzzy triple controlled metric spaces and related fixed point results, J. Funct. Space., 9 (2021), 9936992. http://dx.doi.org/10.1155/2021/9936992 doi: 10.1155/2021/9936992
    [22] V. Gregori, A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy set. syst., 125 (2002), 245–252. http://dx.doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
    [23] G. Mani, A. Gnanaprakasam, Z. Mitrovic, M. Bota, Solving an integral equation via fuzzy triple controlled bipolar metric spaces, Mathematics, 9 (2021), 3181. http://dx.doi.org/10.3390/math9243181 doi: 10.3390/math9243181
    [24] R. Mecheraoui, Z. Mitrovic, V. Parvaneh, H. Aydi, N. Saleem, On some fixed point results in $E$-fuzzy metric spaces, J. Math., 2021 (2021), 9196642. http://dx.doi.org/10.1155/2021/9196642 doi: 10.1155/2021/9196642
    [25] D. Miheţ, Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Set. Syst., 159 (2008), 739–744. http://dx.doi.org/10.1016/j.fss.2007.07.006 doi: 10.1016/j.fss.2007.07.006
    [26] N. Saleem, H. Isik, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, J. Intell. Fuzzy Syst., 40 (2021), 9977–9985. http://dx.doi.org/10.3233/JIFS-202594 doi: 10.3233/JIFS-202594
    [27] I. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [28] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [29] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31–37.
    [30] J. Roshan, V. Parvaneh, Z. Kadelburg, New fixed point results in $b$-rectangular metric spaces, Nonlinear Anal.-Model., 21 (2016), 614–634. http://dx.doi.org/10.15388/NA.2016.5.4 doi: 10.15388/NA.2016.5.4
    [31] S. Nǎdǎban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun., 11 (2016), 273–281. http://dx.doi.org/10.15837/IJCCC.2016.2.2443 doi: 10.15837/IJCCC.2016.2.2443
    [32] T. Kamran, M. Samreen, Q. Ul Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. http://dx.doi.org/10.10.3390/MATH5020019 doi: 10.10.3390/MATH5020019
    [33] F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy $b$-metric spaces, J. Math. Anal., 8 (2017), 124–131.
    [34] F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular $b$-metric spaces with application, J. Intell. Fuzzy Syst., 37 (2019), 1275–1285. http://dx.doi.org/10.3233/JIFS-182719 doi: 10.3233/JIFS-182719
    [35] M. Asim, M. Imdad, S. Radenovic, Fixed point results in extended rectangular $b$-metric spaces with an application, UPB Sci. Bull. Ser. A, 81 (2019), 43–50.
    [36] M. Sezen, Controlled fuzzy metric spaces and some related fixed point results, Numer. Meth. Part. Diff. Eq., 37 (2020), 583–593. http://dx.doi.org/10.1002/num.22541 doi: 10.1002/num.22541
    [37] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. http://dx.doi.org/10.2140/PJM.1960.10.313 doi: 10.2140/PJM.1960.10.313
    [38] R. Chugh, S. Kumar, Weakly compatible maps in generalized fuzzy metric spaces, The Journal of Analysis, 10 (2002), 65–74.
    [39] S. Mishra, N. Sharma, S. Singh, Common fixed points of maps on fuzzy metric spaces, International Journal of Mathematics and Mathematical Sciences, 17 (1994), 915450. http://dx.doi.org/10.1155/S0161171294000372 doi: 10.1155/S0161171294000372
    [40] M. Abbas, M. Khan, S. Radenovic, Common coupled fixed point theorems in cone metric spaces for $w$-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202. http://dx.doi.org/10.1016/j.amc.2010.05.042 doi: 10.1016/j.amc.2010.05.042
    [41] M. Abbas, N. Saleem, M. De la Sen, Optimal coincidence point results in partially ordered non-Archimedean fuzzy metric spaces, Fixed Point Theory Appl., 2016 (2016), 44. http://dx.doi.org/10.1186/S13663-016-0534-3 doi: 10.1186/S13663-016-0534-3
    [42] I. Beg, M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., 2006 (2006), 74503. http://dx.doi.org/10.1155/FPTA/2006/74503 doi: 10.1155/FPTA/2006/74503
    [43] A. Latif, N. Saleem, M. Abbas, $\alpha$-optimal best proximity point result involving proximal contraction mappings in fuzzy metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 92–103. http://dx.doi.org/10.22436/JNSA.010.01.09 doi: 10.22436/JNSA.010.01.09
    [44] N. Saleem, B. Ali, M. Abbas, Z. Raza, Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications, Fixed Point Theory Appl., 2015 (2015), 36. http://dx.doi.org/10.1186/S13663-015-0284-7 doi: 10.1186/S13663-015-0284-7
    [45] N. Saleem, M. Abbas, B. Bin-Mohsin, S. Radenovic, Pata type best proximity point results in metric spaces, Miskolc Math. Notes, 21 (2020), 367–386. http://dx.doi.org/10.18514/mmn.2020.2764 doi: 10.18514/mmn.2020.2764
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1375) PDF downloads(87) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog