In this paper, new intuitionistic fuzzy fixed point results for sequence of intuitionistic fuzzy set-valued maps in the structure of $ b $-metric spaces are examined. A few nontrivial comparative examples are constructed to keep up the hypotheses and generality of our obtained results. Following the fact that most existing concepts of Ulam-Hyers type stabilities are concerned with crisp mappings, we introduce the notion of stability and well-posedness of functional inclusions involving intuitionistic fuzzy set-valued maps. It is a familiar fact that solution of every functional inclusion is a subset of an appropriate space. In this direction, intuitionistic fuzzy fixed point problem involving $ (\alpha, \beta) $-level set of an intuitionistic fuzzy set-valued map is initiated. Moreover, novel sufficient criteria for existence of solutions to an integral inclusion are investigated to indicate a possible application of the ideas presented herein.
Citation: Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed. Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions[J]. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022
In this paper, new intuitionistic fuzzy fixed point results for sequence of intuitionistic fuzzy set-valued maps in the structure of $ b $-metric spaces are examined. A few nontrivial comparative examples are constructed to keep up the hypotheses and generality of our obtained results. Following the fact that most existing concepts of Ulam-Hyers type stabilities are concerned with crisp mappings, we introduce the notion of stability and well-posedness of functional inclusions involving intuitionistic fuzzy set-valued maps. It is a familiar fact that solution of every functional inclusion is a subset of an appropriate space. In this direction, intuitionistic fuzzy fixed point problem involving $ (\alpha, \beta) $-level set of an intuitionistic fuzzy set-valued map is initiated. Moreover, novel sufficient criteria for existence of solutions to an integral inclusion are investigated to indicate a possible application of the ideas presented herein.
[1] | C. Alaca, A Common fixed point theorem for a family of selfmappings satisfying a general contractive condition of operator type, Albanian J. Math., 3 (2009), 13–17. |
[2] | R. Allahyari, R. Arab, A. S. Haghighi, Common fixed point theorems for infinite families of contractive maps, Math. Sci., 9 (2015), 199–203. doi: 10.1007/s40096-015-0168-3. doi: 10.1007/s40096-015-0168-3 |
[3] | J. Appell, E. D. Pascale, H. T. Nguyêñ, P. P. Zabreĭko, Nonlinear integral inclusions of Hammerstein type, Topol. Method. Nonl. An., 5 (1995), 111–124. doi: 10.12775/TMNA.1995.007. doi: 10.12775/TMNA.1995.007 |
[4] | K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 1 (1986), 87–96. |
[5] | A. Azam, R. Tabassum, M. Rashid, Coincidence and fixed point theorems of intuitionistic fuzzy mappings with applications, J. Math. Anal., 8 (2017), 56–77. |
[6] | A. Azam, R. Tabassum, Existence of common coincidence point of intuitionistic fuzzy maps, J. Intell. Fuzzy Syst., 35 (2018), 4795–4805. doi: 10.3233/JIFS-18411. doi: 10.3233/JIFS-18411 |
[7] | A. Azam, M. Arshad, P. Vetro, On a pair of fuzzy $\varphi$-contractive mappings, Math. Comput. Model., 52 (2010), 207–214. doi: 10.1016/j.mcm.2010.02.010. doi: 10.1016/j.mcm.2010.02.010 |
[8] | L. Barbet, K. Nachi, Sequences of contractions and convergence of fixed points, Monog. Sem. Mat. Garc. Gal., 33 (2006), 51–58. |
[9] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[10] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. doi: 10.3233/BME-2008-0556. doi: 10.3233/BME-2008-0556 |
[11] | V. Berinde, Generalized contractions in quasimetric spaces, Semin. Fix. Point Theor., 3 (1993), 3–9. |
[12] | M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two $b$-metrics, Stud. U. Babes-Bol. Mat., 1 (2009), 28–32. doi: 10.12775/TMNA.2009.021. |
[13] | T. Cardinali, N. Papageorgiou, Hammerstein integral inclusions in reflexive Banach spaces, P. Am. Math. Soc., 127 (1999), 95–103. doi: 10.1090/S0002-9939-99-04906-0. doi: 10.1090/S0002-9939-99-04906-0 |
[14] | L. B. Ciric, On a family of contractive maps and fixed points, Pub. Inst. Math., 17 (1974), 45–51. |
[15] | S. Czerwik, Contraction mappings in $ b $-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[16] | M. S. El Naschie, Wild topology, hyperbolic geometry and fusion algebra of high energy particle physics, Chaos Solition. Fract., 13 (2002), 1935–1945. doi: 10.1016/S0960-0779(01)00242-9. doi: 10.1016/S0960-0779(01)00242-9 |
[17] | S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. doi: 10.1016/0022-247X(81)90141-4. doi: 10.1016/0022-247X(81)90141-4 |
[18] | H. Huang, G. Deng, S. Radenović, Fixed point theorems in $b$-metric spaces with applications to differential equations, J. Fix. Point Theory A., 20 (2018), 52. doi: 10.1007/s11784-018-0491-z. doi: 10.1007/s11784-018-0491-z |
[19] | N. Hussain, D. Doric, Z. Kadelburg, S. Radenovic, Suzuki-type fixed point results in metric type spaces, Fix. Point Theory A., 2012 (2012), 126. doi: 10.1186/1687-1812-2012-126. doi: 10.1186/1687-1812-2012-126 |
[20] | D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222. doi: 10.1093/jahist/jav119. doi: 10.1093/jahist/jav119 |
[21] | H. Isık, B. Mohammadi, C. Park, V. Parvaneh, Common fixed point and endpoint theorems for a countable family of multi-valued mappings, Mathematics, 8 (2020), 292. doi: 10.3390/math8020292. doi: 10.3390/math8020292 |
[22] | S. Jung, A fixed point approach to the stability of differential equations $y^\prime = F(x, y)$, B. Malays. Math. Sci. So., 33 (2010), 305–314. |
[23] | S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, 2011. |
[24] | T. Kamran, M. Samreen, Q. UL Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. doi: 10.3390/math5020019. doi: 10.3390/math5020019 |
[25] | R. Kannan, D. O'Regan, A note on the solution set of integral inclusions, J. Integral Equ. Appl., 3 (2000), 85–94. doi: 10.1216/jiea/1020282135. doi: 10.1216/jiea/1020282135 |
[26] | M. A. Kutbi, E. Karapınar, J. Ahmad, A. Azam, Some fixed point results for multi-valued mappings in $b$-metric spaces, J. Inequal. Appl., 2014 (2014), 126. doi: 10.1186/1029-242X-2014-126. doi: 10.1186/1029-242X-2014-126 |
[27] | J. H. Mai, X. H. Liu, Fixed-point theorems for families of weakly non-expansive maps, J. Math. Anal. Appl., 334 (2007), 932–949. doi: 10.1016/j.jmaa.2007.01.016. doi: 10.1016/j.jmaa.2007.01.016 |
[28] | E. Michael, A selection theorem, P. Am. Math. Soc., 17 (1966), 1404–1406. |
[29] | T. Miura, S. Miyajima, S. E. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Anal. Appl., 286 (2003), 136–146. doi: 10.1016/S0022-247X(03)00458-X. doi: 10.1016/S0022-247X(03)00458-X |
[30] | S. S. Mohammed, I. A Fulatan, Fuzzy fixed point results via simulation functions, Math. Sci., 3 (2021), 1–12. doi: 10.1007/s40096-021-00405-5. doi: 10.1007/s40096-021-00405-5 |
[31] | S. S. Mohammed, A. Azam, Integral type contractive conditions for intuitionistic fuzzy mappings with applications, J. Math. Anal., 10 (2019), 23–45. |
[32] | S. S. Mohammed, R. Saima, M. A. Khadijah, A. Monairah, On nonlinear fuzzy set-valued $\Theta$-contractions with applications, AIMS Math., 6 (2019), 10431-–10448. doi: 10.3934/math.2021605. doi: 10.3934/math.2021605 |
[33] | S. S. Mohammed, A. Azam, Fixed points of soft-set valued and fuzzy set-valued maps with applications, J. Intell. Fuzzy. Syst., 37 (2019), 3865–3877. doi: 10.3233/JIFS-190126. doi: 10.3233/JIFS-190126 |
[34] | S. S. Mohammed, A. Azam, Integral type contractions of soft set-valued maps with application to neutral differential equation, AIMS Math., 5 (2019), 342–358. doi: 10.3934/math.2020023. doi: 10.3934/math.2020023 |
[35] | S. S. Mohammed, On fuzzy soft set-valued maps with application, J. Nig. Soc. Phy. Sci., 2 (2020), 26–35. doi: 10.46481/jnsps.2020.48. doi: 10.46481/jnsps.2020.48 |
[36] | S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. doi: 10.2140/pjm.1969.30.475. doi: 10.2140/pjm.1969.30.475 |
[37] | H. K. Pathak, R. P. Agarwal, Y. J. Cho, Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions, J. Comp. Appl. Math., 3 (2015), 201–217. doi: 10.1016/j.cam.2014.12.019. doi: 10.1016/j.cam.2014.12.019 |
[38] | S. Reich, Fixed points of contractive functions, Bol. Unione Mat. Ital., 5 (1972), 26–42. |
[39] | B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 256 (1977), 257–290. doi: 10.2307/1997954. doi: 10.2307/1997954 |
[40] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. the Amer. Math. Soc., 72 (1978), 297–300. doi: 10.1016/S0022-247X(02)00386-4. doi: 10.1016/S0022-247X(02)00386-4 |
[41] | C. Robinson, Dynamical systems: Stability, symbolic dynamics, and chaos, CRC press, 1998. |
[42] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal-Theor., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014. doi: 10.1016/j.na.2011.10.014 |
[43] | Y. H. Shen, F. X. Wang, W. Chen, A note on intuitionistic fuzzy mappings, Iranian J. Fuzzy. Syst., 9 (2012), 63–76. |
[44] | S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, 1940. |
[45] | J. Wang, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theor., 63 (2011), 1–10. doi: 10.14232/ejqtde.2011.1.63. doi: 10.14232/ejqtde.2011.1.63 |
[46] | R. Tabassum, A. Azam, S. S. Mohammed, Existence results of delay and fractional differential equations via fuzzy weakly contraction mapping principle, Appl. Gen. Topol., 20 (2019), 449–469. doi: 10.4995/agt.2019.11683. doi: 10.4995/agt.2019.11683 |
[47] | L. A. Zadeh, Fuzzy sets, Inf. contr., 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X. |