Research article Special Issues

Certain new aspects in fuzzy fixed point theory

  • We will establish several fixed point results in new introduced spaces in this manuscript known as fuzzy rectangular metric-like spaces and rectangular b-metric-like spaces. These new results and spaces will improve the approach of existing ones in the literature. Few non-trivial examples and an application also verify the uniqueness of solution.

    Citation: Umar Ishtiaq, Aftab Hussain, Hamed Al Sulami. Certain new aspects in fuzzy fixed point theory[J]. AIMS Mathematics, 2022, 7(5): 8558-8573. doi: 10.3934/math.2022477

    Related Papers:

    [1] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy $ b $-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [2] Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular $ b $-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608
    [3] Muhammad Riaz, Umar Ishtiaq, Choonkil Park, Khaleel Ahmad, Fahim Uddin . Some fixed point results for ξ-chainable neutrosophic and generalized neutrosophic cone metric spaces with application. AIMS Mathematics, 2022, 7(8): 14756-14784. doi: 10.3934/math.2022811
    [4] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended $ b $-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [5] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [6] Haitham Qawaqneh, Mohd Salmi Md Noorani, Hassen Aydi . Some new characterizations and results for fuzzy contractions in fuzzy $ b $-metric spaces and applications. AIMS Mathematics, 2023, 8(3): 6682-6696. doi: 10.3934/math.2023338
    [7] Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy $ b $-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330
    [8] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular $ b $-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [9] Mohammed Shehu Shagari, Saima Rashid, Khadijah M. Abualnaja, Monairah Alansari . On nonlinear fuzzy set-valued $ \Theta $-contractions with applications. AIMS Mathematics, 2021, 6(10): 10431-10448. doi: 10.3934/math.2021605
    [10] Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy $ b $-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851
  • We will establish several fixed point results in new introduced spaces in this manuscript known as fuzzy rectangular metric-like spaces and rectangular b-metric-like spaces. These new results and spaces will improve the approach of existing ones in the literature. Few non-trivial examples and an application also verify the uniqueness of solution.



    The symbols in Table 1 are used throughout this study.

    Table 1.  Abbreviations.
    Abbreviations Definitions
    FSs Fuzzy sets
    CTN Continuous triangular norms
    MLSs Metric-like spaces
    FMSs Fuzzy metric spaces
    FBMLSs Fuzzy b-metric-like spaces
    FRBMSs Fuzzy rectangular b-metric spaces
    FRMSs Fuzzy rectangular metric spaces
    FRMLSs Fuzzy rectangular metric-like spaces
    FRBMLSs fuzzy rectangular b-metric-like spaces
    FP Fixed point
    E [0, 1]

     | Show Table
    DownLoad: CSV

    FSs were introduced by Zadeh [1] as a useful tool for situations where data is ambiguous and FS theory contains the concept of degree of membership. The terms "fuzziness" and "probability" are not interchangeable. The term "probability" refers to the objective uncertainty resulting from a large number of observations. The term "fuzziness" describes a perception of ambiguity. Fuzzy notions are used to describe the degrees of possession of a specific property. The ability of FS theory to tackle issues that fixed point theory finds problematic is what makes it valuable in dealing with control challenges. FSs are used to control ill-defined, complex, or non-linear systems.

    Metric FP theory has been extensively investigated due to its vast range of applications in mathematics, science and economics. Harnadi [14] explained MLSs and demonstrated FP results. For an extended multi-valued F-contraction in MLSs, Hammad et al. [13] proposed a modified dynamic process. Alghamdi [10] developed the concept of b-MLSs and provided several couple FP techniques for contraction mappings. Mlaiki et al. [15] introduced the concept of rectangular MLSs and used contraction mappings to demonstrate FP results. Rectangular b-metric spaces were introduced by Georgea et al. [16].

    CTNs were proposed by Schweizer and Sklar [8]. FMSs were proposed by Kramosil and Michalek [2], who combined the concepts of FSs with metric spaces. Garbiec [5] gave a fuzzy interpretation of the Banach contraction principle in FMSs, while Kaleva and Seikkala [3] defined a distance between two points in FMSs as a non-negative fuzzy number. Hausdorff topology was defined on FMSs by George and Veermani [4]. In the development of control FMSs, Uddin et al. [7] developed different Banach FP findings. Saleem et al. [17] defined fuzzy double controlled metric spaces and established a number of FP theorems. Uddin et al. [18] used fuzzy contractions of the Suzuki type to solve problems. In fuzzy b-metric spaces, K. Javed et al. [19] showed ordered-theoretic FP findings. In the scenario of orthogonal partial b-metric spaces, K. Javed et al. [20] developed various FP findings. For generalised contractions, Ali et al. [21] demonstrated a number of FP findings. Several FP findings were reported in fuzzy b-metric spaces by Rakic et al. [22]. Rakic et al. [23] proved novel FPs in FMSs for the Ciric type. Debnath et al. [24] demonstrated some incredible FP results.

    The concept of fuzzy MLSs was proposed by Shukla and Abbas [11] using the principles of MLSs and FSs. The fuzzy MLSs approach was established by Shukla and Gopal [12], who also demonstrated numerous FP solutions. Javed et al. [6] proposed the concept of FBBMLSs and demonstrated a number of FP results. The concept of FRBMSs was developed by Mehmood et al. [9], and the Banach contraction principle was shown in this context. In this study, we elaborated on the ideas offered in [6,9]. The manuscript's main goals are as follows:

    (a) Introduce the concepts of FRMLSs and FRBMLSs;

    (b) To establish several FP results;

    (c) To enhance existing literature of FMSs and fuzzy FP theory.

    In this manuscript, we aim to establish several fixed point results in new introduced spaces in this manuscript known as fuzzy rectangular metric-like spaces and rectangular b-metric-like spaces. Few non-trivial examples and an application also verify the uniqueness of solution.

    This section includes some basic definitions that will aid in the comprehension of the main material.

    Definition 2.1. [8] A binary operation : E×EE is known as CTN if

    C1. κɴ=ɴκ,()κ,ɴE;

    C2. is continuous;

    C3. κ1=κ,()κE;

    C4. (κɴ)ũ=κ(ɴũ),()κ,ɴ,ũE;

    C5. If κũ and ɴσ, with κ,ɴ,ũ,σE, then κɴũσ.

    Definition 2.2. [6] Suppose R. A triplet (R,Fɴ,) is known as FBMLS if is a CTN, Fɴ is a FS on R×R×(0,+) if for all σ,ϰ,gR and є,s>0,

    R1. Fɴ(σ,ϰ,є)>0;

    R2. Fɴ(σ,ϰ,є)=1 then σ=ϰ;

    R3. Fɴ(σ,ϰ,є)=Fɴ(ϰ,σ,є);

    R4. Fɴ(σ,g,ɴ(є+s))Fɴ(σ,ϰ,є)Fɴ(ϰ,g,s);

    R5. Fɴ(σ,ϰ,.):(0,+)E is continuous and limє+Fɴ(σ,ϰ,є)=1.

    Definition 2.3. [9] Let R. A triplet (R,δv,) is known as FRMS if is a CTN, δv is a FS on R×R×[0,+) if for all σ,ϰ,gR and є,s,w>0,

    F1. δv(σ,ϰ,0)=0;

    F2. δv(σ,ϰ,є)=1 if and only if σ=ϰ;

    F3. δv(σ,ϰ,є)=δv(ϰ,σ,є);

    F4. δv(σ,g,є+s+w)δv(σ,ϰ,є)δv(ϰ,u,s)δv(u,g,w) for all distinct ϰ,uR{σ,g};

    F5. δv(σ,ϰ,.):(0,+)E is left continuous and limє+δv(σ,ϰ,є)=1.

    Definition 2.4. [9] Let R. A triplet (R,δɴ,) is known as FRBMS if ɴ1, is a CTN and δɴ is a FS on R×R×[0,+) if for all σ,ϰ,gR and є,s,w>0,

    L1. δɴ(σ,ϰ,0)=0;

    L2. δɴ(σ,ϰ,є)=1 if and only if σ=ϰ;

    L3. δɴ(σ,ϰ,є)=δɴ(ϰ,σ,є);

    L4. δɴ(σ,g,ɴ(є+s+w))δɴ(σ,ϰ,є)δɴ(ϰ,u,s)δɴ(u,g,w) for all distinct ϰ,uR{σ,g};

    L5. δɴ(σ,ϰ,.):(0,+)E is left continuous and limє+δɴ(σ,ϰ,є)=1.

    In this section, we provide numerous new concepts as generalizations of FRMSs and FRBMSs, as well as several FP results.

    Definition 3.1. Suppose R. A triplet (R,Lv,) is known as FRMLS if is a CTN, Lv is a FS on R×R×[0,+) if for all σ,ϰ,gR and є,s,w>0,

    S1. Lv(σ,ϰ,0)=0;

    S2. Lv(σ,ϰ,є)=1 implies σ=ϰ;

    S3. Lv(σ,ϰ,є)=Lv(ϰ,σ,є);

    S4. Lv(σ,g,є+s+w)Lv(σ,ϰ,є)Lv(ϰ,u,s)Lv(u,g,w) for all distinct ϰ,uR{σ,g};

    S5. Lv(σ,ϰ,.):(0,+)E is left continuous and limє+Lv(σ,ϰ,є)=1.

    Example 3.1. Suppose (R,d) be a rectangular MLS, define Lv:R×R×[0,+)E by

    Lv(σ,ϰ,є)=єє+d(σ,ϰ),  for  all  σ,ϰR  and  є>0,

    with be a CTN on R. Then it is easy to see that (R,Lv,) is a FRMLS.

    Example 3.2. Define Lv:R×R×[0,+)E by

    Lv(σ,ϰ,є)=єє+max{σ,ϰ},  for  all  σ,ϰR  and  є>0.

    CTN is given by κɴ=κ·ɴ, then it is obvious that (R,Lv,) is a FRMLS.

    Remark 3.1. In the preceding case, the self-distance is not equal to 1, i.e.,

    Lv(σ,σ,є)=єє+max{σ,σ}=єє+σ1.

    In the case of FRMS, however, the self-distance must be equal to one. As a result, every FRMS is a FRMLS, but the opposite may not be true.

    Definition 3.2. Let R and a triplet (R,δ,) is known as FRBMLS if ɴ1, is a CTN and δ is a FS on R×R×[0,+) if for all σ,ϰ,gR and є,s,w>0,

    (a) δ(σ,ϰ,0)=0;

    (b) δ(σ,ϰ,є)=1 implies σ=ϰ;

    (c) δ(σ,ϰ,є)=δ(ϰ,σ,є);

    (d) δ(σ,g,ɴ(є+s+w))δ(σ,ϰ,є)δ(ϰ,u,s)δ(u,g,w) for all distinct ϰ,uR{σ,g};

    (e) δ(σ,ϰ,.):(0,+)E is left continuous and limє+δ(σ,ϰ,є)=1.

    Example 3.3. Suppose (R,d) be a rectangular b-MLS (RBMLS), define δ:R×R×[0,+)E by

    δ(σ,ϰ,є)=єє+d(σ,ϰ),  for  all  σ,ϰR  and  є>0,

    with CTN ''. Therefore, it is clear that (R,δ,) is a FRBMLS.

    Example 3.4. Define δ:R×R×[0,+)E by

    δ(σ,ϰ,є)=єє+max{σ,ϰ}p,  for  all  σ,ϰR  and  є>0.

    CTN is defined by κɴ=κ·ɴ  and  p1, then it is obvious that (R,δ,) is a FRBMLS.

    Example 3.5. Assume (R,d) be a RBMLS, define δ:R×R×[0,+)E by

    δ(σ,ϰ,є)=ed(σ,ϰ)є,  for  all  σ,ϰR  and  є>0,

    with CTN κɴ=min{κ,ɴ}. Then it is obvious that (R,δ,) is a FRBMLS.

    Example 3.6. Assume (R,d) be a RBMLS, define δ:R×R×[0,+)E by

    δ(σ,ϰ,є)=emax{σ,ϰ}  pє,  for  all  σ,ϰR  and  є>0,

    with p1 and CTN κɴ=min{κ,ɴ}. Then it obvious that (R,δ,) is a FRBMLS.

    Remark 3.2. If CTN given by κɴ=κ·ɴ, then Example 3.6 is also a FRBMLS.

    Remark 3.3. The self distance in FRBMLS may be not equal to 1.

    Pick Example 3.6 with p=2, then it yields

    δ(σ,σ,є)=emax{σ,σ}2є=eσ2є1.

    Remark 3.4. The preceding statement demonstrates that every FRBMLS is not a FRBMS, because in order to be a FRBMS, self distance must equal 1.

    Remark 3.5. FRBMLS may be not continuous.

    Example 3.7. Suppose R=[0,+), δ(σ,ϰ,є)=єє+d(σ,ϰ) for all σ,ϰR,є>0 and

    d(σ,ϰ)={0,if  σ=ϰ,2(σ+ϰ)2,if  σ,ϰ[0,1],12(σ+ϰ)2,otherwise.

    If we define CTN by κɴ=κ·ɴ, then (R,δ,) is an FRBMLS. Now, to illustrate continuity, we have

    limn+δ(0,11n,є)=limn+єє+2(1(1n))2=єє+2=δ(0,1,є).

    However,

    limn+δ(1,11n,є)=limn+єє+2(2(1n))2=єє+81=δ(1,1,є).

    Hence, (R,δ,) is not continuous.

    Definition 3.3. Let (R,δ,) be a FRBMLS and assume {σn} is a sequence in R. Then

    (a) {σn} is named to be a convergent sequence if there exists σR such that

    limn+δ(σn,σ,є)=δ(σ,σ,є),  for  all  є>0.

    (b) {σn} is named to be Cauchy sequence if limn+δ(σn,σn+q,є) is exists and is finite for  all  є>0.

    (c) If every Cauchy sequence is convergent in R then (R,δ,) is said to be a complete FRBMLS such that

    limn+δ(σn,σ,є)=δ(σ,σ,є)=limn+δ(σn,σn+q,є),

    for all є>0  and  q1.

    Remark 3.6. A convergent sequence's limit may not be unique in a FRBMLS.

    Consider the FRBMLS in Example 3.4, and describe a sequence as σn=11nfor  all  n1. If σ1, for  all  є>0, then

    limn+δ(σn,σ,є)=limn+єє+max{σn,σ}p=єє+σp=δ(σ,σ,є).

    That is, the sequence {σn} converges to all σ1.

    Remark 3.7. It is not necessary for convergent sequence to become Cauchy in a FRBMLS.

    Consider the example given in the preceding remark and describe a sequence as σn=1+(1)n for all n1. If σ2,  for  all  є>0, then

    limn+δ(σn,σ,є)=limn+єє+max{σn,σ}p=єє+σp=δ(σ,σ,є).

    That is, the sequence {σn} converges to all σ2 but it is not Cauchy as limn+δ(σn,σn+q,є) does not exist.

    Definition 3.4. Let (R,δ,) be a FRBMLS. For σR, θ(0,1),є>0, we define the open ball as B(σ,θ,є)={ϰR:δ(σ,ϰ,є)>1θ} (center  σ,radius  θ  with  respect  єoє).

    Remark 3.8. FRBMLS may not have to be Hausdorff.

    Example 3.8. Let R={1,2,3,4}. Define δ:R×R×[0,+)[0,1] by

    δ(σ,ϰ,є)=єє+max{σ,ϰ}2,  for  all  σ,ϰR  and  є>0.

    CTN is defined by κɴ=κ·ɴ, then (R,δ,) is a FRBMLS.

    Now, take σ=1,є=20  and  ϰR, then

    δ(1,2,20)=2020+max{1,2}2=2020+4=2024=0.8333,
    δ(1,3,20)=2020+max{1,3}2=2020+9=2029=0.6896,
    δ(1,4,20)=2020+max{1,4}2=2020+16=2036=0.5555.

    Now, if we take θ=0.4, then

    B(1,0.4,20)={ϰR:δ(1,ϰ,20)>0.6}.

    Hence, B(1,0.4,20)={2,3} is an open ball. Now, take σ=2,є=10  and  ϰR, then

    δ(2,1,10)=1010+max{2,1}2=1010+4=1014=0.7142,
    δ(2,3,10)=1010+max{2,3}2=1010+9=1019=0.5263,
    δ(2,4,10)=1010+max{2,4}2=1010+16=1026=0.3846.

    Now, if we take θ=0.5, then

    B(2,0.5,10)={ϰR:δ(2,ϰ,10)>0.5}.

    Hence, B(2,0.5,10)={1,3} is an open ball. But B(1,0.4,20)B(2,0.5,10)={2,3}{1,3}. This implies that FRBMLS (R,δɴ,) is not Hausdorff.

    Lemma 3.1. Let (R,δ,) be a FRBMLS and

    δ(σ,ϰ,ςє)δ(σ,ϰ,є), (3.1)

    for all σ,ϰR,0<ς<1  and  є>0,thenσ=ϰ.

    Proof. From (d) of Definition 3.2, it is immediate.

    Theorem 3.1. (Banach contraction theorem in fuzzy rectangular b-metric-like spaces)

    Suppose (R,δ,) be a complete FRBMLS with ɴ1 such that

    limє+δ(σ,ϰ,є)=1,  for  all  σ,ϰR. (3.2)

    Let ξ:RR be a mapping satisfying

    δ(ξσ,ξϰ,ςє)δ(σ,ϰ,є), (3.3)

    for all σ,ϰR,ς[0,1ɴ). Then ξ has a unique fixed point uR and δ(u,u,є)=1.

    Proof. Fix an arbitrary point κ0R and for n=0,1,2,, start an iterative process κn+1=ξκn. Successively applying inequality (3.1), we get for all n,є>0,

    δ(κn,κn+1,є)δ(κ0,κ1,єςn). (3.4)

    Since (R,δ,) is a FRBMLS. For the sequence {κn}, writing є=є3+є3+є3 and using the rectangular inequality given in (d) of Definition 3.2 on δ(κn,κn+p,є), we have the following cases.

    Case 1. If p is odd, then said p=2m+1 where m{1,2,3,}, we have

    δ(κn,κn+2m+1,є)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+2m+1,є3N)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+2m+1,є(3N)2)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+5,є(3N)3)δ(κn+2m,κn+2m+1,є(3N)m).

    Using (d) of Definition 3.2 in the above inequalities, we deduce

    δ(κn,κn+2m+1,є)δ(κ0,κ1,є3Nςn)δ(κ0,κ1,є3Nςn+1)δ(κ0,κ1,є(3N)2ςn+2)δ(κ0,κ1,є(3N)2ςn+3)δ(κn+4,κn+5,є(3N)3ςn+4)δ(κ0,κ1,є(3N)mςn+m)δ(κ0,κ1,є3Nςn)δ(κ0,κ1,є(3Nς)ςn)δ(κ0,κ1,є(3Nς)2ςn)δ(κ0,κ1,є(3Nς)2ςn+1)δ(κn+4,κn+5,є(3Nς)3ςn+1)δ(κ0,κ1,є(3Nς)mςn+m).

    Case 2. If p is even, then said p=2m,m{1,2,3,}, then we have

    δ(κn,κn+2m,є)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+2m,є3N)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+2m,є(3N)2)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+5,є(3N)3)δ(κn+2m4,κn+2m3,є(3N)m1)δ(κn+2m3,κn+2m2,є(3N)m1)δ(κn+2m2,κn+2m,є(3N)m1).

    Using (3.4) in the above inequalities, we deduce

    δ(κn,κn+2m,є)δ(κ0,κ1,є3Nςn)δ(κ0,κ1,є3Nςn+1)δ(κ0,κ1,є(3N)2ςn+2)δ(κ0,κ1,є(3N)2ςn+3)δ(κ0,κn+5,є(3N)3ςn+4)δ(κ0,κ1,є(3N)m1ςn+2m2)δ(κ0,κ1,є3Nςn)δ(κ0,κ1,є(3Nς)ςn)δ(κ0,κ1,є(3Nς)2ςn)δ(κ0,κ1,є(3Nς)2ςn+1)δ(κn+4,κn+5,є(3Nς)3ςn+1)δ(κ0,κ1,є(3Nς)m1ςn+m1).

    Therefore, from limє+δ(σ,ϰ,є)=1, Cases 1, 2 and (3.2) conclude that for all p{1,2,3,}, we have

    limn+δ(κn,κn+p,є)=1.

    Hence, {κn} is a Cauchy sequence. Since (R,δ,) is a complete FRBMLS, so there exists uR such that

    limn+δ(σn,u,є)=δ(u,u,є)=limn+δ(σn,σn+q,є)=1,  for  all  є>0  and  q1.

    Now, we examine that u is a fixed point of ξ.

    δ(u,ξu,є)δ(u,κn,є3N)δ(κn,κn+1,є3N)δ(κn+1,ξu,є3N)δ(u,κn,є3N)δ(ξκn1,ξκn,є3N)δ(ξκn,ξu,є3N)δ(u,κn,є3N)δ(κn1,κn,є3Nς)δ(κn,u,є3Nς)111=1  as  n+.

    Hence, u is a fixed point of ξ.

    Uniqueness: Let v is another fixed point of ξ for some vR, then

    δ(v,u,є)=δ(ξv,ξu,є)δ(v,u,єς)=δ(ξv,ξu,єς)δ(v,u,єς2)δ(v,u,єςn)1asn+,

    and by using the fact limє+δ(σ,ϰ,є)=1. Thus, u=v. Hence, the fixed point is unique.

    Theorem 3.2. (Banach contraction theorem in fuzzy rectangular metric-like spaces)

    Suppose (R,δ,) be a FRMLS such that

    limє+δ(σ,ϰ,є)=1,for  all  σ,ϰR.

    Let ξ:RR be a mapping satisfying

    δ(ξσ,ξϰ,ςє)δ(σ,ϰ,є),

    for all σ,ϰR,ς[0,1). Then ξ has a unique fixed point uR and δ(u,u,є)=1.

    Proof. It is immediate if we take ɴ=1 in the above theorem.

    Example 3.10. Let R=[0,1], define δ:R×R×[0,+)[0,1] by

    δ(σ,ϰ,є)=єє+max(σ+ϰ)2,

    for  all  σ,ϰR  and  є>0, with CTN κɴ=κ.ɴ. Then it is obvious that (R,δ,) is a complete FRBMLS.

    Define ξ:RR  by  ξ(σ)=12σ3. Then

    δ(ξσ,ξϰ,ςє)=δ(12σ3,12ϰ3,ςє)=ςєςє+(12σ3+12ϰ3)2=9ςє9ςє+(2(2σ+2ϰ))29ςє9ςє+(σ+ϰ)2єє+(σ+ϰ)2=δ(σ,ϰ,є),

    for all σ,ϰR, where ς[12,1). Thus, all the conditions of Theorem 3.1 satisfied and hence, 0 is the unique fixed point of ξ.

    Theorem 3.3. Let (R,δ,) be a complete FRBMLS with ɴ1 such that

    limє+δ(σ,ϰ,є)=1,  for  all  σ,ϰR. (3.5)

    Let ξ:RR be a mapping satisfying

    1δ(ξσ,ξϰ,є)1ς[1δ(σ,ϰ,є)1], (3.6)

    for all σ,ϰR,ς[0,1ɴ). Then ξ has a unique fixed point uR and δ(u,u,є)=1.

    Proof. Let (R,δ,) be a complete FRBMLS. For arbitrary κ0R, define a sequence {κn} in R by

    κ1=ξκ0, κ2=ξ2κ0=ξκ1,,κn=ξnκ0=ξκn1 for all nN.

    If κn=κn1 for some nN, then κn is a fixed point of ξ. We assume that κnκn1 for all nN. For є>0 and nN, we get from (3.6) that

    1δ(κn,κn+1,є)1=1δ(ξκn1,ξκn,є)1ς[1δ(κn1,κn,є)1].

    We have

    1δ(κn,κn+1,є)ςδ(κn1,κn,є)+(1ς)=ςδ(ξκn2,ξκn1,є)+(1ς)ς2δ(κn2,κn1,є)+ς(1ς)+(1ς),є>0.

    Continuing this way, we get

    1δ(κn,κn+1,є)ςnδ(κ0,κ1,є)+ςn1(1ς)+ςn2(1ς)++ς(1ς)+(1ς)ςnδ(κ0,κ1,є)+(ςn1+ςn2++1)(1ς)ςnδ(κ0,κ1,є)+(1ςn).

    We have

    1ςnδ(κ0,κ1,є)+(1ςn)δ(κn,κn+1,є),є>0,nN. (3.7)

    Since (R,δ,) be a FRBMLS for the sequence {κn}, writing є=є3+є3+є3 and using the rectangular inequality given in (d) of Definition 3.2 on δ(κn,κn+p,є), in the following cases.

    Case 1. If p is odd, then said p=2m+1 where m{1,2,3,}, we have

    δ(κn,κn+2m+1,є)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+2m+1,є3N)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+2m+1,є(3N)2)δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+5,є(3N)3)δ(κn+2m,κn+2m+1,є(3N)m).

    By using (3.7) in the above inequality, we have

    δ(κn,κn+2m+1,є)1ςnδ(κ0,κ1,є3N)+(1ςn)1ςn+1δ(κ0,κ1,є3N)+(1ςn+1)1ςn+2δ(κ0,κ1,є(3N)2)+(1ςn+2)1ςn+3δ(κ0,κ1,є(3N)2)+(1ςn+3)1ςn+2mδ(κ0,κ1,є(3N)m)+(1ςn+2m)1ςnδ(κ0,κ1,є3N)+(1ςn)1ς(ςn)δ(κ0,κ1,є3N)+(1ς(ςn))1ς2(ςn)δ(κ0,κ1,є(3N)2)+(1ς2(ςn))1ς2(ςn+1)δ(κ0,κ1,є(3N)2)+(1ς2(ςn+1))1ςm(ςn+m)δ(κ0,κ1,є(3N)m)+(1ςm(ςn+m)).

    Case 2. If p is even, then said p=2m,m{1,2,3,}, then we have

    δ(κn,κn+2m,є)
    δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+2m,є3N)
    δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+2m,є(3N)2)
    δ(κn,κn+1,є3N)δ(κn+1,κn+2,є3N)δ(κn+2,κn+3,є(3N)2)δ(κn+3,κn+4,є(3N)2)δ(κn+4,κn+5,є(3N)3)δ(κn+2m4,κn+2m3,є(3N)m1)δ(κn+2m3,κn+2m2,є(3N)m1)δ(κn+2m2,κn+2m,є(3N)m1)
    1ςnδ(κ0,κ1,є3N)+(1ςn)1ςn+1δ(κ0,κ1,є3N)+(1ςn+1)1ςn+2δ(κ0,κ1,є(3N)2)+(1ςn+2)1ςn+3δ(κ0,κ1,є(3N)2)+(1ςn+3)1ςn+2m2δ(κ0,κ1,є(3N)m1)+(1ςn+2m2)
    1ςnδ(κ0,κ1,є3N)+(1ςn)1ς(ςn)δ(κ0,κ1,є3N)+(1ς(ςn))1ς2(ςn)δ(κ0,κ1,є(3N)2)+(1ς2(ςn))
    1ς2(ςn+1)δ(κ0,κ1,є(3N)2)+(1ς2(ςn+1))1ςm1(ςn+m1)δ(κ0,κ1,є(3N)m)+(1ςm1(ςn+m1)).

    We deduce from the cases 1 and 2 that

    limn+δ(κn,κn+p,є)=1  forall  є>0,p1.

    Therefore, {κn} is a Cauchy sequence in (R,δ,). By the completeness of (R,δ,), there exists uR such that

    limn+δ(κn,u,є)=limn+δ(κn,κn+p,є)=limn+δ(u,u,є)=1,є>0,p1. (3.6)

    Now we prove that u is a fixed point for ξ. For this we obtain from (3.6) that

    1δ(ξκn,ξu,є)1ς[1δ(κn,u,є)1]=ςδ(κn,u,є)ς,
    1ςδ(κn,u,є)+1ςδ(ξκn,ξu,є),

    and

    1δ(ξκn1,ξκn,є)1ς[1δ(κn1,κn,є)1]=ςδ(κn1,κn,є)ς,1ςδ(κn1,κn,є)+1ςδ(ξκn1,ξκn,є).

    Using the above inequalities, we deduce

    δ(u,ξu,є)δ(u,κn,є3N)δ(κn,κn+1,є3N)δ(κn+1,ξu,є3N)
    δ(u,κn,є3N)δ(ξκn1,ξκn,є3N)δ(ξκn,ξu,є3N)
    δ(u,κn,є3N)1ςδ(κn1,κn,є3N)+1ς1ςδ(κn,u,є3N)+1ς.

    Taking limit as n+ and utilizing (3.8) in the preceding inequality, we examine that δ(u,ξu,є)=1, that is, ξu=u. Hence, u is a fixed point of ξ and δ(u,u,є)=1 for all є>0.

    Now we prove the uniqueness of u of ξ. Let v be another fixed point of ξ, such that δ(u,v, t) <1 for some є>0, and follows from (3.6) that

    1δ(u,v,є)1=1δ(ξu,ξv,є)1ς[1δ(u,v,є)1]<1δ(u,v,є)1

    a contradiction. Therefore, we must have δ(u,v,є)=1, for all є>0, and hence u=v.

    Corollary 3.1. Let (R,δ,) be a complete FRBMLS and a mapping ξ:RR satisfying

    1δ(ξnσ,ξnϰ,є)1ς[1δ(σ,ϰ,є)1].

    For some nN,σ,ϰR,є>0, where ς[0,1ɴ). Then ξ has a unique fixed point uR and δ(u,u,є)=1,є>0.

    Proof. uR is a unique fixed point of ξn by using Theorem 3.3, and δ(u,u,є)=1,є>0. ξu is also a fixed point of ξn as ξn(ξu)=ξu and from Theorem 3.3, ξu=u, u is a unique fixed point, since the unique fixed point of ξ is also a unique fixed point of ξn.

    Example 3.10. Let R=[0,1], define δ:R×R×[0,+)[0,1] by

    δ(σ,ϰ,є)=emax(σ+ϰ)  2є,

    for  all  σ,ϰR  and  є>0, with CTN κɴ=κ.ɴ. Then it is obvious that (R,δ,) is a complete FRBMLS. Define ξ:RRby

    ξ(σ)={0,  if  σ=1,σ10,  otherwise.

    Then ξ verifies the contractive form in Theorem 3.3, where ς[12,1), with unique fixed point 0 and δ(0,0,є)=1for  all  є>0. Hence, all conditions of Theorem 3.3 are satisfied.

    An application of Theorem 3.1's integral equation is presented in this section. We show that an integral equation of the type

    σ(j)=g(j)+j0F(j,r,σ(r))dr, (4.1)

    for all j[0,l] where l>0, has a solution. Let C([0,l],R) be the space of all continuous functions defined on [0,l] with CTN κɴ=κ.ɴ for all κ,ɴ[0,1] and define a complete FRBMLS by

    δ(σ,ϰ,є)=supj[0,l]єє+(σ(j)+ϰ(j))p  for  all  σ,ϰC([0,l],R),p1  and  є>0.

    Theorem 4.1. Let ξ:C([0,l],R)C([0,l],R) be the integral operator given by

    ξ(σ(j))=g(j)+j0F(j,r,σ(r))dr,gC([0,l],R),

    where FC([0,l]×[0,l]×R,R) satisfies the following conditions:

    There exists f:[0,l]×[0,l][0,++] such that for all r,j[0,l], f(j,r)L1([0,l],R) and for all σ,ϰC([0,l],R), we have

    (F(j,r,σ(r))+F(j,r,ϰ(r)))pfp(j,r)(σ(r)+ϰ(r))p

    and

    supj[0,l]j0fp(j,r)drς<1.

    Then the integral equation has the solution σC([0,l],R).

    Proof. For all σ,ϰC([0,l],R), we have

    δ(ξ(σ(j),ξ(ϰ(j)),ςє)
    =supj[0,l]ςєςє+(ξ(σ(j))+ξ(ϰ(j)))p
    supj[0,l]ςєςє+j0(F(j,r,σ(r))+F(j,r,ϰ(r)))pdr
    supj[0,l]ςєςє+j0fp(j,r)(σ(r)+ϰ(r))pdr
    ςєςє+(σ(r)+ϰ(r))psupj[0,l]j0fp(j,r)dr
    ςєςє+(σ(r)+ϰ(r))pєє+(σ(r)+ϰ(r))p
    =δ(σ,ϰ,є).

    Hence, σ is a fixed point of ξ, which is the solution of integral equation (4.1).

    Remark 4.1. In the above theorem, if we take p=1, then application holds for FRMLS.

    In this manuscript, we established several fixed point results in new introduced spaces in this manuscript known as fuzzy rectangular metric-like spaces and rectangular b-metric-like spaces. Few non-trivial examples and an application also verify the uniqueness of solution. Fixed point theory receives a lot of attention since it has so many applications in mathematics, science, and economics. Using the ideas presented in the paper, several types of fixed point solutions for single and multi-valued mappings can be established. Intuitionistic fuzzy rectangular metric-like spaces, intuitionistic fuzzy rectangular b-metric-like spaces, Fuzzy controlled rectangular metric-like spaces, and other mathematical structures can be used to further extend the principles provided.

    The authors are very thankful to DSR for providing necessary facilities.

    The authors declare that they have no competing interests.



    [1] L. A. Zadeh, Fuzzy sets, In: Fuzzy sets, fuzzy logic, and fuzzy systems, 1996,394-432. https://doi.org/10.1142/9789814261302_0021
    [2] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336-344.
    [3] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1 doi: 10.1016/0165-0114(84)90069-1
    [4] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [5] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [6] K. Javed, F. Uddin, H. Aydi, M. Arshad, U. Ishtiaq, H. Alsamir, On fuzzy b-metric-like spaces, J. Func. Space., 2021 (2021), 1-9. https://doi.org/10.1155/2021/6615976 doi: 10.1155/2021/6615976
    [7] F. Uddin, K. Javed, H. Aydi, U. Ishtiaq, M. Arshad, Control fuzzy metric spaces via orthogonality with an application, J. Math., 2021 (2021), 1-12. https://doi.org/10.1155/2021/5551833 doi: 10.1155/2021/5551833
    [8] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313 doi: 10.2140/pjm.1960.10.313
    [9] F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular b-metric spaces with application, J. Intell. Fuzzy Syst., 37 (2019), 1275-1285. https://doi.org/10.3233/JIFS-182719 doi: 10.3233/JIFS-182719
    [10] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems in b-metric-like spaces, J. Inequal. Appl., 2013 (2013), 1-25. https://doi.org/10.1186/1029-242X-2013-402 doi: 10.1186/1029-242X-2013-402
    [11] S. Shukla, M. Abbas, Fixed point results in fuzzy metric-like spaces, Iran. J. Fuzzy Syst., 11 (2014), 81-92. https://doi.org/10.22111/IJFS.2014.1724 doi: 10.22111/IJFS.2014.1724
    [12] S. Shukla, D. Gopal, A. F. Roldán-López-de-Hierro, Some fixed point theorems in 1-M-complete fuzzy metric-like spaces, Int. J. Gen. Syst., 45 (2016), 815-829. https://doi.org/10.1080/03081079.2016.1153084 doi: 10.1080/03081079.2016.1153084
    [13] H. A. Hammad, M. De La Sen, H. Aydi, Generalized dynamic process for an extended multi-valued F-contraction in metric-like spaces with applications, Alex. Eng. J., 59 (2020), 3817-3825. https://doi.org/10.1016/j.aej.2020.06.037 doi: 10.1016/j.aej.2020.06.037
    [14] A. Amini-Harandi, Metric-likes paces, partial metric spaces and fixed point, Fixed Point Theory Appl., 2012 (2012), 1-10. https://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
    [15] N. Mlaiki, K. Abodayeh, H. Aydi, T. Abdeljawad, M. Abuloha, Rectangular metric-like type spaces and related fixed point, J. Math., 2018 (2018), 1-7. https://doi.org/10.1155/2018/3581768 doi: 10.1155/2018/3581768
    [16] R. Georgea, S. Radenović, K. P. Reshma, S. Shukla, Rectangular b-metric spaces and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005-1013. http://dx.doi.org/10.22436/jnsa.008.06.11 doi: 10.22436/jnsa.008.06.11
    [17] N. Saleem, H. Işık, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, J. Intell. Fuzzy Syst., 40 (2021), 9977-9985. https://doi.org/10.3233/JIFS-202594 doi: 10.3233/JIFS-202594
    [18] I. Uddin, A. Perveen, H. Işık, R. Bhardwaj, A solution of Fredholm integral inclusions via Suzuki-type fuzzy contractions, Math. Probl. Eng., 2021 (2021), 1-8. https://doi.org/10.1155/2021/6579405 doi: 10.1155/2021/6579405
    [19] K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021), 1-7. https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707
    [20] K. Javed, H. Aydi, F. Uddin, M. Arshad, On orthogonal partial b-metric spaces with an application, J. Math., 2021 (2021), 1-7. https://doi.org/10.1155/2021/6692063 doi: 10.1155/2021/6692063
    [21] M. U. Ali, H. Aydi, M. Alansari, New generalizations of set valued interpolative Hardy-Rogers type contractions in b-metric spaces, J. Func. Space., 2021 (2021), 1-8. https://doi.org/10.1155/2021/6641342 doi: 10.1155/2021/6641342
    [22] D. Rakić, A. Mukheimer, T. Došenović, Z. D. Mitrović, S. Radenović, Some new fixed point results in b-metric spaces, J. Inequal. Appl., 2020 (2020), 1-14. https://doi.org/10.1186/s13660-020-02371-3 doi: 10.1186/s13660-020-02371-3
    [23] D. Rakić, T. Došenović, Z. D. Mitrović, M. De La Sen, S. Radenović, Some fixed point theorems of Ćirić type in fuzzy metric spaces, Mathematics, 8 (2020), 1-15. https://doi.org/10.3390/math8020297 doi: 10.3390/math8020297
    [24] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Singapore: Spring, 2021. https://doi.org/10.1007/978-981-16-4896-0
  • This article has been cited by:

    1. Tayyab Kamran, Umar Ishtiaq, Khaleel Ahmad, Ghulam Murtaza, Ioannis Argyros, Certain Fixed Point Results via Contraction Mappings in Neutrosophic Semi-Metric Spaces, 2024, 11, 2409-5761, 30, 10.15377/2409-5761.2024.11.3
    2. Chol Jin Kil, Kwang Ho, Won-Chol Yang, Un Ok Kim, Abdul Rauf Khan, Triple‐Composed Metric Spaces and Related Fixed Point Results With Application, 2024, 2024, 2314-8896, 10.1155/2024/6466538
    3. Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen, Generalized common best proximity point results in fuzzy multiplicative metric spaces, 2023, 8, 2473-6988, 25454, 10.3934/math.20231299
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1807) PDF downloads(90) Cited by(3)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog