Processing math: 100%
Research article Special Issues

Extended rectangular fuzzy b-metric space with application

  • In this paper, we introduce an extended rectangular fuzzy b-metric space which generalizes rectangular fuzzy b-metric space and rectangular fuzzy metric space. We show that an extended rectangular fuzzy b-metric space is not Hausdorff. A Banach fixed point theorem is proved as a special case of our main result where a Ćirić type contraction was employed. Our main result generalizes some comparable results in rectangular fuzzy b-metric space and rectangular fuzzy metric space. We provide some examples to support the concepts and results presented herein. As an application of our result, we obtain the existence of the solution of the integral equation.

    Citation: Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad. Extended rectangular fuzzy b-metric space with application[J]. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885

    Related Papers:

    [1] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [2] Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608
    [3] Müzeyyen Sangurlu Sezen . Interpolative best proximity point results via γ-contraction with applications. AIMS Mathematics, 2025, 10(1): 1350-1366. doi: 10.3934/math.2025062
    [4] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [5] Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy b-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851
    [6] Umar Ishtiaq, Aftab Hussain, Hamed Al Sulami . Certain new aspects in fuzzy fixed point theory. AIMS Mathematics, 2022, 7(5): 8558-8573. doi: 10.3934/math.2022477
    [7] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [8] Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf . Some results for multivalued mappings in extended fuzzy b-metric spaces. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268
    [9] Tayebe Lal Shateri, Ozgur Ege, Manuel de la Sen . Common fixed point on the bv(s)-metric space of function-valued mappings. AIMS Mathematics, 2021, 6(2): 1065-1074. doi: 10.3934/math.2021063
    [10] Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330
  • In this paper, we introduce an extended rectangular fuzzy b-metric space which generalizes rectangular fuzzy b-metric space and rectangular fuzzy metric space. We show that an extended rectangular fuzzy b-metric space is not Hausdorff. A Banach fixed point theorem is proved as a special case of our main result where a Ćirić type contraction was employed. Our main result generalizes some comparable results in rectangular fuzzy b-metric space and rectangular fuzzy metric space. We provide some examples to support the concepts and results presented herein. As an application of our result, we obtain the existence of the solution of the integral equation.



    Fréshet [1] introduced the concept of a distance between two abstract objects. A well known Banach contraction principle [2] in metric spaces has been extended in various directions [3,4,5,6,7]. Zadeh [8] introduced the concept of a fuzzy set, back in 1965, as an extension of a crisp set where each element of a set has some membership values between [0,1]. Since then, several mathematical structures have been transformed to fuzzy sets, see [9,10,11,12,13,14,15]. Kramosil and Michálek [16] applied this theory to metric spaces and defined fuzzy metric space which could be viewed as a reformulation of statistical metric spaces [17]. Grabiec [18] first defined the concept of convergence of a sequence and a Cauchy sequence and then proved the Banach and Edelstein contraction principles in fuzzy metric space. In 1994, George and Veeramani [19] modified the definition of a fuzzy metric space given in [16]. This generalized definition of a fuzzy metric space is now being used widely [20,21,22,23,24,25,26].

    Bakhtin [27] introduced the concept of a b-metric space which generalizes the notion of metric space. In 1993, Czerwik [28] studied some contractive mappings in b-metric space. Branciari [29] introduced rectangular metric spaces and proved Banach-Caccippoli type fixed point result in this new setup. In 2016, Roshan et al. [30] extended the notion of a rectangular metric space by introducing b-Branciari or b-rectangular metric space. Nǎdǎban [31] generalized the notion of a fuzzy metric space in the sense of Kramosil and Michálek by introducing fuzzy b-metric space. He also introduced the concept of fuzzy quasi b-metric space as the generalization of a fuzzy quasi metric space. In [32], authors replaced the constant b in the definition of b-metric space with some function θ and introduced the extended b-metric space, while in [33] the definition of a fuzzy b-metric space was generalized to extended fuzzy b-metric space. The generalization of a fuzzy rectangular metric space to fuzzy rectangular b-metric space is given in [34]. Asim et al. [35] proved fixed point results for contractive mapping in extended rectangular b-metric space. Sezen [36] introduced the concept of controlled fuzzy metric space by using a controlled function λ and proved some interesting fixed point results in this space. Mani [23] et al. introduced the concept of a fuzzy triple controlled bipolar metric spaces and proved the existence and uniqueness of the solution of an integral equation.

    In this paper, we follow the definition of George and Veeramani and define extended rectangular fuzzy b-metric space as an extension of fuzzy rectangular b-metric space, fuzzy rectangular metric space, extended fuzzy b-metric space, fuzzy bmetric space and fuzzy metric space. We generalize the Banach contraction principle in the framework of extended rectangular fuzzy b-metric space.

    Definition 2.1. [37] A binary operation :[0,1]×[0,1][0,1] is called a continuous t-norm if

    1) is continuous, commutative and associative,

    2) a1=a for all a[0,1],

    3) abcd for all a,b,c,d[0,1] provided that ac,bd.

    Definition 2.2. [38] Let X be a non-empty set, be a continuous t-norm. A fuzzy set Mr:X×X×(0,)[0,1] is called a fuzzy rectangular metric on X, if for distinct u,x,y,zX and t,s,w>0, following conditions hold:

    (Mr1) Mr(x,y,t)=0,

    (Mr2) Mr(x,y,t)=1 for all t>0 if and only if x=y,

    (Mr3) Mr(x,y,t)=Mr(y,x,t),

    (Mr4) Mr(x,z,(t+s+w))Mr(x,y,t)Mr(y,u,s)Mr(u,z,w),

    (Mr5) Mr(x,y,):(0,)[0,1] is left continuous and limtMr(x,y,t)=1.

    The triplet (X, Mr, ) is called a fuzzy rectangular metric space.

    Definition 2.3. [34] Let X be a non-empty set, be a continuous t-norm and b1 be a real number. A fuzzy set Mrb:X×X×(0,)[0,1] is called a fuzzy rectangular b-metric on X, if for distinct u,x,y,zX and t,s,w>0, following conditions hold:

    (Mrb1) Mrb(x,y,t)=0,

    (Mrb2) Mrb(x,y,t)=1 for all t>0 if and only if x=y,

    (Mrb3) Mrb(x,y,t)=M(y,x,t),

    (Mrb4) Mrb(x,z,b(t+s+w))Mrb(x,y,t)Mrb(y,u,s)Mrb(u,z,w),

    (Mrb5) Mrb(x,y,):(0,)[0,1] is left continuous and limtMrb(x,y,t)=1.

    The triplet (X,Mrb,) is called a fuzzy rectangular b-metric space.

    In this section we will define the notion of an extended rectangular fuzzy b-metric space that generalizes many fuzzy metric spaces in the literature.

    Definition 3.1. Let X be a non-empty set, be a continuous t-norm and α:X×X[1,). A fuzzy set M:X×X×(0,)[0,1] is called an extended rectangular fuzzy b-metric on X, if for distinct u,x,y,zX and t,s,w>0, following conditions hold:

    (M1) M(x,y,t)>0,

    (M2) M(x,y,t)=1 for all t>0 if and only if x=y,

    (M3) M(x,y,t)=M(y,x,t),

    (M4) M(x,z,α(x,z)(t+s+w))M(x,y,t)M(y,u,s)M(u,z,w),

    (M5) M(x,y,):(0,)[0,1] is continuous.

    The triplet (X,M,) is called an extended rectangular fuzzy b-metric space.

    Remark 3.1. (i) Taking α(x,z)=b1 in (M4), then an extended rectangular fuzzy b-metric space reduces to a fuzzy rectangular b-metric space [34].

    (ii) Taking α(x,z)=1 in ([M4]), then an extended rectangular fuzzy b-metric space reduces to a fuzzy rectangular metric space [38].

    (iii) Taking u=z and s+w=t in ([M4]), then an extended rectangular fuzzy b-metric space reduces to extended fuzzy b-metric space [33].

    (iv) Taking u=z and s+w=t and α(x,z)=b1 in ([M4]), then an extended rectangular fuzzy b-metric space reduces to fuzzy b-metric space [31].

    (iv) Taking u=z and s+w=t and α(x,z)=1 in ([M4]), then an extended rectangular fuzzy b-metric space reduces to fuzzy metric space [19].

    We now give an example of an extended rectangular fuzzy b-metric space.

    Example 3.1. Let X={1,2,3,4}. If we define d:X×X[0,) by d(x,y)=(xy)2 for all x,y in X and α:X×X[1,) by α(x,y)=x2+y2+1. Then M:X×X×(0,)[0,1] given by

    M(x,y,t)=tt+d(x,y), forall t>0,

    is an extended rectangular fuzzy b-metric on X provided that is a minimum t-norm, that is, ab=min{a,b} for all a,b[0,1].

    Clearly,

    α(1,2)=α(2,1)=6,α(1,3)=α(3,1)=11,α(1,4)=α(4,1)=18,α(2,3)=α(3,2)=14,α(2,4)=α(4,2)=21,α(3,4)=α(4,3)=26,α(1,1)=3,α(2,2)=9,α(3,3)=19,andα(4,4)=33,

    and

    d(1,2)=d(2,1)=d(2,3)=d(3,2)=d(3,4)=d(4,3)=1,d(1,3)=d(3,1)=d(2,4)=d(4,2)=4,d(1,4)=d(4,1)=9,andd(x,x)=0,forallxX.

    Note that first three axioms (M1–M3) clearly hold. To prove the axiom (M4), we discuss the following cases:

    Case 3.1. Let x=1,z=4. Then, we have

    M(1,4,α(1,4)(t+s+w))=α(1,4)(t+s+w)α(1,4)(t+s+w)+d(1,4)=18(t+s+w)18(t+s+w)+9,=2(t+s+w)2(t+s+w)+1=112(t+s+w)+1.

    Also,

    M(1,2,t)=tt+d(1,2)=tt+1=11t+1,M(2,3,s)=ss+d(2,3)=ss+1=11s+1,andM(3,4,w)=ww+d(3,4)=ww+1=11w+1.

    Note that

    112(t+s+w)+1=112t+2s+2w+1>11t+1.

    Thus,

    M(1,4,α(1,4)(t+s+w))>M(1,2,t),

    similarly, we have

    M(1,4,α(1,4)(t+s+w))>M(2,3,s),

    and

    M(1,4,α(1,4)(t+s+w))>M(3,4,w).

    Hence

    M(1,4,α(1,4)(t+s+w))>M(1,2,t)M(2,3,s)M(3,4,w).

    Case 3.2. Let x=2, and z=4. Then

    M(2,4,α(2,4)(t+s+w))=α(2,4)(t+s+w)α(2,4)(t+s+w)+d(2,4)=21(t+s+w)21(t+s+w)+4,=1421(t+s+w)+4,

    and

    M(2,3,t)=tt+d(2,3)=tt+1=144t+4,M(3,1,s)=ss+d(3,1)=ss+4=14s+4,M(1,4,w)=ww+d(1,4)=ww+9=19w+9.

    Now

    1421t+21s+21w+4>1421t+4>144t+4,

    implies that

    M(2,4,α(2,4)(t+s+w))>M(2,3,t).

    Similarly, we obtain that

    M(2,4,α(2,4)(t+s+w))>M(3,1,s),

    and

    M(2,4,α(2,4)(t+s+w))>M(1,4,w).

    Hence

    M(2,4,α(2,4)(t+s+w))>M(2,3,t)M(3,1,s)M(1,4,w).

