Among various improvements in fuzzy set theory, a progressive development has been in process to investigate fuzzy analogues of fixed point theorems of the classical fixed point results. In this direction, taking the ideas of $ \theta $-contractions as well as Feng-Liu's approach into account, some new fuzzy fixed point results for nonlinear fuzzy set-valued $ \theta $-contractions in the framework of metric-like spaces are introduced in this paper without using the usual Pompeiu-Hausorff distance function. Our established concepts complement, unify and generalize a few important fuzzy and classical fixed point theorems in the corresponding literature. A handful of these special cases of our notions are pointed and analyzed. Some of the main results herein are further applied to derive their analogues in metric-like spaces endowed with partial ordering and binary relations. Comparisons and nontrivial examples are given to authenticate the hypotheses and significance of the obtained ideas.
Citation: Mohammed Shehu Shagari, Saima Rashid, Khadijah M. Abualnaja, Monairah Alansari. On nonlinear fuzzy set-valued $ \Theta $-contractions with applications[J]. AIMS Mathematics, 2021, 6(10): 10431-10448. doi: 10.3934/math.2021605
Among various improvements in fuzzy set theory, a progressive development has been in process to investigate fuzzy analogues of fixed point theorems of the classical fixed point results. In this direction, taking the ideas of $ \theta $-contractions as well as Feng-Liu's approach into account, some new fuzzy fixed point results for nonlinear fuzzy set-valued $ \theta $-contractions in the framework of metric-like spaces are introduced in this paper without using the usual Pompeiu-Hausorff distance function. Our established concepts complement, unify and generalize a few important fuzzy and classical fixed point theorems in the corresponding literature. A handful of these special cases of our notions are pointed and analyzed. Some of the main results herein are further applied to derive their analogues in metric-like spaces endowed with partial ordering and binary relations. Comparisons and nontrivial examples are given to authenticate the hypotheses and significance of the obtained ideas.
[1] | A. E. Al-Mazrooei, J. Ahmad, Fixed point theorems for fuzzy mappings with applications, J. Intell. Fuzzy Syst., 36 (2019), 3903–3909. doi: 10.3233/JIFS-181687 |
[2] | I. Altun, G. Minak, On fixed point theorems for multivalued mappings of Feng-Liu type, Bull. Korean Math. Soc., 52 (2015), 1901–1910. doi: 10.4134/BKMS.2015.52.6.1901 |
[3] | A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 204. doi: 10.1186/1687-1812-2012-204 |
[4] | A. Amini-Harandi, M. Fakhar, H. R. Hajisharifi, Fixed point theorems for set-valued contractions, Rend. Circ. Mat. Palermo, 62 (2013), 367–377. doi: 10.1007/s12215-013-0130-x |
[5] | R. P. Agarwal, U. Aksoy, E. Karapınar, I. M. Erhan, $F$-contraction mappings on metric-like spaces in connection with integral equations on time scales, Rev. Real Acad. Cienc. Exactas, Fís. Nat. Ser. A. Mat., 114 (2020), 1–12. doi: 10.1007/s13398-019-00732-2 |
[6] | A. Azam, M. S. Shagari, Common $e$-soft fixed points of soft set-valued maps, Novi Sad J. Math., 2020. Available from: https://doi.org/10.30755/NSJOM.09872. |
[7] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181 |
[8] | M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782. doi: 10.1016/j.jmaa.2006.03.016 |
[9] | W. S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology Appl., 159 (2012), 49–56. doi: 10.1016/j.topol.2011.07.021 |
[10] | G. Durmaz, I. Altun, On nonlinear set-valued $\theta$-contractions, Bull. Malays. Math. Sci. Soc., 43 (2020), 389–402. doi: 10.1007/s40840-018-0689-7 |
[11] | Y. Feng, S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. doi: 10.1016/j.jmaa.2005.12.004 |
[12] | H. A. Hancer, G. Minak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (2017), 229–236. doi: 10.24193/fpt-ro.2017.1.19 |
[13] | S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. doi: 10.1016/0022-247X(81)90141-4 |
[14] | P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3–7. |
[15] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. doi: 10.1186/1029-242X-2014-38 |
[16] | S. Kanwal, A. Azam, Common fixed points of intuitionistic fuzzy maps for Meir-Keeler type contractions, Adv. Fuzzy Syst., 2018 (2018), 1–6. |
[17] | D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334 (2007), 132–139. doi: 10.1016/j.jmaa.2006.12.012 |
[18] | S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183–197. |
[19] | S. S. Mohammed, I. A. Fulatan, Fuzzy fixed point results via simulation functions, Math. Sci., 2021. Available from: https://doi.org/10.1007/s40096-021-00405-5. |
[20] | S. S. Mohammed, A. Azam, Fixed points of soft-set valued and fuzzy set-valued maps with applications, J. Intell. Fuzzy Sys., 37 (2019), 3865–3877. doi: 10.3233/JIFS-190126 |
[21] | S. S. Mohammed, A. Azam, Integral type contractions of soft set-valued maps with application to neutral differential equation, AIMS Math., 5 (2019), 342–358. |
[22] | N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. doi: 10.1016/0022-247X(89)90214-X |
[23] | S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475 |
[24] | J. J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. doi: 10.1007/s11083-005-9018-5 |
[25] | H. K. Pathak, R. P. Agarwal, Y. J. Cho, Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions, J. Comput. Appl. Math., 283 (2015), 201–217. doi: 10.1016/j.cam.2014.12.019 |
[26] | D. Rakić, D. Tatjana, D. Zoran, S. Manuel, R. Stojan, Some fixed point theorems of Ćirić type in fuzzy metric spaces, Mathematics, 8 (2020), 297. doi: 10.3390/math8020297 |
[27] | A. C. Ran, M. C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. |
[28] | S. Reich, A fixed point theorem for locally contractive multi-valued functions, Rev. Roumaine Math. Pures Appl., 17 (1972), 569–572. |
[29] | M. S. Shagari, A. Azam, Fixed point theorems of fuzzy set-valued maps with applications, Issues Anal., 27 (2020), 68–86. doi: 10.15393/j3.art.2020.6750 |
[30] | A. L. Sima, F. He, N. Lu, Pata-type fixed-point theorems in Kaleva-Seikkala's type fuzzy metric space, J. Funct. Spaces, 2020 (2020), 1–9. |
[31] | M. Turinici, Abstract comparison principles and multivariable Gronwall-Bellman inequalities, J. Math. Anal. Appl., 117 (1986), 100–127. doi: 10.1016/0022-247X(86)90251-9 |
[32] | J. Vujaković, S. Mitrović, Z. D. Mitrović, S. Radenović, On $F$-contractions for weak $\alpha$-admissible mappings in metric-like spaces, Mathematics, 8 (2020), 1629. doi: 10.3390/math8091629 |
[33] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. |