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Abstract: In this paper, new intuitionistic fuzzy fixed point results for sequence of intuitionistic
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examples are constructed to keep up the hypotheses and generality of our obtained results. Following
the fact that most existing concepts of Ulam-Hyers type stabilities are concerned with crisp mappings,
we introduce the notion of stability and well-posedness of functional inclusions involving intuitionistic
fuzzy set-valued maps. It is a familiar fact that solution of every functional inclusion is a subset of an
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of solutions to an integral inclusion are investigated to indicate a possible application of the ideas
presented herein.
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1. Introduction

Diverse investigations in science and engineering described by nonlinear functional equations can
be worked-out by reformulating them to their corresponding fixed point problems. Indeed, an operator
equation ϑ  = 0 can be framed as a fixed point (fp) problem φ  = , where φ is a self-mapping with
an appropriate domain. The fp theorem (thrm), regularly named as the Banach fp thrm (see [10]),
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appeared in explicit form in Banach thesis in 1922, where it was used to establish the existence of a
solution for an integral equation. Since then, because of its simplicity and usefulness, it has gained
a number of generalizations and modifications by many authors. For some familiar articles in this
context, we refer [14, 39] In particular, the idea of family of contraction mappings was initiated by
Ciric [14]. Following [14], the study of existence of common fp of infinite family of self-mappings has
been examined by several investigators. Not long ago, Allahyari et al. [2] defined some new conditions
of contractions for infinite family of self-mappings and established a handful of results on the existence
and uniqueness of common fp in the bodywork of complete metric(cms) space, thereby, generalizing
the results in [14] and some references therein.

As a natural generalization of the notion of crisp sets, fuzzy set (fs) was introduced originally by
Zadeh [47]. Since then, to use this concept, many authors have progressively extended the theory and
its applications to other branches of sciences, social sciences and engineering. Heilpern [17] used the
idea of fuzzy set to launch a class of fuzzy set-valued maps (fsm) and proved a fp thrm for fuzzy
contraction mappings which is a fuzzy analogue of the fp thrm of Nadler [36]. Subsequently, several
authors have studied the existence of fp of fsm (see, e.g. [5, 6, 30–35]).

The concept of intuitionistic fuzzy set (IFS) was inaugurated by Atanassov [4] as a further
generalization of fs theory. IFS provides a useful mathematical framework to manage inaccuracy and
hesitancy due to inadequate information. As a result, it has gained more robust applications in various
areas such as medical diagnosis, image processing, drug selection, decision making problems and so
on. Meanwhile, researches on IFS has been growing at a rapid rate and different results have been
presented in various domains. Not long ago, Azam et al. [5] introduced a new technique for analysing
fp results via intuitionistic fsm on a cms. Thereafter, Azam and Tabassum [6] provided some
conditions for existence of common coincidence points for three intuitionistic fsm and applied their
thrm to investigate existence criteria for solutions of a system of integral equations. Recently,
Tabassum et al. [46] established some common fp thrm for a pair of intuitionistic fsm in the setting of
(T ,N , α)-cut set of IFS.

Nowadays, stability results for fp problems have become more useful in many branches of applied
sciences. Historically, stability theory of functional equations was initiated in 1940 by Ulam [44].
Along with other unsolved mathematical problems, most confusing question posed by Ulam was on
stability of group homomorphism. The first affirmative response to this question was provided by
Hyers [20], who solved the problem for additive mappings in Banach spaces. Shortly, this type of
problem propounded by Ulam was named Ulam-Hyers stability. Later on, Rassias [40] established a
notable generalization of the Ulam-Hyers stability of mappings. Thereafter, more than a handful of
mathematicians embraced these types of results to carry on their research in various arms of
mathematical analysis. For some work on this matter, the interested reader may consult the
monograph [23].

Following the above trends, first in this paper, common intuitionistic fuzzy fp thrm for sequence of
intuitionistic fsm in the setting of complete b-metric(cbms) spaces are established. Nontrivial examples
are constructed to verify the hypotheses of our main results. As far as we know, most available Ulam-
Hyers type stability results deal with crisp mappings. With this information, we introduce the idea of
stability and well-posedness of functional inclusions involving intuitionistic fsm. It is a known fact
that solutions of a functional inclusion is a subset of an appropriate space. Thus, intuitionistic fuzzy fp
problem for which the right-hand-side is an (α, β)-level set of an intuitionistic fsm is also considered
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in this note. From application perspective, sufficient criteria for existence of solutions to an int-incl are
examined to point out an additional usability of our obtained results. The ideas established herein are
inspired by [2, 14, 17, 21, 44] and generalize, unify as well as complement the results obtained therein.

2. Preliminaries

As a generalization of ms, Czerwik [15] introduced the notion of a bms as follows:

Definition 2.1. [15] Let Λ be a nonempty set (n-set) and η ≥ 1 be a constant. Suppose that the
mapping % : Λ × Λ −→ R+ satisfies the following conditions for all , `, z ∈ Λ:

(i) %( , `) = 0 if and only if  = `;
(ii) %( , `) = %(`, ) ;

(iii) %( , `) ≤ η
[
%( , z) + %(z, `)

]
.

Then, the triple (Λ, %, η) is called a bms.

Example 2.2. [18] Let ℵp(∆) = {  ∈ ℵ(∆) : ‖ ‖ℵp < ∞}(0 < p < 1) be ℵp space defined on the unit
disk ∆, where ℵ(∆) is the set of all holomorphic functions on ∆ and

‖ ‖ℵp = sup
0<r<1

(
1

2π

∫ π

−π

| (reιθ)|pdθ
) 1

p

.

Define % : ℵp(∆) × ℵp(∆) −→ R+ by

%( , `) = sup
0<r<1

(
1

2π

∫ π

−π

| (reιθ) − `(reιθ)|pdθ
) 1

p

,

for all , ` ∈ ℵp(∆). Then (ℵp(∆), %, η) is a bms with the parameter η = 2
1
p−1.

Definition 2.3. [12] Let (Λ, %, η) be a bms. A sequence { n}n∈N is said to be:

(i) Convergent(cgent) if and only if there exists  ∈ Λ such that %( n, ) −→ 0 as n −→ ∞, and we
write this as limn−→∞ %( n, ) = 0.

(ii) Cauchy(Cchy) if and only if %( n, m) −→ 0 as n,m −→ ∞.
(iii) Complete if every Cchy sequence in Λ is cgent.

Denoted by K(Λ), the class of nonempty compact subsets of Λ. Let (Λ, %, η) be a bms. For ∇,4 ∈
K(Λ), the function ℵ : K(Λ) × K(Λ) −→ R+, defined by

ℵ(∇,4) =

max
{
sup ∈∇ %( ,4), sup ∈4 %( ,∇)

}
, if it exists

∞, otherwise

is called the generalized Hausdorff-Pompeiu bm on K(Λ) induced by the bm %, where
%( ,∇) = inf`∈∇ %( , `).

Definition 2.4. Let Λ be a n-set. Then an IFS Ψ in Λ is a set of ordered triples given by

Ψ = {〈 , µΨ( ), νΨ( )〉 :  ∈ Λ},
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where µΨ : Λ −→ [0, 1] and νΨ : Λ −→ [0, 1] define the degrees of membership and non-membership,
respectively of  in Λ and satisfy 0 ≤ µΨ + νΨ ≤ 1, for each  ∈ Λ. Moreover, the degree of non-
determinacy (or hesitancy) of  ∈ Λ is defined as

hΨ( ) = 1 − µΨ( ) − νΨ( ).

In particular, if hΨ( ) = 0 for all  ∈ Λ, then an IFS reduces to an ordinary fs.

We denote the collection of all intuitionistic fs in Λ by (IFS )Λ.

Definition 2.5. [4] Let L = {(α, β) : α + β ≤ 1, (α, β) ∈ (0, 1] × [0, 1)} and Ψ is an intuitionistic fs in
Λ. Then the (α, β)-level set of Ψ is defined as

[Ψ](α,β) = {  ∈ Λ : µΨ( ) ≥ α and νΨ( ) ≤ β}.

Definition 2.6. [43] Let Λ be a n-set. A mapping z = 〈µz, νz〉 : Λ −→ (IFS )Λ is called an intuitionistic
fsm. A point u ∈ Λ is called an intuitionistic fuzzy fp of z if there exist (α, β) ∈ (0, 1] × [0, 1) such that
u ∈ [zu](α,β).

Definition 2.7. [6] An IFS Ψ in a ms Λ is said to be an approximate quantity if and only if [Ψ](α,β) is
compact and convex in Ψ for each (α, β) ∈ (0, 1] × [0, 1) with

sup
∈Λ

µΨ( ) = 1 and inf
∈Λ
νΨ( ) = 0.

We denote the collection of all approximate quantities in Λ by W(Λ).

Remark 1. Any crisp set M can be represented as an intuitionistic fs by its intuitionistic characteristic
functionM = 〈zM, kM〉 defined as:

zM( ) =

1, if  ∈ M

0, if  < M,
kM( ) =

0, if  ∈ M

1, if  < M.

Consistent with Azam and Tabassum [6], for each (α, β) ∈ (0, 1]×[0, 1) such that [Ψ1](α,β), [Ψ2](α,β) ∈

K(Λ) and p(Ψ1,Ψ2), %(∞,∞) : K(Λ) × K(Λ) −→ R, we define the following distance functions:

p(α,β)(Ψ1,Ψ2) = %
(
[Ψ1](α,β), [Ψ2](α,β)

)
.

p(Ψ1,Ψ2) = sup
(α,β)

p(α,β)(Ψ1,Ψ2).

D(α,β)(Ψ1,Ψ2) = H([Ψ1](α,β), [Ψ2](α,β)).

%(∞,∞)(Ψ1,Ψ2) = sup
(α,β)

D(α,β)(Ψ1,Ψ2).

From [17], we note that p(α,β) is nondecreasing for each (α, β) ∈ (0, 1] × [0, 1).
Samet et al. [42] introduced the idea of θ-admissible mappings in the following manner.

Definition 2.8. [42] Let Λ be a n-set, G : Λ −→ Λ and θ : Λ×Λ −→ R+ be mappings. Then G is said
to be θ-admissible if for all , ` ∈ Λ,

θ( , `) ≥ 1 implies θ(G ,Gy) ≥ 1.
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Definition 2.9. Let Λ be a n-set and {Gn}n≥1 be a family of single-valued mappings on Λ. A point
u ∈ Λ is called a fp of this family if Gn(u) = u for each n ∈ N.

The following well-known result for a family of generalized contractions was established by Ciric
[14].

Theorem 2.10. Let (Λ, %) be a cms and {Gi}i∈∆ be a family single-valued mappings on Λ. If there exists
j ∈ ∆ and η ∈ (0, 1) such that for all , ` ∈ Λ,

%(Gix,G j`) ≤ ηmax
{
%( , `), %( ,Gix), %(`,G jy),

1
2

[
%( ,G jy) + %(`,Gi )

]}
,

then Gi have a unique common fp in Λ for each i ∈ ∆.

For some recent extensions of Thrm 2.10, see [1, 2, 21, 27] and references therein.

3. Main results

Definition 3.1. Let Λ be an arbitrary n-set and zn = 〈µzn , νzn〉 : Λ −→ (IFS )Λ(n ∈ N) be a sequence
of intuitionistic fsm. Then {zn}n≥1 is said to be (α, β)-admissible, if there exist (α, β) ∈ (0, 1] × [0, 1)
and a function ρ : Λ × Λ −→ R+ such that for each  ∈ Λ and ` ∈ [zn ](α,β) with ρ( , `) ≥ 1, we have
ρ(`, z) ≥ 1 for all z ∈ [zn+1`](α,β).

Theorem 3.2. Let (Λ, %, η) be a cbms, zn : Λ −→ (IFS )Λ be a sequence of intuitionistic fsm and
0 < ki, j (i, j ∈ N) with ki,i+1 , 1 for all i ∈ N. Assume:

(i) lim supi−→∞ ki, j < 1, for each j ∈ N;
(ii)

∑∞
n=1 Ωn < ∞, where Ωn =

∏n
i=1

ki,i+1

1−ki,i+1
;

(iii) there exist (α, β) ∈ (0, 1] × [0, 1) and a function ρ : Λ × Λ −→ R+ such that for each  ∈ Λ,
[zn ](α,β) is a nonempty compact subset of Λ, and

ρ( , `)ℵ
(
[zi ](α,β), [z j`](α,β)

)
≤

ki, j

η

[
%( , [z jy](α,β)) + %(`, [zix](α,β))

]
(3.1)

for all , ` ∈ Λ, i, j ∈ N with  , ` and i , j;
(iv) there exists 0 ∈ Λ, 1 ∈ [z1 0](α,β) with 0 , 1 and ρ( 0, 1) ≥ 1;
(v) {zn}n≥1 is (α, β)-admissible;

(vi) for each sequence { n}n≥1 in Λ with ρ( n, n+1) ≥ 1 and n −→ u, we have ρ( n, u) ≥ 1, for all
n ∈ N.

(vii) there exists η ≥ 1 such that the series
∑∞

n=1 Ωnη
n is cgent.

Then there exists u ∈ Λ such that u ∈
⋂∞

n=1[znu](α,β).
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Proof. From Conditions (iv) and (3.1), we have

%( 1, [z2 1](α,β)) ≤ρ( 0, 1)ℵ([z1 0](α,β), [z2 1](α,β))

≤
k1,2

η

[
%( 0, [z2 1](α,β)) + %( 1, [z1 0](α,β))

]
=

k1,2

η

[
%( 0, [z2 1](α,β))

]
≤

k1,2

η

[
η
(
%( 0, 1) + %( 1, [z2 1](α,β))

)]
=k1,2

(
%( 0, 1) + %( 1, [z2 1](α,β))

)
.

(3.2)

(3.2) yields

%( 1, [z2 1](α,β)) ≤
k1,2

1 − k1,2
%( 0, 1). (3.3)

Since [z2 1](α,β) ∈ K(Λ), there exists 2 ∈ [z2 1](α,β) such that from (3.3), %( 1, 2) ≤ k1,2

1−k1,2
%( 0, 1).

Using (α, β)-admissibility of {zn}n≥1, we can find (α, β) ∈ (0, 1] × [0, 1) satisfying ρ( 1, 2) ≥ 1.
Analogously, we have

%( 2, [z3 2](α,β)) ≤
k2,3

1 − k2,3
%( 1, 2).

≤
k2,3

1 − k2,3

k1,2

1 − k1,2
%( 0, 1).

(3.4)

And by hypotheses, there exists 3 ∈ [z3 2](α,β) such that %( 2, 3) ≤ k2,3

1−k2,3

k1,2

1−k1,2
%( 0, 1). Recursively, we

see { n}n≥1 such that n+1 ∈ [zn+1 n](α,β), with ρ( n, n+1) ≥ 1, and

%( n, n+1) ≤ Ωn%( 0, 1), n ∈ N. (3.5)

From (3.5), using triangular inequality in (Λ, %, η), for all p ≥ 1 , we obtain

%( n+p, n) ≤ η(%( n+p, n+1) + %( n+1, n))

≤
1
ηn−1

n+p−1∑
l=n

ηl%( l, l+1)

≤
1
ηn−1

n+p−1∑
l=n

Ωlη
l%( 0, 1)

≤
1
ηn−1

∞∑
l=n

Ωlη
l%( 0, 1).

(3.6)

Letting n −→ ∞ in (3.6) and applying Condition (vii), we find that limn−→∞ %( n+p, n) = 0. This shows
that { n}n≥1 is a Cchy sequence in Λ. The completeness of Λ implies that there exists u ∈ Λ such that
n −→ u as n −→ ∞. By Condition (iv), ρ( n, u) ≥ 1, for all n ∈ N. Now, we shall show that u is a
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common intuitionistic fuzzy fp of zn. Assume contrary; that is, u < [znu](α,β) for some n ∈ N so that
%(u, [znu](α,β)) > 0. Let p > 0 be arbitrary. Then,

%(u, [zpu](α,β)) ≤η(%(u, n) + %( n, [zpu](α,β)))
≤η%(u, n) + ηρ( n−1, u)ℵ([zn n−1](α,β), [zpu](α,β))

≤η%(u, n) + η

(
kn, p
η

)[
%( n−1, [zpu](α,β)) + %(u, [znxn−1](α,β))

]
≤η%(u, n) + kn,p

[
%( n−1, [zpu](α,β)) + %(u, n)

]
.

(3.7)

From (3.7), we have

%(u, [zpu](α,β)) ≤
[
(lim sup

n−→∞
kn,p)%(u, [zpu](α,β))

]
<%(u, [zpu](α,β)),

a contradiction. Consequently, u ∈
⋂∞

n=1[znu](α,β). �

Following Heilpern [17], we apply Thrm 3.2 to deduce the next result in association with
%(∞,∞)-metric for intuitionistic fs. It is pertinent to note that the study of fp of intuitionistic fsm in
connection with %(∞,∞)-metric is very significant in computing Hausdorff dimensions. These
dimensions help us to comprehend the notions of ε∞-space which is of great importance in higher
energy physics (see, e.g. [16]). Note that %(∞,∞) is a metric on Λ (induced by the Hausdorff metric ℵ)
and the completeness of (Λ, %, η) implies the completeness of the corresponding bms (Λ,ℵ, η) and
(K(Λ), %(∞,∞), η). Furthermore,

(Λ, %, η) 7−→ (K(Λ),ℵ, η) 7−→ (K(Λ), %(∞,∞), η),

are isometric embeddings by means of  −→ { }(non-fs) and M −→ χM, respectively, where χM is the
characteristic function of the crisp set M. For similar observations, see [7].

Theorem 3.3. Let (Λ, %, η) be a cbms and zn : Λ −→ W(Λ) be a sequence of intuitionistic fsm.
Assume that conditions (i), (ii), (iv), (v), (vi) and (vii) of Thrm 3.2 hold. If Condition (iii) of the thrm is
replaced with:

ρ( , `)%(∞,∞)(zi( ), z j(`)) ≤
ki, j

η

[
p( , z j(`)) + p(`, zi( ))

]
for all , ` ∈ Λ with  , ` and i , j. Then there exists u ∈ Λ such that {u} ⊂ zi(u) for each i ∈ N.

Proof. Let  ∈ Λ and (α, β) = (1, 0), then by hypotheses, [zn ](1,0) is a nonempty compact subset of Λ

for each n ∈ N. Now, for all , ` ∈ Λ,

ρ( , `)D(1,0)(Fi( ), F j(`)) = ρ( , `)ℵ([Fi ](1,0), [F j`](1,0))
≤ ρ( , `) sup

(α,β)∈(0,1]×[0,1)
ℵ([Fi ](α,β), [F j`](α,β))

= ρ( , `)%(∞,∞)(Fi( ), F j(`)).
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Since [zn ](1,0) ⊆ [zn ](α,β) ∈ K(Λ) for each (α, β) ∈ (0, 1]× [0, 1) and n ∈ N, therefore, %( , [zn ](α,β)) ≤
%( , [zn ](1,0)) for each (α, β) ∈ (0, 1] × [0, 1); this implies that p( , zn( )) ≤ %( , [zn ](1,0)). Hence, for
all , ` ∈ Λ and i, j ∈ N,

ρ( , `)ℵ([zi ](1,0), [z j`](1,0)) ≤
ki, j

η

[
%( , [z jy](1,0)) + %(`, [zi ](1,0))

]
.

Consequently, Thrm 3.2 can be applied to find u ∈ Λ such that u ∈
⋂∞

i=1[ziu](1,0). �

Theorem 3.4. Let (Λ, %, η) be a cbms, zn : Λ −→ (IFS )Λ be a sequence of intuitionistic fsm and
0 < ki, j (i, j ∈ N) with ki,i+1 , 1 for all i ∈ N. Assume:

(i) lim supi−→∞ ki, j < 1, for each j ∈ N;
(ii)

∑∞
n=1 Ωn < ∞, where Ωn =

∏n
i=1

ki,i+1

1−ki,i+1
;

(iii) there exist (α, β) ∈ (0, 1] × [0, 1) and a function ρ : Λ × Λ −→ R+ such that for each  ∈ Λ,
[zn ](α,β) is a nonempty compact subset of Λ, and

ρ( , `)ℵ
(
[zi ](α,β), [z j`](α,β)

)
≤

ki, j

η
max{%( , `), %( , [zi ](α,β)),

%(`, [z j`](α,β)), %( , [z jy](α,β)), %(`, [zi ](α,β))}
(3.8)

for all , ` ∈ Λ, i, j ∈ N with  , ` and i , j;
(iv) there exists 0 ∈ Λ, 1 ∈ [z1 0](α,β) with 0 , 1 and ρ( 0, 1) ≥ 1;
(v) {zn}n≥1 is (α, β)-admissible;

(v i) for each sequence { n}n≥1 in Λ with ρ( n, n+1) ≥ 1 and n −→ u, we have ρ( n, u) ≥ 1, for all
n ∈ N.

(vii) there exists η ≥ 1 such that the series
∑∞

n=1 Ωnη
n is cgent.

Then there exists u ∈ Λ such that u ∈
⋂∞

n=1[znu](α,β).

Proof. Using condition (iv) and (3.8), we have

%( 1, [z2 1](α,β)) ≤ρ( 0, 1)ℵ([z1 0](α,β), [z2 1](α,β))

≤
k1,2

η
max{%( 0, 1), %( 0, [z1 0](α,β)),

%( 1, [z2 1](α,β)), %( 0, [z2 1](α,β)), %( 1, [z1 0](α,β))}

≤
k1,2

η
max{%( 0, 1), %( 1, [z2 1](α,β)), %( 0, [z2 1](α,β))}

≤
k1,2

η
max{%( 0, 1), %( 1, [z2 1](α,β)),

η(%( 0, 1) + %( 1, [z2 1](α,β)))}

≤
k1,2

η
[η(%( 0, 1) + %( 1, [z2 1](α,β)))]

=k1,2[%( 0, 1) + %( 1, [z2 1](α,β))].

(3.9)

From (3.9), we have

%( 1, [z2 1](α,β)) ≤
k1,2

1 − k1,2
%( 0, 1). (3.10)
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Since [z2 1](α,β) ∈ K(Λ), there exists 2 ∈ [z2 1](α,β) such that (3.10) gives %( 1, 2) ≤ k1,2

1−k1,2
%( 0, 1). By

(α, β)-admissibility of {zn}n≥1, we can find (α, β) ∈ (0, 1] × [0, 1) such that ρ( 1, 2) ≥ 1. On similar
steps, we have

%( 2, [z3 2](α,β)) ≤
k2,3

1 − k2,3
%( 1, 2)

≤
k2,3

1 − k2,3

k1,2

1 − k1,2
%( 0, 1).

Following the proof of Thrm 3.2, we generate a Cchy sequence { n}n≥1 with ρ( n, n+1) ≥ 1 such that
n −→ u as n −→ ∞, for some u ∈ Λ. By Condition (vi), ρ( n, u) ≥ 1 n ∈ N. Now, we show that
u is a common intuitionistic fuzzy fp of zn, n ∈ N. Assume otherwise that u < [znu](α,β) so that
%(u, [znu](α,β)) > 0. Let p > 0 be arbitrary. Then, consider

%(u, [zpu](α,β)) ≤η(%(u, n) + %( n, [zpu](α,β)))
≤η%(u, n) + ηρ( n−1, u)ℵ([zn n−1](α,β), [zpu](α,β))

≤η%(u, n) + η

(
kn,p

η

)
max{%( n−1, u), %( n−1, [zpxn−1](α,β)),

%(u, [zpu](α,β)), %( n−1, [zpu](α,β)), %(u, [znxn−1](α,β))}
≤η%(u, n) + kn,p max{%( n−1, u), %( n−1, n),
%(u, [zpu](α,β)), %( n−1, [zpu](α,β)), %(u, n)}.

(3.11)

From (3.11), we have

%(u, [zpu](α,β)) ≤
(
lim sup

n−→∞
kn,p

)
%(u, [zpu](α,β)) (3.12)

< %(u, [zpu](α,β)) (3.13)

a contradiction. It follows that u ∈
⋂∞

n=1[znu](α,β). �

Theorem 3.5. Let (Λ, %, η) be a cbms, zn : Λ −→ (IFS )Λ be a sequence of intuitionistic fsm and
0 < li, j, ki, j (i, j ∈ N) with li,i+1 , 1 for all i ∈ N. Assume:

(i) lim supi−→∞ li, j < 1, and lim supi−→∞ ki, j < 1 for each j ∈ N;
(ii)

∑∞
n=1 Ω∗n < ∞, where Ω∗n =

∏n
i=1

ki,i+1

1−
li,i+1
η

;

(iii) there exist (α, β) ∈ (0, 1] × [0, 1) and a function ρ : Λ × Λ −→ R+ such that for each  ∈ Λ,
[zn ](α,β) is a nonempty compact subset of Λ, and

ρ( , `)ℵ
(
[zi ](α,β), [z j`](α,β)

)
≤

li, j

η
%(`, [z jy](α,β))ϕ[%( , [zi ](α,β)), %( , `)] + ki, j%( , `)

(3.14)

for all , ` ∈ Λ, i, j ∈ N with  , ` and i , j; where ϕ : R+ × R+ −→ R+ is a continuous
function with the property that ϕ(t, t) = 1 for all t ∈ R+ and for any t1, s1, t2, s2 ∈ R+, we have
t1 ≤ t2, s1 = s2 implies ϕ(t1, s1) ≤ ϕ(t2, s2);
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(iv) there exists 0 ∈ Λ, 1 ∈ [z1 0](α,β) with 0 , 1 and ρ( 0, 1) ≥ 1;
(v) {zn}n≥1 is (α, β)-admissible;

(vi) for each sequence { n}n≥1 in Λ with ρ( n, n+1) ≥ 1 and n −→ u, we have ρ( n, u) ≥ 1, for all
n ∈ N.

(vii) there exists η ≥ 1 such that the series
∑∞

n=1 Ω∗nη
n is cgent.

Then there exists u ∈ Λ such that u ∈
⋂∞

n=1[znu](α,β).

Proof. From (iv) and (3.14), we have

%( 1, [z2 1](α,β)) ≤ρ( 0, 1)ℵ([z1 0](α,β), [z2 1](α,β))

≤
l1,2

η
%( 1, [z2 1](α,β))ϕ(%( 0, [z1 0](α,β)), %( 0, 1))

+ k1,2%( 0, 1)

≤
l1,2

η
%( 1, [z2 1](α,β))ϕ(%( 0, 1), %( 0, 1)) + k1,2%( 0, 1)

≤
l1,2

η
%( 1, [z2 1](α,β)) + k1,2%( 0, 1).

(3.15)

From (3.15), we have

%( 1, [z2 1](α,β)) ≤
k1,2

1 − l1,2
η

%( 0, 1). (3.16)

Since [z2 1](α,β) ∈ K(Λ), we can find 2 ∈ [z2 1](α,β) such that (3.16) becomes %( 1, 2) ≤ k1,2

1−
l1,2
η

%( 0, 1).

On similar steps, we get

%( 2, [z3 2](α,β)) ≤
k2,3

1 − l2,3
η

%( 1, 2)

≤

(
k2,3

1 − l2,3
η

)(
k1,2

1 − l1,2
η

)
%( 0, 1).

By hypotheses, there exists 3 ∈ [z3 2](α,β) such that

%( 2, 3) ≤
(

k2,3

1 − l2,3
η

)(
k1,2

1 − l1,2
η

)
%( 0, 1).

Recursively, we generate a sequence { n}n≥1 such that n+1 ∈ [zn+1 n](α,β) with ρ( n, n+1) ≥ 1, and

%( n, n+1) ≤ Ω∗nd( 0, 1), n ∈ N. (3.17)

From here, following the proof of Thrm 3.2, we deduce that { n}n≥1 is a Cchy sequence in Λ, and
the completeness of Λ implies that there exists u ∈ Λ such that n −→ u as n −→ ∞. By Condition
(vi), ρ( n, u) ≥ 1, n ∈ N. Next, we shall show that u is a common intuitionistic fuzzy fp of zn. For

AIMS Mathematics Volume 7, Issue 1, 315–333.



325

this, assume contrary, that is, u < [znu](α,β) for all (α, β) ∈ (0, 1] × [0, 1). Let p > 0 be arbitrary. Then,
we have

%(u, [zpu](α,β)) ≤η(%(u, n) + %( n, [zpu](α,β)))
≤η%(u, n) + ηρ( n−1, u)ℵ([znxn−1](α,β), [zpu](α,β))

≤η%(u, n) + η

(
ln,p

η

)
%(u, [zpu](α,β))ϕ(%( n−1, [znxn−1](α,β)), %( n−1, u))

+ kn,p%( n−1, u)
≤η%(u, n) + ln,p%(u, [zpu](α,β))ϕ(%( n−1, n), %( n−1, u))

+ kn,p%( n−1, u).

(3.18)

From (3.18), by using the continuity of the function ϕ, we obtain

%(u, [zpu](α,β)) ≤
(
lim sup

n−→∞
ln,p

)
%(u, [zpu](α,β))

<%(u, [zpu](α,β))

a contradiction. This proves that u ∈
⋂∞

n=1[znu](α,β). �

We construct Example 3.6 to verify the assumptions of Thrm 3.2.

Example 3.6. Let Λ = [0, 1] be equipped with the metric %( , `) = |  − `|2 for all , ` ∈ Λ. Then
(Λ, %, η = 2) is a cbms. But (Λ, %, η) is not a metric, since for  = 0 and ` = 2 and z = 1

3 , we have

%( , `) = 4 >
26
9

= %( , z) + %(z, `).

Now, define a sequence of intuitionistic fsm zn = 〈µzn , νzn〉 : Λ −→ (IFS )Λ by

µzn( )(t) =


1

2+n2 , if 0 ≤ t ≤ 1
6 +



n+8
1

5+n2 , if 1
6 +



n+8 < t ≤ 1
3 +



n+7
1

9+n2 , if 1
3 +



n+7 < t ≤ 1,

νzn( )(t) =


1

50+n2 , if 0 ≤ t ≤ 1
6 +



n+8
1

10+n2 , if 1
6 +



n+8 < t ≤ 1
3 +



n+7
1

27+n2 , if 1
3 +



n+7 < t ≤ 1.

If (α, β) =
(

1
2+n2 ,

1
50+n2

)
, for all n ∈ N. Then, for each  ∈ Λ, we have

[zn( )]( 1
2+n2 ,

1
50+n2

) =

[
0,

1
6

+


n + 8

]
.

Take ki, j = 1
3 + 1

(i− j)2+11 . Then, lim supi ki, j = 1
3 < 1, for all j ∈ N; and Ωn =

∏n
i=1

ki,i+1

1−ki,i+1
=

(
5
12

)n
.

Therefore,
∑∞

n=1 Ωn =
∑∞

n=1

(
5

12

)n
< ∞. Clearly, since η = 2, then

∑∞
n=1 Ωnη

n =
∑∞

n=1

(
10
12

)n
. Hence, by

D’Alembert’s ration test, the series
∑

Ωnη
n is cgent. Moreover, define ρ : Λ × Λ −→ R+ by

ρ( , `) =

1, if , ` ∈
[
0, 1

4

)
0, otherwise.
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Now, we prove that

ρ( , `)ℵ
(
[zi ]( 1

2+n2 ,
1

50+n2

), [z j`]( 1
2+n2 ,

1
50+n2

))
≤

ki, j

η

[
%( , [z j`]( 1

2+n2 ,
1

50+n2

)) + %(`, [zi ]( 1
2+n2 ,

1
50+n2

))
]

Notice that for  = ` = 0,

ρ(0, 0)ℵ
(
[zi0]( 1

2+n2 ,
1

50+n2

), [z j0]( 1
2+n2 ,

1
50+n2

))
= 0 ≤

ki, j

η

[
%(0, [z j0]( 1

2+n2 ,
1

50+n2

)) + %(0, [zi0]( 1
2+n2 ,

1
50+n2

))
]

for all i, j ∈ N and η ≥ 1. Next, for , ` ∈ (0, 1] with  , `, and for all i, j ∈ N with i , j, we have

ρ( , `)ℵ
(
[zi ]( 1

2+n2 ,
1

50+n2

), [z j`]( 1
2+n2 ,

1
50+n2

))
=ℵ

([
0,

1
6

+


i + 8

]
,

[
0,

1
6

+
`

j + 8

])
=

∣∣∣∣∣∣ 

i + 8
−

`

j + 8

∣∣∣∣∣∣2≤
∣∣∣∣∣∣ 

i + 8

∣∣∣∣∣∣2 ≤ 1
|i + 8|2

≤
1
82

≤

(
1
6

+
1

2(i − j)2 + 22

)[
| |2 + |`|2

]
≤

1
2

(
1
3

+
1

(i − j)2 + 11

)[
%( , [z jy]( 1

2+n2 ,
1

50+n2

)) + %(`, [zi ]( 1
2+n2 ,

1
50+n2

))
]

=
ki, j

η

[
%( , [z jy]( 1

2+n2 ,
1

50+n2

)) + %(`, [zi ]( 1
2+n2 ,

1
50+n2

))
]
.

Moreover, for 0 = 0 and 1 = 1
10 , we get 1 ∈ [z1 0]( 1

2+n2 ,
1

50+n2

) =
[
0, 1

6

]
and ρ( 0, 1) ≥ 1. It is easy to

see that {zn}n≥1 is (α, β)-admissible. Therefore, all the assumptions of Thrm 3.2 are satisfied. Hence,
we can see that there exists u = 0 ∈ Λ such that 0 ∈

⋂∞
n=1[zn0]( 1

2+n2 ,
1

50+n2

).
Remark 2. Theorems 3.2, 3.4 and 3.5 are improvements of the main results in [1,2,21], even when Λ

is a metric space; while Thrm 3.3 complements the result of Heilpern [17] even with η = 1.

4. Stability and well-posedeness of intuitionistic fuzzy fixed point inclusions

Stability is a notion associated with the limiting behaviours of a system. It has been examined in the
setting of both discrete and continuous dynamical systems (see, e.g. [41]) The study of the relationship
between the cgence of a sequence of mappings and their fp has also been deeply investigated in different
framework (see, e.g. [8]). Since set-valued mappings often have more fp than their corresponding
single-valued mappings, their set of fp become more interesting for the study of stability.

In this section, we introduce the idea of Ulam-Hyers stability for fp problems in the frame of
intuitionistic fsm. To this end, a few auxiliary definitions are inaugurated as follows.
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Definition 4.1. Let (Λ, %, η) be a bms and zn : Λ −→ (IFS )Λ be a sequence of intuitionistic fuzzy
set-valued maps. Then, the intuitionistic fuzzy fixed point inclusion:

 ∈ [zn ](α,β),  ∈ Λ, n ∈ N (4.1)

is said to be

(i) Ulam-Hyers stable, if there exist a real number ς > 0 and (α, β) ∈ (0, 1]× [0, 1) such that for every
ε > 0 and any solution `∗ of the inequation:

%(`, [zn`](α,β)) ≤ ε (4.2)

there exists a solution u of the inclusion (4.1) such that

%(`∗, u) ≤ ςε. (4.3)

(ii) Well-posed, if zn : Λ −→ (IFS )Λ has an intuitionistic fuzzy fp u in Λ, for each n ∈ N and
limn−→∞ %( n, u) = 0 for every sequence { n}n≥1 in Λ such that limn−→∞ %( n, [zn n](α,β)) = 0, for
some (α, β) ∈ (0, 1] × [0, 1).

Theorem 4.2. Let (Λ, %, η) be a cbms with parameter η ≥ 1 and zn : Λ −→ (IFS )Λ be a sequence of
intuitionistic fsm. In addition to the hypotheses of Thrm 3.2, suppose that the following conditions hold:

(S1) For every η ≥ 1, there exists ε > η such that lim supi−→∞ ki, j ≤
1

1+ε
for all i, j ∈ N. (ki, j is as

defined in Theorem (3.2)).
(S2) ρ( , `) ≥ 1 for any , ` ∈ Λ satisfying (4.1).
(S3) ρ( n, u) ≥ 1 for any sequence { n}n≥1 in Λ such that limn−→∞ %( n, [zn n](α,β)) = 0 and

u ∈
⋂∞

n=1[znu](α,β).

Then, the intuitionistic fuzzy fp inclusion (4.1) is Ulam-Hyers stable if conditions (S 1)− (S 2) hold, and
well-posed if (S 3) is satisfied.

Proof. First, we will show that the intuitionistic fuzzy fp inclusion (4.1) is Ulam-Hyers stable. For
each parameter η ≥ 1, let ε > 0 be chosen such that ε > η. Let `∗ be a solution of (4.1), which
means that %(`∗, [zn`

∗](α,β)) ≤ ε. Taking Thrm 3.2 into consideration, we know that there exists u ∈ Λ

such that u ∈ [znu](α,β), for each n ∈ N so that %(u, [znu](α,β)) = 0 ≤ ε, which means u verifies (4.1)
so that by hypothesis, ρ(`∗, u) ≥ 1. Now, using the triangle inequality in (Λ, %, η) and the contraction
condition 3.1, for all p ≥ 1, we have

%(`∗, u) = %(`∗, [zpu](α,β))
≤ η[%(`∗, [zn`

∗](α,β)) + ℵ([zn`
∗](α,β), [zpu](α,β))]

≤ η[%(`∗, [zn`
∗](α,β)) + ηρ(`∗, u)ℵ([zn`

∗](α,β), [zpu](α,β))]

≤ η[%(`∗, [zn`
∗](α,β)) + η

(
kn,p

η

)
[%(`∗, [zpu](α,β)) + %(u, [zn`

∗](α,β))]

≤ ηε + kn,p[%(`∗, u) + %(u, [zn`
∗](α,β))]

≤ ηε + kn,p[%(`∗, u) + η%(u, `∗) + η%(`∗, [zn`
∗](α,β))]

= ηε + kn,p[%(`∗, u)(1 + η) + ηε].

(4.4)
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By condition (S 1), the inequality (4.4) becomes

%(`∗, u) ≤ ηε +
%(`∗, u)(1 + η)

1 + ε
+

ηε

1 + ε

=

(
2 + ε

ε − η

)
ηε = ςε,

where ς =
(

2+ε
ε−η

)
η > 0; that is, %(`∗, u) ≤ ςε.

Next, in view of condition (S 3), we will show that the intuitinoistic fuzzy fp inclusion (4.1) is well-
posed. Since u ∈ [znu](α,β), for each n ∈ N, then for all p ≥ 1, we have

%( n, u) ≤ η[%( n, [zn n](α,β)) + ℵ([zn n](α,β), [zpu](α,β))]
≤ η%( n, [zn n](α,β)) + ηρ( n, u)ℵ([zn n](α,β), [zpu](α,β))

≤ η%( n, [zn n](α,β)) + η

(
kn,p

η

)
[%( n, [zpu](α,β)) + %(u, [zn n](α,β))]

≤ η%( n, [zn n](α,β)) + ηkn,p[2%( n, u) + %( n, [zn n](α,β))]

≤

(
1 + kn,p

1 − 2ηkn,p

)
%( n, [znxn](α,β)).

(4.5)

Letting n −→ ∞ in (4.5) and noting that limn−→∞ %( n, [zn n](α,β)) = 0, we obtain limn−→∞ %( n, u) = 0,
proving the well-posedness of (4.1). �

5. Applications to Fredholm integral inclusions

In this section, we apply Thrm 3.4 to investigate sufficient conditions for existence of solutions to a
system of Fredholm int-incl. For basic concepts of int-incl, we refer the interested reader to [3,25] and
references therein.

Consider the following system of int-incl of Fredholm type:

(t) ∈
[

f (t) +

∫ b

a
Ln(t, s, (s))%s, t ∈ [a, b] = J,

]
(5.1)

where  ∈ C (J,R) is an unknown function, f ∈ C (J,R) is a given real-valued function and Ln :
J × J × R −→ zcv(R) is a given multivalued map, for each n ∈ N, where we denote the family
of nonempty compact and convex subsets of R by zcv(R), and the set of all real-valued continuous
functions on J is represented by C(J,R). By the function space L1(J), we mean the Lebesgue space
Lp(J) for p = 1 over J.

Let Λ = C(J,R) and define a metric % : Λ × Λ −→ R+ as %( , `) = |  − `|2, for all , ` ∈ Λ. Then
(Λ, %, η = 2) is a cbms. Now, we study solvability conditions of (5.1) under the following assumptions:

Theorem 5.1. Let zn : Λ −→ (IFS )Λ be a sequence of intuitionistic fsm whose (α, β)-level set is given
as

[zn ](α,β) =

{
 ∈ Λ : `(t) ∈ f (t) +

∫ b

a
Ln(t, s, (s))%s, t ∈ [a, b] = J

}
.

Also, let % : Λ × Λ −→ R be a given function. Suppose that the following hypotheses are satisfied:
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(H1) the set-valued map Ln : J × J × R −→ zcv(R) is such that for every  ∈ Λ, the map Ln (t, s) :=
Ln(t, s, (s)) is lower semicontinuous for each n ∈ N;
Let 0 < ki, j(i, j ∈ N) with ki,i+1 , 1 for each i ∈ N satisfies:

(H2) limi−→∞ sup ki, j < 1, for each j ∈ N;
(H3)

∑∞
n=1 Ωn < ∞, where Ωn =

∏n
i=1

ki,i+1

1−ki,i+1
;

(H4) there exist ω(t, .) ∈ L1(J) such that for all η ≥ 1 and s, t ∈ J, supt∈J

(∫ b

a
ω(t, s)%s

)2
≤

ki, j

η
; where

ki, j satisfies (H2) − (H3), and for all i, j ∈ N,

ℵ(Li (t, s), L j`(t, s)) ≤ ω(t, s)(| (s) − `(s)|2);

(H5) there exist 0 ∈ Λ, 1 ∈ [z1 0](α,β) with 0 , 1 such that %( 0, 1) ≥ 0;
(H6) for each  ∈ Λ and ` ∈ [zn ](α,β) with %( , `) ≥ 0, we have %(`, z) ≥ 0 for all z ∈ [zn+1`](α,β);
(H7) if { n}n≥1 is a sequence in Λ such that n −→ u ∈ Λ and %( n, n+1) ≥ 0, then %( n, u) ≥ 0, for all

n ∈ N;
(H8) there exists η ≥ 1 such that the series

∑∞
n=1 Ωnη

n is cgent.

Then the system of integral inclusions 5.1 has at least one solution in Λ.

Proof. Consider a function ρ : Λ × Λ −→ R defined by

ρ( , `) =

1, if %( , `) ≥ 0 for all  , `
0, otherwise.

Observe that the set of solutions of (5.1) coincides with the intuitionistic fuzzy fp of sequence of
intuitionistic fsm zn : Λ −→ (IFS )Λ. Also, note that the hypotheses (H2), (H3), (H5), (H6) and (H7)
imply that conditions (i), (ii), (iv), (v) and (vi), respectively of Thrm 3.4 hold. Next, we will verify that
condition (iii) and the assumptions on the (α, β)-level set [zn ](α,β) hold for each  ∈ Λ. To this end, let
 ∈ Λ be arbitrary. Since the multivalued map Ln  : J× J −→ zcv(R) is lower semicontinuous, it follows
from Michael’s selection thrm ( [28, Thrm 1]) that there exists a continuous map ρ  : J × J −→ R such
that ρ (t, s) ∈ Ln (t, s), for each (t, s) ∈ J × J. Therefore, f (t) +

∫ b

a
ρ (t, s)%s ∈ [zn ](α,β). So, [zn ](α,β)

is nonempty for each n ∈ N. One can easily see that [zn ](α,β) is a closed subset of Λ. Further, given
that f ∈ C (J) and Ln (t, s) is continuous on J × J, their range sets are compact. Hence, [zn ](α,β) is also
compact. Take 1, 2 ∈ Λ, then there exists (α, β) ∈ (0, 1] × [0, 1) such that [zn 1](α,β) and [zn 2](α,β) are
nonempty compact subsets of Λ for each n ∈ N. Let `1 ∈ [zn 1](α,β) be arbitrary such that

`1(t) ∈ f (t) +

∫ b

a
Ln (t, s, 1(s))%s, t ∈ J.

This means for each (t, s) ∈ J × J, there exists ρ 1 ∈ Ln 1
(t, s) such that

`1(t) = f (t) +

∫ b

a
ρ 1(t, s)%s, t ∈ J.

Since from (H4),

ℵ
(
Li(t, s, 1(s)), L j(t, s, 2(s))

)
≤ω(t, s)

(
| 1(s) − 2(s)|2

)
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for each t, s ∈ J and i, j ∈ N, so there exists ρ 2 ∈ Ln 2
(t, s) for each n ∈ N such that

|ρ 1(t, s) − ρ 2(t, s)|2 ≤ω(t, s)
(
| 1(s) − 2(s)|2

)
for all (t, s) ∈ J × J. Now, consider the set-valued mapM defined by

M(t, s) = Ln 2
(t, s) ∩

{
ϑ ∈ R : |ρ 1(t, s) − ϑ| ≤ ω(t, s) (| 1(s) − 2(s)|)

}
.

Taking into account the fact that from (H1), M is lower semicontinuous, therefore, by Michael’s
selection thrm, there exists a continuous map ρ 2 : J × J −→ R such that ρ 2(t, s) ∈ M(t, s), for all
(t, s) ∈ J × J. Then,

`2(t) = f (t) +

∫ b

a
ρ 1(t, s)%s ∈ f (t) +

∫ b

a
Ln(t, s, 2(s))%s, t ∈ J.

Thus, `2 ∈ [zn 2](α,β), and

|`1(t) − `2(t)|2 ≤
(∫ b

a
|ρ 1(t, s) − ρ 2(t, s)|%s

)2

≤ sup
(∫ b

a
ω(t, s)%s

)2

| 1(s) − 2(s)|2

≤
ki, j

η
(| 1(s) − 2(s)|2)

≤
ki, j

η
max{| 1(s) − 2(s)|2, | 1(s) − Li(t, s, 1(s))|2, | 2(s) − L j(t, s, 2(s))|2,

| 1(s) − L j(t, s, 2(s))|2, | 2(s) − Li(t, s, 1(s))|2}.

The above inequality yields

ℵ([zi 1](α,β), [z j 2](α,β)) ≤
ki, j

η
max{%( 1, 2), %( 1, [zi 1](α,β)),

%( 2, [z j 2](α,β)), %( 1, [z j 2](α,β)), %( 2, [zi 1](α,β))}.
(5.2)

Taking  = 1 and 2 = ` in (5.2) gives condition (iii) of Theorem 3.4. Thus, all the hypotheses
of Theorem 3.4 are satisfied. So, we conclude that there exists a solution of the system of integral
inclusions (5.1). �

6. Conclusions

In the setting of bms, new common intuitionistic fuzzy fp thrm for sequence of intuitionistic fsm
are proved. The established ideas improve some important existing fp thrm for single-valued and
crisp set-valued maps in the corresponding literature. Moreover, the ideas of Ulam-Hyers stability and
well-posedness of intuitionistic fuzzy fp problems are initiated to complement their crisp set-valued
counterparts. Sufficient conditions for existence of solutions of int-incl are examined to indicate an
application of the established results herein.
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