    Case 3.3. If x=3, and z=4, then we have

    M(3,4,α(3,4)(t+s+w))=α(3,4)(t+s+w)α(3,4)(t+s+w)+d(3,4)=26(t+s+w)26(t+s+w)+1,=104(t+s+w)104(t+s+w)+4=14104(t+s+w)+4.

    Also,

    M(3,1,t)=tt+d(3,1)=tt+4=14t+4,M(1,2,s)=ss+d(1,2)=ss+1=11s+1,andM(2,4,w)=ww+d(2,4)=ww+4=14w+4.

    Now

    14104(t+s+w)+4>14104t+4>14t+4,

    implies that

    M(3,4,α(3,4)(t+s+w))>M(3,1,t).

    Similarly,

    M(3,4,α(3,4)(t+s+w))>M(2,4,w).

    Now

    26(t+s+w)26(t+s+w)+1=1126(t+s+w)+1,>1126s+1>11s+1,

    gives that

    M(3,4,α(3,4)(t+s+w))>M(1,2,s).

    Hence

    M(3,4,α(3,4)(t+s+w))>M(3,1,t)M(1,2,s)M(2,4,w).

    Thus in each case, we have,

    M(x,y,α(x,y)(t+s+w))M(x,z,t)M(z,u,s)M(u,y,w)

    for all distinct u,x,y,zX and t,s,w>0. Hence (X,M,) is an extended rectangular fuzzy b-metric space.

    We now give an example of extended rectangular fuzzy b-metric space with product t-norm but is not an extended rectangular fuzzy b-metric space with minimum t-norm.

    Example 3.2. Let X={1,2,3,4}. Define α:X×X[1,) by

    α(x,y)=x+y+1.

    Define a mapping M:X×X×(0,)[0,1] by

    M(x,y,t)=min{x,y}+tmax{x,y}+t.

    Then (X,M,) is an extended rectangular fuzzy b-metric space with product t-norm, that is, ab=ab for all a,b[0,1].

    Note that,

    α(1,2)=α(2,1)=4,α(1,3)=α(3,1)=5,α(1,4)=α(4,1)=6,α(2,3)=α(3,2)=6,α(2,4)=α(4,2)=7,α(3,4)=α(4,3)=8,α(1,1)=3,α(2,2)=5,andα(3,3)=7,α(4,4)=9.

    It is straight forward to verify axioms (M1) to (M3). We verify axiom (M4). For this, we consider the following cases:

    Case 3.4. If x=1, and z=4, then either y=2 and u=3 or y=3 and u=2. We prove the case for y=2 and u=3. Note that

    M(1,4,α(1,4)(t+s+w)=min{1,4}+α(1,4)(t+s+w)max{1,4}+α(1,4)(t+s+w),=1+6(t+s+w)4+6(t+s+w),(1+t2+t)(2+s3+s)(3+w4+w),=M(1,2,t)M(2,3,s)M(3,4,w).

    implies that

    M(1,4,α(1,4)(t+s+w))M(1,2,t)M(2,3,s)M(3,4,w).

    The proof of the case for y=3 and u=2 is similar. Similarly, one can verify the remaining cases. Hence (X,M,) is an extended rectangular fuzzy b-metric space with product t-norm. However, M(x,y,) is not an extended rectangular fuzzy b-metric space with respect to minimum t-norm. For instance, if we take

    x=1,y=2,u=4,z=3andt=0.01,s=0.02,w=0.03,

    then

    M(1,3,α(1,3)(0.01+0.02+0.03))=1+5(0.06)3+5(0.06)=0.3939,andM(1,2,0.01)=1+0.012+0.01=0.5025,M(2,4,0.02)=2+0.024+0.02=0.5025,M(4,3,0.03)=3+0.034+0.03=0.7519.

    Clearly,

    M(1,3,α(1,3)(0.01+0.02+0.03))M(1,2,0.01)M(2,4,0.02)M(4,3,0.03).

    Example 3.3. Let X=N. Define

    M(x1,x2,t)=e(x1x2)2t

    for all t>0 with t1t2=t1t2 and α(x1,x2)=3(x1+x2). Then (X,M,) is an extended rectangular fuzzy b-metric space but not a rectangular fuzzy metric space. Let x1,x2,x3,x4 be distinct elements in X and t,s,w>0. As

    (x1x4)2=(x1x2+x2x3+x3x4)23((x1x2)2+(x2x3)2+(x3x4)2),

    we have

    M(x1,x4,α(x1,x4)(t+s+w))=e(x1x4)2α(x1,x4)(t+s+w),e3((x1x2)2+(x2x3)2+(x3x4)2)3(x1+x4)(t+s+w),=e((x1x2)2+(x2x3)2+(x3x4)2)t(x1+x4)+s(x1+x4)+w(x1+x4),=e(x1x2)2t(x1+x4)+s(x1+x4)+w(x1+x4)e(x2x3)2t(x1+x4)+s(x1+x4)+w(x1+x4)e(x3x4)2t(x1+x4)+s(x1+x4)+w(x1+x4),e(x1x2)2te(x2x3)2se(x3x4)2w,=M(x1,x2,t)M(x2,x3,s)M(x3,x4,w).

    Hence (X,M,) is an extended rectangular fuzzy b-metric space.

    Definition 3.2. Let X be a non-empty set and α:X×X[1,). A function f:RR is called an α-non-decreasing if for t<s, we have f(t)f(α(x,y)s). If α(x,y)=b1, then f is called b-non-decreasing. if we take α(x,y)=1, then f is called non-decreasing.

    Lemma 3.1. Let (X,M,) be an extended rectangular fuzzy b-metric space and α:X×X[1,) be a continuous function, then M(x,y,.) is α-non-decreasing for all x,yX.

    Proof. Let 0<t<s, then

    M(x,y,sα(x,y))M(x,x,st2)M(x,y,t)M(y,y,st2),=1M(x,y,t)1,=M(x,y,t).

    Hence M(x,y,sα(x,y))M(x,y,t) which shows that M(x,y,.) is α-non-decreasing for all x,yX.

    On the basis of Lemma 1, we have following observations.

    Remark 3.2. (i) An extended rectangular fuzzy b-metric is not increasing.

    (ii) If we choose α(x,y)=b1, then every rectangular fuzzy b-metric is b-non-decreasing.

    (iii) Every extended fuzzy b-metric is an α-non-decreasing, where α:X×X[1,).

    (iv) If we take α(x,y)=1, then every rectangular fuzzy metric is non-decreasing.

    Definition 3.3. Let (X,M,) be an extended rectangular fuzzy b-metric space, xX and r(0,1). An open ball with center x and radius r is denoted by B(x,r,t) and is defined as:

    B(x,r,t)={yX:M(x,y,t)>1r},

    where, t>0.

    In the following example, we show that an extended rectangular fuzzy b-metric space is not Hausdorff.

    Example 3.4. Consider an extended rectangular fuzzy b-metric space as given in Example 3.1. Consider the open ball with center x1=1, radius r1=0.5 and t=7 as

    B1(1,0.5,7)={y{1,2,3,4}:M(1,y,7)>0.5}.

    Now

    M(1,1,7)=77+d(1,1)=77+0=1,M(1,2,7)=77+d(1,2)=77+1=0.8750,M(1,3,7)=77+d(1,3)=77+4=0.6364,M(1,4,7)=77+d(1,4)=77+9=0.4375.

    Hence,

    B1(1,0.5,7)={1,2,3}.

    Now consider the open ball with center x2=2, radius r2=0.45 and t=7 as

    B2(2,0.45,7)={y{1,2,3,4}:M(2,y,7)>0.55}.

    Now

    M(2,1,7)=77+d(2,1)=77+1=0.8750,M(2,2,7)=77+d(2,2)=77+0=1,M(2,3,7)=77+d(2,3)=77+1=0.8750,M(2,4,7)=77+d(2,4)=77+4=0.6364.

    Hence,

    B2(2,0.45,7)={1,2,3,4}.

    Note that B1(1,0.5,7)B2(2,0.45,7)={1,2,3}{1,2,3,4}={1,2,3}. Which shows (X,M,) is not Hausdorff.

    Analogous to the concepts of Cauchy sequence and the convergence of sequences given in [19], we have the following definition in the settings of an extended rectangular fuzzy b-metric space:

    Definition 3.4. Let (X,M,) be an extended rectangular fuzzy b-metric space. Then a sequence {xn} in X is called:

    1) convergent sequence if there exists xX such that,

    limnM(xn,x,t)=1, forallt>0.

    2) Cauchy sequence if and only if,

    limnM(xn,xn+p,t)=1, p1,t>0.

    An extended rectangular fuzzy b-metric space is complete if every Cauchy sequence in X is convergent in X.

    Lemma 3.2. Let {xn} be a Cauchy sequence in an extended rectangular fuzzy b-metric space (X,M,) such thatxmxn whenever mn,m,nN. Then {xn} converges to at most one point in X.

    Proof. On the contrary suppose that xnx and xny for xy. Then limnM(xn,x,t)=1 and limnM(xn,y,t)=1 for all t>0.

    Consider

    M(x,y,t)M(x,xn,t3α(x,y))M(xn,xm,t3α(x,y))M(xm,y,t3α(x,y)),111=1,

    as n,m. So M(x,y,t)=1, a contradiction as xy.

    Following lemma is needed in the proof of our main results.

    Lemma 3.3. [39] Let x,y be any two points in a fuzzy metric space (X,M,). If for any k(0,1), we have

    M(x,y,kt)M(x,y,t),

    then x=y.

    Definition 3.5. Let (X,M,) be an extended rectangular fuzzy b-metric space. A mapping T:XX satisfying

    M(Tx,Ty,kt)C(x,y,t), forallx,yX, (3.1)

    is called Ćirić type fuzzy contraction, where

    C(x,y,t)=min{M(y,Ty,3t)[1+M(x,Tx,t)]1+M(x,y,t),M(x,Tx,t),M(y,Ty,3t),M(y,Tx,t),M(x,y,t)}.

    Now, we prove our main result in the settings of an extended rectangular fuzzy b-metric space.

    Theorem 3.1. Let (X,M,) be a complete extended rectangular fuzzy b-metric space, α:X×X[1,1k) be a continuous function with k(0,1) such that

    limtM(x,y,t)=1,

    and T:XX be a Ćirić type fuzzy contraction. Then T has a unique fixed point.

    Proof. Let a0X be an arbitrary point. If Ta0=a0, then a0 is the required fixed point. If Ta0a0, then there exists a1X such that Ta0=a1. Continuing in this way, we define {an} in X such that

    an+1=Tn+1a0=Tan

    Note that

    M(an,an+1,kt)=M(Tan1,Tan,kt)C(an1,an,t),

    where

    C(an1,an,t)=min{M(an,Tan,3t)[1+M(an1,Tan1,t)]1+M(an1,an,t),M(an1,Tan1,t),M(an,Tan,3t),M(an,Tan1,t),M(an1,an,t)}=min{M(an,an+1,3t)[1+M(an1,an,t)]1+M(an1,an,t),M(an1,an,t),M(an,an+1,3t),M(an,an,t),M(an1,an,t)}=min{M(an,an+1,3t),M(an1,an,t),1}.

    If min{M(an,an+1,3t),M(an1,an,t),1}=M(an,an+1,3t) or 1, then M(an,an+1,kt)M(an,an+1,3t) or 1 and hence by Lemma 3, we have an=an+1. If anan+1 and min{M(an,an+1,3t),M(an1,an,t),1}=M(an,an+1,3t) or 1, then we have a contradiction because M(x,y,.) is α-non-decreasing. Now if min{M(an,an+1,t),M(an1,an,t),1}=M(an1,an,t), then we obtain that M(an,an+1,kt)M(an1,an,t). Similarly, we have M(an1,an,t)M(an2,an1,tk) and M(an2,an1,tk)M(an3,an2,tk2) and so on. Hence,

    M(an,an+1,kt)M(a0,a1,tkn1),

    which implies that

    M(an,an+1,t)M(a0,a1,tkn). (3.2)

    Consider the following two cases:

    Case 3.5. If p is odd (say) p=2m+1 for m1, then

    By (3.2), the right hand side of the above inequality becomes,

    Case 3.6. If p=2m, mN, that is, p is even, then

    M(an,an+2m,t)M(an,an+1,t3α(an,an+2m))Mα(an+1,an+2,t3α(an,an+2m)),M(an+2,an+2m,t3α(an,an+2m)),M(an,an+1,t3α(an,an+2m))M(an+1,an+2,t3α(an,an+2m))M(an+2,an+3,t32α(an,an+2m)α(an+2,an+2m))M(an+3,an+4,t32α(an,an+2m)α(an+2,an+2m)),M(an+4,an+2m,t32α(an,an+2m)α(an+2,an+2m)),M(an,an+1,t3α(an,an+2m))M(an+1,an+2,t3α(an,an+2m))M(an+2,an+3,t32α(an,an+2m)α(an+2,an+2m))M(an+3,an+4,t32α(an,an+2m)α(an+2,an+2m))M(an+4,an+5,t33α(an,an+2m)α(an+2,an+2m)α(an+4,an+2m))M(an+5,an+6,t33α(an,an+2m)α(an+2,an+2m)α(an+4,an+2m))M(an+6,an+7,t34α(an,an+2m)α(an+2,an+2m)α(an+4,an+2m)α(an+6,an+2m))
    M(an+2m2,an+2m,t3m1α(an,an+2m)α(an+2,an+2m)α(an+2m4,an+2m)).

    From (3.2), the right hand side of the above inequality becomes,

    M(an,an+2m,t)M(a0,a1,t3α(an,an+2m)kn)M(a0,a1,t3α(an,an+2m)kn+1)M(a0,a1,t32α(an,an+2m)α(an+2,an+2m)kn+2)M(a0,a1,t32α(an,an+2m)α(an+2,an+2m)kn+3)M(a0,a1,t33α(an,an+2m)α(an+2,an+2m)α(an+4,an+2m)kn+4)M(a0,a1,t33α(an,an+2m)α(an+2,an+2m)α(an+4,an+2m)kn+5)M(a0,a1,t34α(an,an+2m)α(an+2,an+2m)α(an+4,an+2m)α(an+6,an+2m)kn+6)
    M(a0,a1,t3m1α(an,an+2m)α(an+2,an+2m)α(an+2m4,an+2m)kn+2m2).

    Thus,

    limnM(an,an+p,t)=111=1.

    Which show that {an} is a Cauchy sequence in X. As X is complete, there exists some aX such that

    limnM(an,a,t)=1, forallt>0.

    We now prove that a is the fixed point of T. For this, consider

    M(a,Ta,t)M(a,an,t3α(a,Ta))M(an,an+1,t3α(a,Ta))M(an+1,Ta,t3α(a,Ta)),M(a,an,t3α(a,Ta))M(an,an+1,t3α(a,Ta)k)M(Tan,Ta,t3α(a,Ta)),M(a,an,t3α(a,Ta))M(an,an+1,t3α(a,Ta)k)C(an,a,t3kα(a,Ta)).

    Now

    C(an,a,t3kα(a,Ta))=min{M(a,Ta,t3kα(a,Ta))[1+M(an,Tan,t3kα(a,Ta))]1+M(an,a,t3kα(a,Ta)),M(an,Tan,t3kα(a,Ta)),M(a,Ta,t3kα(a,Ta)),M(a,Tan,t3kα(a,Ta)),M(an,a,t3kα(a,Ta))},=min{M(a,Ta,tkα(a,Ta))[1+M(an,an+1,t3kα(a,Ta))]1+M(an,a,t3kα(a,Ta)),M(an,an+1,t3kα(a,Ta)),M(a,Ta,tkα(a,Ta)),M(a,an+1,t3kα(a,Ta)),M(an,a,t3kα(a,Ta))}.

    On taking limit as n, we have

    limnC(an,a,t3kα(a,Ta))=min{M(a,Ta,tkα(a,Ta))[1+M(a,a,t3kα(a,Ta))]1+M(a,a,t3kα(a,Ta)),M(a,a,t3kα(a,Ta)),M(a,Ta,tkα(a,Ta)),M(a,a,t3kα(a,Ta)),M(a,a,t3kα(a,Ta))}=min{M(a,Ta,tkα(a,Ta)),1}.

    If limnC(an,a,t3kα(a,Ta))=1, then M(a,Ta,t)111 and hence a=Ta. If limnC(an,a,t3kα(a,Ta))=M(a,Ta,tkα(a,Ta)), then we have M(a,Ta,t)11M(a,Ta,tkα(a,Ta))=M(a,Ta,tkα(a,Ta)). Now α(a,Ta)<1k implies that 1<1kα(a,Ta), that is, t<tkα(a,Ta) and hence by Lemma 3.3, we have a=Ta. To prove the uniqueness of a fixed point, let a be another fixed point of T. Note that

    M(a,a,t)=M(Ta,Ta,t)C(a,a,tk),

    where,

    C(a,a,tk)=min{M(a,Ta,3tk)[1+M(a,Ta,tk)]1+M(a,a,tk),M(a,Ta,tk),M(a,Ta,3tk),M(a,Ta,tk),M(a,a,tk)},=min{M(a,a,3tk)[1+M(a,a,tk)]1+M(a,a,tk),M(a,a,tk),M(a,a,3tk),M(a,a,tk),M(a,a,tk)},=min{21+M(a,a,tk),1,M(a,a,tk)}.

    If C(a,a,tk)=1, then a=a. If C(a,a,tk)=M(a,a,tk), then M(a,a,t)M(a,a,tk) and hence by Lemma 3.3, we have a=a. If C(a,a,tk)=21+M(a,a,tk), then we obtain that M(a,a,t)21+M(a,a,tk). As M(a,a,tk)1, 21+M(a,a,tk)1 and M(a,a,t)1. Now 1M(a,a,t)1 implies that M(a,a,t)=1 which further implies that a=a.

    Following example is to support our main result.

    Example 3.5. Let X={0,1,2,3}, define a complete extended rectangular fuzzy b-metric space (X,M,) with α(x,y)=3(x2+y2+1) and

    M(x,y,t)=e(xy)2t, for all t>0,

    under product t-norm t1t2=t1t2. Let T:XX be a mapping defined as Tx=x2, for all xX. To satisfy the contractive condition 3.1 used in Theorem 3.1, we have the following cases:

    Case 3.7. If x=0,y=1, then

    M(0,T0,t)=1,M(1,T1,3t)=e112t,M(1,T0,t)=e1t=M(0,1,t),M(1,T1,3t)[1+M(0,T0,t)]1+M(0,1,t)=2e112te1t.

    Clearly, C(0,1,t)=e1t. Also,

    M(T0,T1,kt)=e14kt>e1t=C(0,1,t),forallk(14,1)

    Hence, M(T0,T1,kt)>C(0,1,t).

    Case 3.8. If x=0,y=2, then

    M(0,T0,t)=1,M(2,T2,3t)=e13t,M(2,T0,t)=e4t=M(0,2,t)M(2,T2,3t)[1+M(0,T0,t)]1+M(0,2,t)=2e13t1+e43t.

    Clearly, C(0,2,t)=e4t. Also,

    M(T0,T2,kt)=e1kt>e4t=C(0,2,t),for allk(14,1)

    Hence, M(T0,T2,kt)>C(0,2,t). Similarly, for the other cases, we can calculate C(x,y,t) for all x,yX as:

    C(0,3,t)=C(3,0,t)=e9t, C(0,0,t)=1,C(1,0,t)=C(1,2,t)=C(2,1,t)=C(2,2,t)=e1t, C(1,1,t)=C(2,0,t)=C(2,3,t)=C(3,1,t)=C(3,3,t)=e4t, C(1,3,t)=e254t, C(3,2,t)=e94t.

    Observe that M(Tx,Ty,kt)=M(Ty,Tx,kt) and M(Tx,Tx,kt)=1 for all x,yX, after simple calculation, we have the following observations:

    M(T0,T3,kt)=e94kt, M(T1,T0,kt)=M(T1,T2,kt)=M(T2,T3,kt)=e14kt, M(T1,T3,kt)=e1t, M(T2,T0,kt)=e1kt. Since

    M(Tx,Ty,kt)C(x,y,t)

    where C(x,y,t)=min{M(y,Ty,3t)[1+M(x,Tx,t)]1+M(x,y,t),M(x,Tx,t),M(y,Ty,3t),M(y,Tx,t),M(x,y,t)}holds for k(14,1) and for all x,yX. All conditions of the Theorem 3.1 are satisfied, hence 0 is the unique fixed point of T in X.

    If we take C(x,y,t)=M(x,y,t) in the Círić type contraction (3.1), then we have the following Banach contraction principle.

    Theorem 3.2. Let (X,M,) be a complete extended rectangular fuzzy b-metric space such that

    limtM(x,y,t)=1

    and α:X×X[1,1k),wherek(0,1). If T:XXis a mapping such that for allx,yX, we have

    M(Tx,Ty,kt)M(x,y,t). (3.3)

    Then T has a unique fixed point.

    Proof. By taking C(x,y,t)=M(x,y,t) in Theorem 3.1, the proof follows on the same lines.

    We now present an example to support the above result.

    Example 3.6. Let I=[0,1] and T:II a mapping given by

    Tx=1ex2.

    Define M:I×I×(0,)I by

    M(x,y,t)=e(xy)2t, for all t>0.

    Note that M(x,y,t) is a complete extended rectangular fuzzy b-metric space and

    M(Tx,Ty,kt)=M(1ex2,1ey2,kt)=e(1ex21ey2)2kt=e(exey)24kte(xy)24kt for all x,yIe(xy)2t for all k[14,1)=M(x,y,t).

    Thus all the conditions of Theorem 3.2 are satisfied. Moreover, x=0 is a unique fixed point of T.

    Theorem 3.2 generalizes Theorem 2.1 in [34] in the following way.

    Corollary 3.1. Let (X,M,) be a complete fuzzy rectangular b-metric space such that

    limtM(x,y,t)=1.

    If T:XX is a mapping such that for k(0,1b) and for all x,yX, we have

    M(Tx,Ty,kt)M(x,y,t).

    Then T has a unique fixed point.

    Proof. Choose α(x,y)=b1 and k(0,1b) in Theorem 3.2, rest of the proof follows on the same lines.

    Remark 3.3. By taking α(x,y)=b1 in Theorem 3.2, our main result reduces to the main results in [34].

    Corollary 3.2. Let (X,M,) be a complete fuzzy rectangularmetric space such that limtM(x,y,t)=1. IfT:XX is a mappingsuch that for all x,yX, we have

    M(Tx,Ty,kt)M(x,y,t),

    where k(0,1). Then T has a unique fixed point.

    Proof. Take α(x,y)=1 in Theorem 3.2 remaining proof will follow on the same lines.

    Remark 3.4. If we take α(x,y)=1, then Theorem 3.2 generalizes the Banach contraction theorem for fuzzy rectangular metric space [38].

    In this section, we consider the following integral equation

    x(s)=f(s)+0sF(s,r,x(r))dr, (4.1)

    where sI=[0,1]. Define a complete extended rectangular fuzzy b-metric space with α(x,y)=3(x+y+1) and for all t>0, x,yC(I,R) as:

    M(x,y,t)=esupsI|x(s)y(s)|2t,

    with product t-norm, where C(I,R) is the space of all continuous functions defined on I.

    Theorem 4.1. Consider an integral operator defined on C(I,R) as follows:

    Tx(s)=f(s)+0sF(s,r,x(r))dr, fC(I,R),

    where F satisfies the conditions:

    there exists f:I×I[0,] such that fL1(I,R) and for all x,yC(I,R) and r,sI, we have

    |F(s,r,x(r))F(s,r,y(r))|2f2(s,r)|x(r)y(r)|2,

    where

    supsI0sf2(s,r)drk<1.

    Then the integral Eq (4.1) has a unique solution.

    Proof. Let x,yC([0,a],R),k(0,1). Note that

    M(Tx(s),Ty(s),kt)=esupsI|Tx(s)Ty(s)|2kt=esupsI|0s(F(s,r,x(r))F(s,r,y(r)))dr|2ktesupsI0s|F(s,r,x(r))F(s,r,y(r))|2drkte|x(r)y(r)|2supsI0sf2(s,r)drktek|x(r)y(r)|2kt=e|x(r)y(r)|2tesuprI|x(r)y(r)|2t

    Thus M(Tx(s),Ty(s),kt)M(x,y,t), for all x,yC([0,a],R). Since all the conditions of Theorem 3.2 are satisfied so the integral Eq (4.1) has a unique solution.

    Example 4.1. Consider the differential equation

    y(s)y(s)=cos(s),y(0)=0,y(0)=0

    which gives the following integral equation

    y(s)=1cos(s)s0(sr)y(r)dr.

    Here, F(s,r,y(r))=(sr)y(r). Note that

    |F(s,r,x(r))F(s,r,y(r))|2=|(sr)x(r)(sr)(y(r)|2=(sr)2|x(r)y(r)|2

    Take, f(s,r)=(sr). Clearly supsI0sf2(s,r)dr1. Note that

    M(Tx(s),Ty(s),kt)=esupsI|Tx(s)Ty(s)|2kt=esupsI|0s(F(s,r,x(r))F(s,r,y(r)))dr|2ktesupsI0s|F(s,r,x(r))F(s,r,y(r))|2drktesupsI0sf2(s,r)|x(r)y(r)|2drkte|x(r)y(r)|2supsI0s(sr)2drkt=e|x(r)y(r)|23kte|x(r)y(r)|2t, for all k[13,1){}esuprI|x(r)y(r)|2t.

    Thus M(Tx(s),Ty(s),kt)M(x,y,t), for all x,yC([0,a],R). Since all conditions of Theorem 3.2 are satisfied so the integral Eq (4.1) has a unique solution.

    In this article, we introduced the concept of an extended rectangular fuzzy b-metric space which generalizes rectangular fuzzy b-metric space, fuzzy rectangular metric space, extended fuzzy b-metric space, fuzzy b-metric, fuzzy metric space and proved Ćirić type contraction results in such spaces. Our result extended the Banach fixed point theorem to fuzzy rectangular metric space [38] and to fuzzy rectangular b-metric space [34]. We studied the condition under which Cauchy sequence in an extended rectangular fuzzy b-metric space can have at most one limit point. We also provided an example to show that an extended rectangular fuzzy b-metric space is not Hausdorff. A result is presented to show that an extended rectangular fuzzy b-metric space is α-non-decreasing. An application to integral equation is presented here to support our main results.

    The concepts presented in this paper could be employed to extend and unify the results in [40,41,42,43,44,45].

    The authors declare to have no conflict of interest.



    [1] M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. http://dx.doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. http://dx.doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
    [3] T. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal.-Theor., 65 (2006), 1379–1393. http://dx.doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
    [4] L. Ćirić, A generalization of Banach's contraction principle, P. Am. Math. Soc., 45 (1974), 267–273. http://dx.doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2
    [5] H. Huang, Z. Mitrovic, K. Zoto, S. Radenovic, On convex F-contraction in b-metric spaces, Axioms, 10 (2021), 71. http://dx.doi.org/10.3390/axioms10020071 doi: 10.3390/axioms10020071
    [6] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67 (1979), 261–273. http://dx.doi.org/10.1016/0022-247X(79)90023-4 doi: 10.1016/0022-247X(79)90023-4
    [7] M. Nashed, J. Wong, Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations, J. Math. Mec., 18 (1969), 767–777.
    [8] L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [9] M. Abbas, N. Saleem, K. Sohail, Optimal coincidence best approximation solution in b-fuzzy metric spaces, Commun. Nonlinear Anal., 6 (2019), 1–12.
    [10] J. Buckley, T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy set. syst., 105 (1999), 241–248. http://dx.doi.org/10.1016/S0165-0114(98)00323-6 doi: 10.1016/S0165-0114(98)00323-6
    [11] M. De la Sen, M. Abbas, N. Saleem, On optimal fuzzy best proximity coincidence points of fuzzy order preserving proximal Ψ(σ,α)-lower-bounding asymptotically contractive mappings in non-Archimedean fuzzy metric spaces, Springer Plus, 5 (2016), 1478. http://dx.doi.org/10.1186/s40064-016-3116-2 doi: 10.1186/s40064-016-3116-2
    [12] O. Kaleva, Fuzzy differential equations, Fuzzy set. syst., 24 (1987), 301–317. http://dx.doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [13] M. Puri, D. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. http://dx.doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
    [14] N. Saleem, M. Abbas, M. De la Sen, Optimal approximate solution of coincidence point equations in fuzzy metric spaces, Mathematics, 7 (2019), 327. http://dx.doi.org/10.3390/MATH7040327 doi: 10.3390/MATH7040327
    [15] N. Saleem, M. Abbas, Z. Raza, Optimal coincidence best approximation solution in non-Archimedean fuzzy metric spaces, Iran. J. Fuzzy Syst., 13 (2016), 113–124.
    [16] I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [17] K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. USA, 28 (1942), 535–537. http://dx.doi.org/10.1073/pnas.28.12.535 doi: 10.1073/pnas.28.12.535
    [18] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy set. syst., 27 (1988), 385–389. http://dx.doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [19] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy set. syst., 64 (1994), 395–399. http://dx.doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [20] M. Abbas, F. Lael, N. Saleem, Fuzzy b-metric spaces: fixed point results for ψ-contraction correspondences and its application, Axioms, 9 (2020), 36. http://dx.doi.org/10.3390/axioms9020036 doi: 10.3390/axioms9020036
    [21] S. Furqan, H. Isik, N. Saleem, Fuzzy triple controlled metric spaces and related fixed point results, J. Funct. Space., 9 (2021), 9936992. http://dx.doi.org/10.1155/2021/9936992 doi: 10.1155/2021/9936992
    [22] V. Gregori, A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy set. syst., 125 (2002), 245–252. http://dx.doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
    [23] G. Mani, A. Gnanaprakasam, Z. Mitrovic, M. Bota, Solving an integral equation via fuzzy triple controlled bipolar metric spaces, Mathematics, 9 (2021), 3181. http://dx.doi.org/10.3390/math9243181 doi: 10.3390/math9243181
    [24] R. Mecheraoui, Z. Mitrovic, V. Parvaneh, H. Aydi, N. Saleem, On some fixed point results in E-fuzzy metric spaces, J. Math., 2021 (2021), 9196642. http://dx.doi.org/10.1155/2021/9196642 doi: 10.1155/2021/9196642
    [25] D. Miheţ, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Set. Syst., 159 (2008), 739–744. http://dx.doi.org/10.1016/j.fss.2007.07.006 doi: 10.1016/j.fss.2007.07.006
    [26] N. Saleem, H. Isik, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, J. Intell. Fuzzy Syst., 40 (2021), 9977–9985. http://dx.doi.org/10.3233/JIFS-202594 doi: 10.3233/JIFS-202594
    [27] I. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [28] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11.
    [29] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31–37.
    [30] J. Roshan, V. Parvaneh, Z. Kadelburg, New fixed point results in b-rectangular metric spaces, Nonlinear Anal.-Model., 21 (2016), 614–634. http://dx.doi.org/10.15388/NA.2016.5.4 doi: 10.15388/NA.2016.5.4
    [31] S. Nǎdǎban, Fuzzy b-metric spaces, Int. J. Comput. Commun., 11 (2016), 273–281. http://dx.doi.org/10.15837/IJCCC.2016.2.2443 doi: 10.15837/IJCCC.2016.2.2443
    [32] T. Kamran, M. Samreen, Q. Ul Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. http://dx.doi.org/10.10.3390/MATH5020019 doi: 10.10.3390/MATH5020019
    [33] F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy b-metric spaces, J. Math. Anal., 8 (2017), 124–131.
    [34] F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular b-metric spaces with application, J. Intell. Fuzzy Syst., 37 (2019), 1275–1285. http://dx.doi.org/10.3233/JIFS-182719 doi: 10.3233/JIFS-182719
    [35] M. Asim, M. Imdad, S. Radenovic, Fixed point results in extended rectangular b-metric spaces with an application, UPB Sci. Bull. Ser. A, 81 (2019), 43–50.
    [36] M. Sezen, Controlled fuzzy metric spaces and some related fixed point results, Numer. Meth. Part. Diff. Eq., 37 (2020), 583–593. http://dx.doi.org/10.1002/num.22541 doi: 10.1002/num.22541
    [37] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313–334. http://dx.doi.org/10.2140/PJM.1960.10.313 doi: 10.2140/PJM.1960.10.313
    [38] R. Chugh, S. Kumar, Weakly compatible maps in generalized fuzzy metric spaces, The Journal of Analysis, 10 (2002), 65–74.
    [39] S. Mishra, N. Sharma, S. Singh, Common fixed points of maps on fuzzy metric spaces, International Journal of Mathematics and Mathematical Sciences, 17 (1994), 915450. http://dx.doi.org/10.1155/S0161171294000372 doi: 10.1155/S0161171294000372
    [40] M. Abbas, M. Khan, S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202. http://dx.doi.org/10.1016/j.amc.2010.05.042 doi: 10.1016/j.amc.2010.05.042
    [41] M. Abbas, N. Saleem, M. De la Sen, Optimal coincidence point results in partially ordered non-Archimedean fuzzy metric spaces, Fixed Point Theory Appl., 2016 (2016), 44. http://dx.doi.org/10.1186/S13663-016-0534-3 doi: 10.1186/S13663-016-0534-3
    [42] I. Beg, M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., 2006 (2006), 74503. http://dx.doi.org/10.1155/FPTA/2006/74503 doi: 10.1155/FPTA/2006/74503
    [43] A. Latif, N. Saleem, M. Abbas, α-optimal best proximity point result involving proximal contraction mappings in fuzzy metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 92–103. http://dx.doi.org/10.22436/JNSA.010.01.09 doi: 10.22436/JNSA.010.01.09
    [44] N. Saleem, B. Ali, M. Abbas, Z. Raza, Fixed points of Suzuki type generalized multivalued mappings in fuzzy metric spaces with applications, Fixed Point Theory Appl., 2015 (2015), 36. http://dx.doi.org/10.1186/S13663-015-0284-7 doi: 10.1186/S13663-015-0284-7
    [45] N. Saleem, M. Abbas, B. Bin-Mohsin, S. Radenovic, Pata type best proximity point results in metric spaces, Miskolc Math. Notes, 21 (2020), 367–386. http://dx.doi.org/10.18514/mmn.2020.2764 doi: 10.18514/mmn.2020.2764
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1592) PDF downloads(88) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog