Processing math: 76%
Research article

Chatterjea type theorems for complex valued extended b-metric spaces with applications

  • Received: 04 March 2023 Revised: 19 May 2023 Accepted: 29 May 2023 Published: 07 June 2023
  • MSC : 46S40, 47H10, 54H25

  • In this article, we establish common α -fuzzy fixed point theorems for Chatterjea type contractions involving rational expression in complex valued extended b-metric space. Our results generalize and extend some familiar results in the literature. Some common fixed point results for multivalued and single valued mappings are derived for complex valued extended b-metric space, complex valued b-metric space and complex valued metric space as consequences of our leading results. As an application, we investigate the solution of Fredholm integral inclusion.

    Citation: Afrah Ahmad Noman Abdou. Chatterjea type theorems for complex valued extended b-metric spaces with applications[J]. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977

    Related Papers:

    [1] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [2] Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022
    [3] Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172
    [4] Badshah-e-Rome, Muhammad Sarwar, Thabet Abdeljawad . µ-extended fuzzy b-metric spaces and related fixed point results. AIMS Mathematics, 2020, 5(5): 5184-5192. doi: 10.3934/math.2020333
    [5] Samina Batul, Faisar Mehmood, Azhar Hussain, Reny George, Muhammad Sohail Ashraf . Some results for multivalued mappings in extended fuzzy b-metric spaces. AIMS Mathematics, 2023, 8(3): 5338-5351. doi: 10.3934/math.2023268
    [6] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki . Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247
    [7] Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy b-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851
    [8] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [9] Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330
    [10] Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad . Fixed point theory in complex valued controlled metric spaces with an application. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663
  • In this article, we establish common α -fuzzy fixed point theorems for Chatterjea type contractions involving rational expression in complex valued extended b-metric space. Our results generalize and extend some familiar results in the literature. Some common fixed point results for multivalued and single valued mappings are derived for complex valued extended b-metric space, complex valued b-metric space and complex valued metric space as consequences of our leading results. As an application, we investigate the solution of Fredholm integral inclusion.



    Metric fixed point theory is one of the distinguished and traditional theories in the area of functional analysis which has broad applications in various fields of mathematics. The Banach contraction principle (BCP) [1] is a fundamental and pioneering result for this theory. It is a prominent and an outstanding tool to use to solve the existence problems in pure and applied sciences. Kannan [2] gave an analogous variety of contractive type conditions that endorsed the existence of fixed points. The elementary difference between the Banach contraction principle and Kannan's fixed point theorem is the contractive condition and continuity of mapping. In Kannan's fixed point theorem, the contractive mapping is not necessarily continuous. Later on, Chatterjea [3] commuted the terms for the contractive condition used by Kannan and proved an analogue fixed point result. In 1969, Nadler [4] used the notion of the Hausdorff metric to obtain fixed points of multivalued mappings. In all of these results, the metric space plays a significant role. Over the past few decades, different interesting generalizations of metric space have been invented by several researchers. Some of these well-known generalizations of metric space are the partial metric space constructed by Mathew [5], b-metric space constructed by Czerwik [6] and extended b-metric space constructed by Kamran et al. [7]. After this such generalizations, Azam et al. [8] introduced the study of a complex valued metric space (CVMS) and generalized the classical metric space by replacing a set of real numbers R with the set of complex numbers C in the range. Rouzkard and Imdad [9] employed this idea of new space and manifested a result by adding more terms in the inequality to generalize Azam's results. In due course, Sitthikul and Saejung [10] extended the contractive condition of Rouzkard and Imdad [9] and established some new common fixed point theorems for self-mappings. Ahmad et al. [11,12] gave the notion of generalized Housdorff metric function in the background of CVMS and proved common fixed points of multivalued mappings. In [13], Mukheimer extended the concept of CVMS to complex valued b-metric space (CVbMS) by using a constant π1 in the triangle inequality. Later on, Ullah et al. [14] gave the study of complex valued extended b-metric space (CVEbMS) and replaced that constant π1 with a control function φ(x,y) in 2019. The notion of CVEb MS is an up-to-date and contemporary generalization of CVbMS and CVMS. Subsequently, Mohammed and Ullah [15] used the notion of a CVEbMS to obtain the common fixed points of two self mappings.

    Alternatively, Zadeh [16] gave the theory of a fuzzy set (FS) to deal with irregularity which happens because of inaccuracy or ambiguity in preference to the abstraction in 1960. Heilpern [17] used this notion of a FS to give the concept of fuzzy mappings (FMs) in the context of a metric space and broadened the Nadler's fixed point theorem [4]. Several generalizations of Heilpern's fixed point theorem have been derived by researchers in different spaces. Kutbi et al. [18] obtained α -fuzzy fixed point theorems for CVMS and derived some results in the metric space and CVMS. Humaira et al. [19,20] utilized the notion of a CVMS to prove fixed and common fixed points of FMs. Recently, Shammaky et al. [21] and Albargi and Ahmad [22] defined Banach and Kannan type contractions including rational expressions in CVEbMS and proved common α-fuzzy fixed point results. The results given by Shammaky et al. [21] and Albargi and Ahmad [22] are generalizations of Banach and Kannan type contractions results in CVbMS and CVMS. For further characteristics in this order, we refer the researchers to [23,24,25,26,27,28,29].

    In this work, we utilize the concept of a CVEbMS and establish common α-fuzzy fixed point theorems for Chatterjea type contractions involving rational expressions. In this way, we generalize Chatterjea type contraction results in CVEbMS, CVbMS and CVMS. As outcomes of our main result, we derive the leading results of Azam et al. [8], Rouzkard and Imdad [9], Ahmad et al. [11] and Kutbi et al.[18] from our results. We investigate the solution of Fredholm integral inclusion as an application.

    In 1922, Banach [1] proved the following well-known fixed point result:

    Theorem 1. ([1]) Let (X,d) be a CMS and T: XX. If there exists [0,1) such that

    d(Tx,Ty)d(x,y),

    for all x,y X; then, there exists a unique point xX such that x=Tx.

    Kannan [2] established the following fixed point result:

    Theorem 2. ([2]) Let (X,d) be a CMS and T: XX. If there exists [0,12) such that

    d(Tx,Ty)(d(x,Tx)+d(y,Ty)),

    for all x,y X; then, there exists a unique point xX such that x=Tx.

    Chatterjea [3] presented a fixed point result in this aspect.

    Theorem 3. ([3]) Let (X,d) be a CMS and T: XX. If there exists [0,12) such that

    d(Tx,Ty)(d(y,Tx)+d(x,Ty)),

    for all x,y X; then, there exists a unique point xX such that x=Tx.

    In 1969, Nadler [4] introduced the concept of multivalued mapping and generalized single valued mapping.

    Theorem 4. ([4]) Let (X,d) be a CMS and T: XCB(X). If there exists (0,1) such that

    H(Tx,Ty)d(x,y),

    for all x,y X; then, there exists a unique point xX such that xTx.

    Azam et al. [8] defined the notion of a CVMS in this manner.

    Definition 1. ([8]) A partial order  on C (set of complex numbers) is given as follows:

    ϱ1ϱ2  R(ϱ1)R(ϱ2), I(ϱ1)I(ϱ2),

    for all ϱ1,ϱ2C.

    It follows that ϱ1ϱ2 if one of these assertions is satisfied:

    (a) R(ϱ1)=R(ϱ2), I(ϱ1)<I(ϱ2),(b)R(ϱ1)<R(ϱ2), I(ϱ1)=I(ϱ2),(c)R(ϱ1)<R(ϱ2), I(ϱ1)<I(ϱ2),(d)R(ϱ1)=R(ϱ2), I(ϱ1)=I(ϱ2),

    where R(ϱ) and I(ϱ) denote the real and imaginary parts of ϱC respectively.

    Definition 2. ([8]) Let X. A mapping d: X×XC is called a CVM if the following conditions hold:

    (i) 0d(x,y) and d(x,y)=0 x=y.

    (ii) d(x,y)=d(y,x).

    (iii) d(x,y)d(x,ν)+d(ν,y).

    For all x,y,νX; then, (X,d) is called a CVMS.

    Example 1. ([8]) Let X=[0,1] and x,yX. Define d: X×XC by

    d(x,y)={0,ifx=y,i2,ifxy.

    Then (X,d) is a CVMS.

    In [13], Mukheimer gave the notion of a CVbMS as follows:

    Definition 3. ([13]) Let X and π1. A mapping d: X×XC is said to be a CVbMS if the following conditions hold:

    (i) 0d(x,y) and d(x,y)=0 if and only if x=y.

    (ii) d(x,y)=d(y,x).

    (iii) d(x,y)π[d(x,ν)+d(ν,y)].

    For all x,y,νX; then, (X,d) is called a CVbMS.

    Example 2. ([13]) Let X=[0,1]. Define d: X×XC by

    d(x,y)=|xy|2+i|xy|2,

    for all x,yX. Then (X,d) is a CVbMS with π=2.

    Ullah et al. [14] conducted the study of the CVEbMS and replaced the constant π1 with a control function φ(x,y) in 2014.

    Definition 4. ([14]) Let X and φ: X×X[1,+). A mapping d: X×XC is called a CVEbMS if the following conditions hold:

    (i) 0d(x,y) and d(x,y)=0 if and only if x=y.

    (ii) d(x,y)=d(y,x).

    (iii) d(x,y)φ(x,y)[d(x,ν)+d(ν,y)].

    For all x,y,νX; then, (X,d) is called a CVEbMS.

    Example 3. ([14]) Let X and φ: X×X[1,+) be defined by

    φ(x,y)=1+x+yx+y,

    and d: X×XC by

    (i) d(x,y)=ixy, 0<x,y1.

    (ii) d(x,y)=0x=y, 0x,y1.

    (iii) d(x,0)=d(0,x)=ix,0<x1.

    Then (X,d) is a CVEbMS.

    Example 4. Let X=[0,+) and φ: X×X[1,+) be a function defined by φ(x,y)=1+x+y and d: X×XC by

    d(x,y)={0,ifx=y,i,ifxy.

    Then (X,d) is a CVEbMS.

    Lemma 1. ([14]) Let (X,d) be a CVEbMS and {xn} X.\ Then {xn} converges to x if and only if \ |d(xn,x)|0  as n+.

    Lemma 2. ([14]) Let (X,d) be a CVEbMS and {xn} X.\ Then {xn} is a Cauchy sequence if and only if  |d(xn,xm)|0, as n,m+.

    Let (X,d) be a CVEbMS; then, CB(X) represents the class of all non-empty, bounded and closed subsets of X.

    We apply s(x1)={x2 C: x1 x2} for x1 C, and

    s(x1,2)=x22s(d(x1,x2))=x22{xC: d(x1,x2)x},

    for a X and 2CB(X).

    For 1,2CB(X), we denote

     s(1,2)=(x11s(x1,2))(x22s(x2,1)).

    Lemma 3. ([14]) Let (X,d) be a CVEbMS.

    (i) Let x1,x2C. If x1x2, then s(x2)s(x1).

    (ii) Let xX and N(X). If θs(x,), then it follows that x.

    (iii) Let xC, 1,2CB(X) and x11. If xs(1,2), then xs(x1,2) for all x11 or xs(1,x2) for all x22.

    Let T: XCB(X) be a multivalued mapping. For xX and CB(X), define

    Wx()={d(x,x1):x1}.

    Thus for x,yX

    Wx(Ty)={d(x,x1):x1Ty}.

    Definition 5. ([14]) Let (X,d) be a CVEbMS. A subset of X is referred to as bounded below if there exists xX such that xx1, for all x1.

    Definition 6. ([14]) Let (X,d) be a CVEbMS. A mapping T: X2C is said to be bounded from below if for all xX, there exists xxC such that

    xxu,

    for all uTx.

    On the other hand, Heilpern [17] used the notion of a FS and gave the concept of FMs in metric space. A FS in X is a function with domain X and range [0,1] and IX is the family of all FSs in X. If the set is a FS and xX, then (x)  is said to be the grade of membership of x in . We express  []α as the α-level set of and define it in the following way:

    []α={x:(x)α},ifα(0,1],
    []0=¯{x:(x)>0}.

    Kutbi et al. [18] proved the following result\ for FMs in CVMS in this manner:

    Theorem 5. ([18]) Let (X,d) be a complete CVMS and S,T: XF(X) satisfy the g.l.b property. Suppose that there exists α(0,1], such that for each\ xX, [Sx]α, [Tx]αCB(X) and there exist 0 1,2 with

    21+2<1,

    such that

    1(d(y,[Sx]α)+d(x,[Ty]α))+2d(x,[Sx]α)d(y,[Ty]α)1+d(x,y)s([Sx]α,[Ty]α),

    for all x,y X; then, there exists xX such that

    x[Sx]α[Tx]α.

    Definition 7. ([17]) Let X1 be a non empty set and (X2,d) be a metric space. A mapping T is called a FM if T is a mapping from X1 into F(X2). A FM T is a fuzzy subset on X1×X2 with membership function T(x)(y). The function T(x)(y) is the grade of membership of y in\ T(x).

    Definition 8. ([17]) Let (X,d) be a metric space and S,T: X F(X). A point xX is called a common α-fuzzy fixed point of S and T if and only if x[Sx]α[Tx]α, for some α[0,1].

    Ahmad et al. [11,12] gave the notion of a generalized Hausdorff metric function for a CVMS and Kutbi et al. [18] used this study to prove fuzzy fixed point results in CVMS.

    In this article, we utilize the notion of a CVEbMS and establish common α-fuzzy fixed point results for Chatterjea type contractions involving rational expressions. We implement our results to derive some well-known results in the literature.

    Definition 9. Let (X,d) be a CVEbMS. A mapping T: XF(X) is said to satisfy g.l.b. property on (X,d) if for any xX and α(0,1], the greatest lower bound of Wx([Ty]α) exists in C for all yX. We represent the greatest lower bound of Wx([Ty]α) as d(x,[Ty]α) which is defined as follows:

    d(x,[Ty]α)=inf{d(x,ν):ν[Ty]α}.

    Theorem 6. Let (X,d) be a complete CVEbMS, φ: X×X[1,+) and S,T: X F(X) satisfy the g.l.b property. Suppose that there exists α(0,1] such that for each\ xX, [Sx]α, [Tx]α CB(X) and there exist non-negative constants 1 and 2 with

    2φ(x,y)1+2<1

    and

    λ(1φ(x,y)12)=φ(x,y)1,

    where λ[0,1) such that

    1(d(y,[Sx]α)+d(x,[Ty]α))+2d(x,[Sx]α)d(y,[Ty]α)1+d(x,y)s([Sx]α,[Ty]α), (3.1)

    for all x,y X. If for each x0X, limn,m+φ(xn,xm)λ<1, then S and T have a common α-fuzzy fixed point.

    Proof. Let x0 be an arbitrary point in X. By assumption, we can find that x1[Sx0]α. So, we have

    1(d(x1,,[Sx0,]α)+d(x0,[Tx1,]α))+2d(x0,[Sx0]α)d(x1,[Tx1]α)1+d(x0,x1)s([Sx0]α,[Tx1]α),

    that is,

    1(d(x1,,[Sx0,]α)+d(x0,[Tx1,]α))+2d(x0,[Sx0]α)d(x1,[Tx1]α)1+d(x0,x1)ω[Sx0]αs(ω,[Tx1]α).

    Since x1[Sx0]α, we have

    1(d(x1,,[Sx0,]α)+d(x0,[Tx1,]α))+2d(x0,[Sx0]α)d(x1,[Tx1]α)1+d(x0,x1)s(x1,[Tx1]α).

    By definition

    1(d(x1,,[Sx0,]α)+d(x0,[Tx1,]α))+2d(x0,[Sx0]α)d(x1,[Tx1]α)1+d(x0,x1)x[Tx1]αs(d(x1,x)).

    This implies that there exists x=x2[Tx1]α such that

    1(d(x1,,[Sx0,]α)+d(x0,[Tx1,]α))+2d(x0,[Sx0]α)d(x1,[Tx1]α)1+d(x0,x1)s(d(x1,x2)),

    that is,

    d(x1,x2)1(d(x1,,[Sx0,]α)+d(x0,[Tx1,]α))+2d(x0,[Sx0]α)d(x1,[Tx1]α)1+d(x0,x1).

    By the definitions of Wx([Ty]α) and Wx([Sy]α) for x,y X, we get

    d(x1,x2)1(d(x0,x2))+2d(x0,x1)d(x1,x2)+3d(x1,x1)d(x0,x2)1+d(x0,x1)=φ(x0,x1)1(d(x0,x1)+d(x1,x2))+2d(x0,x1)d(x1,x2)1+d(x0,x1)=φ(x0,x1)1(d(x0,x1)+d(x1,x2))+2d(x1,x2)(d(x0,x1)1+d(x0,x1)).

    This implies that

    |d(x1,x2)| φ(x0,x1)1|d(x0,x1)|+φ(x0,x1)1|d(x1,x2)|+2|d(x1,x2)||d(x0,x1)1+d(x0,x1)| φ(x0,x1)1|d(x0,x1)|+φ(x,y)1|d(x1,x2)|+2|d(x1,x2)|,

    which further implies that

    |d(x1,x2)|(φ(x0,x1)11φ(x0,x1)12)|d(x0,x1)|=λ|d(x0,x1)|. (3.2)

    Similarly, for x2[Tx1]α, we have

    1(d(x2,[Tx1]α)+d(x1,[Sx2]α))+2d(x1,[Tx1]α)d(x2,[Sx2]α)1+d(x2,x1)s([Tx1]α,[Sx2]α),

    that is,

     1(d(x2,[Tx1]α)+d(x1,[Sx2]α))+2d(x1,[Tx1]α)d(x2,[Sx2]α)1+d(x2,x1)ω[Tx1]αs(ω,[Sx2]α).

    Since x2[Tx1]α, we have

     1(d(x2,[Tx1]α)+d(x1,[Sx2]α))+2d(x1,[Tx1]α)d(x2,[Sx2]α)1+d(x2,x1)s(x2,[Sx2]α).

    By definition, we have

     1(d(x2,[Tx1]α)+d(x1,[Sx2]α))+2d(x1,[Tx1]α)d(x2,[Sx2]α)1+d(x2,x1)d[Sx2]αs(d(x2,d)).

    By the definition of the "s" function, there exists x3[Sx2]α, such that

    1(d(x2,[Tx1]α)+d(x1,[Sx2]α))+2d(x1,[Tx1]α)d(x2,[Sx2]α)1+d(x2,x1)s(d(x2,x3)),

    that is,

    d(x2,x3) 1(d(x2,[Tx1]α)+d(x1,[Sx2]α))+2d(x1,[Tx1]α)d(x2,[Sx2]α)1+d(x2,x1).

    By the definitions of Wx([Ty]α) and Wx([Sy]α) for x,y X, we get

    d(x2,x3) 1(d(x1,x3))+2d(x1,x2)d(x2,x3)1+d(x2,x1)= φ(x1,x2)1(d(x1,x2)+φ(x1,x2)d(x2,x3))+2d(x1,x2)d(x2,x3)1+d(x1,x2),

    which implies that

    |d(x2,x3)|φ(x1,x2)1|d(x1,x2)|+φ(x1,x2)1|d(x2,x3)|+2d(x2,x3)|d(x1,x2)||1+d(x1,x2)|.

    This yields

    |d(x2,x3)|(φ(x1,x2)11φ(x1,x2)12)|d(x1,x2)|=λ|d(x1,x2)|. (3.3)

    Continuing in this way, we get a sequence of points {xn} in X such that

    |d(x1,x2)|λ|d(x0,x1)|,|d(x2,x3)|λ2|d(x0,x1)|,d(xn,xn+1)λnd(x0,x1),

    for all nN. Now for m>n and by the triangle inequality, we have

    d(xn,xm)φ(xn,xm)λnd(x0,x1)+φ(xn,xm)φ(xn+1,xm)λn+1d(x0,x1)++φ(xn,xm)φ(xn+1,xm)φ(xm2,xm)φ(xm1,xm)λm1d(x0,x1)d(x0,x1)[φ(xn,xm)λn+φ(xn,xm)φ(xn+1,xm)λn+1++φ(xn,xm)φ(xn+1,xm)φ(xm2,xm)φ(xm1,xm)λm1].

    Since

    limn,m+φ(xn,xm)λ<1,

    the series n=1λnpi=1φ(xi,xm) converges, according to the ratio test for each mN. Let

    S=n=1λnpi=1φ(xi,xm),  Sn=nj=1λjpi=1φ(xi,xm).

    Hence, the above inequality for m>n can be written as

    d(xn,xm)d(x0,x1)[Sm1Sn].

    Letting n+, we have

    |d(xn,xm)|0.

    Thus the sequence {xn} is Cauchy in X according to Lemma 2. Because X is complete, there exists x such that xnxX as n+. Now, we show that xSx and xTx. By inequality (3.1), we have

    1(d(x,[Sx2n]α)+d(x2n,[Tx]α))+2d(x2n,[Sx2n]α)d(x,[Tx]α)1+d(x2n,x)s([Sx2n]α,[Tx]α),

    that is,

    1(d(x,[Sx2n]α)+d(x2n,[Tx]α))+2d(x2n,[Sx2n]α)d(d,[Tx]α)1+d(x2n,x)ω[Sx2n]αs(ω,[Tx]α).

    Since x2n+1[Sx2n]α, we have

    1(d(x,[Sx2n]α)+d(x2n,[Tx]α))+2d(x2n,[Sx2n]α)d(x,[Tx]α)1+d(x2n,x)s(x2n+1,[Tx]α),
    1(d(x,[Sx2n]α)+d(x2n,[Tx]α))+2d(x2n,[Sx2n]α)d(x,[Tx]α)1+d(x2n,x)x/[Tx]αs(d(x2n+1,x/)).

    This implies that there exists ςn[Tx]α such that

    1(d(x,[Sx2n]α)+d(x2n,[Tx]α))+2d(x2n,[Sx2n]α)d(x,[Tx]α)1+d(x2n,x)s(d(x2n+1,ςn)),

    that is,

    d(x2n+1,ςn)1(d(x,[Sx2n]α)+d(x2n,[Tx]α))+2d(x2n,[Sx2n]α)d(x,[Tx]α)1+d(x2n,x).

    The g.l.b property of T yields

    d(x2n+1,ςn)1(d(x,x2n+1)+d(x2n,ςn))+2d(x2n,x2n+1)d(x,ςn)1+d(x2n,x).

    From the triangle inequality, we have

    d(x,ςn)θ(x,ςn)[d(x,x2n+1)+d(x2n+1,ςn)].

    Hence

    d(x,ςn)θ(x,ςn)d(x,x2n+1)+1θ(x,ςn)(d(x,x2n+1)+d(x2n,ςn))++2d(x2n,x2n+1)d(x,ςn)1+d(x2n,x).

    It follows that

    |d(x,ςn)|θ(x,ςn)|d(x,x2n+1)|+1θ(x,ςn)|d(x,x2n+1)|+1θ(x,ςn)|d(x2n,ςn)|+2θ(x,ςn)|d(x2n,x2n+1)||d(x,ςn)||1+d(x2n,x)|.

    Letting n+, we get that |d(x,ςn)|0. Thus, ςnx according to Lemma 1. Because [Tx]α is closed, x [Tx]α. Similarly, we can show that x [Sx]α. Thus there exists xX such that x[Sx]α[Tx]α.

    By taking S=T in Theorem 6, we derive the following result:

    Corollary 1. Let (X,d) be a complete CVEbMS, φ: X×X[1,+) and T: X F(X) satisfy the g.l.b property. Suppose that there exists α(0,1], such that for each\ xX, [Tx] CB(X) and there exist non-negative constants 1 and 2 with

    2φ(x,y)1+2<1

    and

    λ(1φ(x,y)12)=φ(x,y)1,

    where λ[0,1) such that

    1(d(y,[Tx]α)+d(x,[Ty]α))+2d(x,[Tx]α)d(y,[Ty]α)1+d(x,y)s([Tx]α,[Ty]α),

    for all x,y X. If for each x0X,

    limn,m+φ(xn,xm)λ<1,

    then T has an α-fuzzy fixed point.

    Taking φ: X×X[1,+) by φ(x,y)=s1 in Theorem 3.1, we get the following result:

    Corollary 2. Let (X,d) be a complete CVbMS with the coefficient s1, and S,T: X F(X) satisfy the g.l.b property. Suppose that there exists α(0,1], such that for each\ xX, [Sx]α, [Tx]α CB(X) and there exist non-negative constants 1 and 2 with

    21+2<1

    and

    1(d(y,[Sx]α)+d(x,[Ty]α))+2d(x,[Sx]α)d(y,[Ty]α)1+d(x,y)s([Sx]α,[Ty]α),

    for all x,y X; then, S and T have a common α-fuzzy fixed point.

    By taking S=T in the above corollary, we get the following result:

    Corollary 3. Let (X,d) be a complete CVbMS with the coefficient s1, and T: X F(X) satisfy the g.l.b property. Suppose that there exists α(0,1], such that for each\ xX, [Tx]α CB(X) and there exist non-negative constants 1 and 2 with

    21+2<1

    and

    1(d(y,[Tx]α)+d(x,[Ty]α))+2d(x,[Tx]α)d(y,[Ty]α)1+d(x,y)s([Tx]α,[Ty]α),

    for all x,y X; then, there exists xX such that x[Tx]α.

    Taking φ: X×X[1,+) by φ(x,y)=1 in Theorem 6, we get the following result:

    Corollary 4. ([18]) Let (X,d) be a complete CVMS, and let S,T: X F(X) satisfy the g.l.b property. Suppose that there exists α(0,1] such that for each\ xX, [Sx]α, [Tx]α CB(X) and there exist non-negative constants 1 and 2 with

    21+2<1

    and

    1(d(y,[Sx]α)+d(x,[Ty]α))+2d(x,[Sx]α)d(y,[Ty]α)1+d(x,y)s([Sx]α,[Ty]α),

    for all x,y X; then, S and T have a common α-fuzzy fixed point.

    By taking S=T in the above corollary, we get the following result:

    Corollary 5. ([18]) Let (X,d) be a complete CVMS, and T: X F(X) satisfy the g.l.b property. Suppose that there exists α(0,1] such that for each xX, [Tx]α CB(X) and there exist non-negative constants 1 and 2 with

    21+2<1

    and

    1(d(y,[Tx]α)+d(x,[Ty]α))+2d(x,[Tx]α)d(y,[Ty]α)1+d(x,y)s([Tx]α,[Ty]α),

    for all x,y X; then, there exists xX such that x[Tx]α.

    Theorem 7. Let (X,d) be a complete CVEbMS, φ: X×X[1,+) and 1,2: XCB(X) satisfy the g.l.b property. Suppose that there exist non-negative constants 1 and 2 with

    2φ(x,y)1+2<1

    and

    λ(1φ(x,y)12)=φ(x,y)1,

    where λ[0,1) such that

     1(d(y,1x)+d(x,2y))+2d(x,1x)d(y,2y)1+d(x,y)s(1x,2y),

    for all x,y X. If for each x0X,

    limn,m+φ(xn,xm)λ<1,

    then there exists xX such that x1x2x.

    Proof. Consider that S,T: XF(X) is defined by

    S(x)(t)={α, t1x0,t1x,
    T(x)(t)={α, t2x0,t2x,

    where α(0,1]. Then

    [Sx]α={t:S(x)(t)α}=1x,  [Tx]α=2x.

    Hence, we can get xX by Theorem 6 such that

    x[Sx]α[Tx]α=1x2x.

    Corollary 6. Let (X,d) be a complete CVEbMS, φ: X×X[1,+) and : XCB(X) satisfy the g.l.b property. Suppose that there exist non-negative constants 1 and 2 with

    2φ(x,y)1+2<1

    and

    λ(1φ(x,y)12)=φ(x,y)1,

    where λ[0,1) such that

     1(d(y,x)+d(x,y))+2d(x,x)d(y,y)1+d(x,y)s(x,y),

    for all x,y X. If for each x0X,

    limn,m+φ(xn,xm)λ<1,

    then there exists xX such that xx.

    Proof. Take 1=2= in Theorem 7.

    Corollary 7. Let (X,d) be a complete CVEbMS, φ: X×X[1,+) and 1,2: XCB(X) satisfy the g.l.b property. Suppose that there exists a non-negative constant 1 such that 2φ(x,y)1 [0,1) and

     1(d(y,1x)+d(x,2y))s(1x,2y),

    for all x, y\in X . If for each x_{0}\in X,

    \lim\limits_{n,m\rightarrow +\infty }\varphi \left( x_{n},x_{m}\right) \ell _{1} < 1,

    then there exists x^{\ast }\in X such that x^{\ast }\in \Game _{1}x^{\ast }\cap \Game _{2}x^{\ast }.

    Proof. Take \ell _{2} = 0 in Theorem 7.

    Taking \varphi (x, y) = 1 in the above Theorem 7, then one can obtain the fundamental theorem of Ahmad et al. [11] in the following manner:

    Corollary 8. ([11]) Let \left(X, d\right) be a complete CVMS and \Game_{1}, \Game _{2} : X\rightarrow CB(X) satisfy the g.l.b property. Suppose that there exist non-negative constants \ell _{1} and \ell _{2} with

    2\ell _{1}+\ell _{2} < 1

    such that

    \begin{equation*} \ell _{1}\left( d\left( y,\Game _{1}x\right) +d\left( x,\Game _{2}y\right) \right) +\ell _{2}\frac{d\left( x,\Game _{1}x\right) d\left( y,\Game _{2}y\right) }{1+d\left( x,y\right) }\in s\left( \Game _{1}x,\Game _{2}y\right) , \end{equation*}

    for all x, y\in X ; then, there exists x^{\ast }\in X such that x^{\ast }\in \Game _{1}x^{\ast }\cap \Game _{2}x^{\ast }.

    Theorem 8. Let \left(X, d\right) be a complete CVE b MS, \varphi : X\times X\rightarrow \lbrack 1, +\infty) and \Game _{1}, \Game_{2} : X\rightarrow X . Suppose that there exist non-negative constants \ell _{1} and \ell _{2} with

    2\varphi (x,y)\ell _{1}+\ell _{2} < 1

    and

    \lambda (1-\varphi (x,y)\ell _{1}-\ell _{2}) = \varphi (x,y)\ell _{1},

    where \lambda \in \lbrack 0, 1) such that

    \begin{equation*} d\left( \Game _{1}x,\Game _{2}y\right) \preceq \ \ell _{1}\left( d\left( y,\Game _{1}x\right) +d\left( x,\Game _{2}y\right) \right) +\ell _{2}\frac{ d\left( x,\Game _{1}x\right) d\left( y,\Game _{2}y\right) }{1+d\left( x,y\right) }, \end{equation*}

    for all x, y\in X . If for each x_{0}\in X,

    \lim\limits_{n,m\rightarrow +\infty }\varphi \left( x_{n},x_{m}\right) \lambda < 1,

    then there exists x^{\ast }\in X such that x^{\ast } = \Game _{1}x^{\ast } = \Game _{2}x^{\ast }.

    Taking \varphi (x, y) = 1 in the above Theorem 8, then one can establish the following corollary which is main result of Rouzkard and Imdad [9]:

    Corollary 9. ([9]) Let \left(X, d\right) be a complete CVMS and \Game_{1}, \Game_{2} : X\rightarrow X . Suppose that there exist non-negative constants \ell _{1} and \ell _{2} with 2\ell _{1}+\ell _{2} < 1 such that

    \begin{equation*} d\left( \Game _{1}x,\Game _{2}y\right) \preceq \ \ell _{1}\left( d\left( y,\Game _{1}x\right) +d\left( x,\Game _{2}y\right) \right) +\ell _{2}\frac{ d\left( x,\Game _{1}x\right) d\left( y,\Game _{2}y\right) }{1+d\left( x,y\right) }, \end{equation*}

    for all x, y\in X; then, there exists x^{\ast }\in X such that x^{\ast } = \Game _{1}x^{\ast } = \Game _{2}x^{\ast }.

    Taking \varphi (x, y) = 1 and \ell _{1} = 0 in the above Theorem 8, then one can establish the following corollary which is one of the results of Azam et al. [8].

    Corollary 10. ([8]) Let \left(X, d\right) be a complete CVMS and \Game _{1}, \Game_{2} : X\rightarrow X . Suppose that there exists a non-negative constant \ell _{2}\in \lbrack 0, 1) such that

    \begin{equation*} d\left( \Game _{1}x,\Game _{2}y\right) \preceq \ell _{2}\frac{d\left( x,\Game _{1}x\right) d\left( y,\Game _{2}y\right) }{1+d\left( x,y\right) }, \end{equation*}

    for all x, y\in X; then, there exists x^{\ast }\in X such that x^{\ast } = \Game _{1}x^{\ast } = \Game _{2}x^{\ast }.

    In this section, we investigate Fredholm type integral inclusion

    \begin{equation} x(t)\in \mathfrak{g}(t)+\int_{a}^{b}K(t,s,x(s))ds,{\rm{ \ \ }}t\in \lbrack a,b], \end{equation} (5.1)

    where K : [a, b] \times \lbrack a, b] \times \mathbb{R} \rightarrow K_{cv}(\mathbb{R}) (non-empty convex and compact subsets of \mathbb{R}) , \mathfrak{g}\in C[a, b] is given continuous function.

    Define the complex valued extended b -metric d on C[a, b] by

    \begin{equation} d(x,y) = \max\limits_{t\in \lbrack a,b]}|x(t)-y(t)|e^{it}, \end{equation} (5.2)

    for all x, y\in C[a, b]. Then (C[a, b], d, \varphi) is a complete CVEbMS with \varphi \left(x, y\right) = \left \vert x(t)\right \vert +\left \vert y(t)\right \vert +2 .

    The following conditions will be assumed in our next theorem:

    (a) \forall x\in C[a, b], the function K : [a, b] \times \lbrack a, b] \times \mathbb{R} \rightarrow K_{cv}(\mathbb{R}) is lower semicontinuous.

    (b) There exist continuous functions \mathfrak{O, P} : [a, b]\times \lbrack a, b]\rightarrow \lbrack 0, +\infty) such that

    \begin{equation*} d(K(t,s,x)-K(t,s,y)\preceq \mathfrak{O}(t,s)A\left( x,y\right) +\mathfrak{P} (t,s)B\left( x,y\right) \end{equation*}

    \forall t, s\in \lbrack a, b], x, y\in C[a, b], where

    \begin{equation*} A\left( x,y\right) = \max\limits_{t\in \lbrack a,b]}\left( |x-\left[ Ty\right] _{\alpha }|+|y-\left[ Tx\right] _{\alpha }|\right) e^{it},\quad\quad\quad \end{equation*}
    \begin{equation*} \quad\quad B\left( x,y\right) = \frac{\max\limits_{t\in \lbrack a,b]}\left \vert x-\left[ Ty \right] _{\alpha }\right \vert e^{it}\max\limits_{t\in \lbrack a,b]}\left \vert y- \left[ Tx\right] _{\alpha }|\right \vert e^{it}}{1+\max\limits_{t\in \lbrack a,b]}\left \vert x-y\right \vert e^{it}} \end{equation*}

    and T : C[a, b]\rightarrow \mathfrak{F}\mathit{(} X \mathit{)} is an FM given by

    \begin{equation*} \left[ Tx\right] _{\alpha } = \left \{ y\in X:y(t)\in \mathfrak{g} (t)+\int_{a}^{b}K(t,s,x(s))ds,{\rm{ \ }}t\in \lbrack a,b]\right \} , \end{equation*}

    for \alpha \in (0, 1],

    (c) There exists some non-negative constants \ell _{1} and \ell _{2} such that

    \begin{equation*} \max\limits_{t\in \lbrack a,b]}\left( \int_{a}^{b}\mathfrak{O}(t,s)ds\right) \leq \ell _{1} \end{equation*}

    and

    \begin{equation*} \max\limits_{t\in \lbrack a,b]}\left( \int_{a}^{b}\mathfrak{P}(t,s)ds\right) \leq \ell _{2} \end{equation*}

    with

    2\varphi (x,y)\ell _{1}+\ell _{2} < 1.

    Theorem 9. Under the assumptions (a)–(c), the integral inclusion (5.1) has a solution in C[a, b] .

    Proof. Let X\mathcal{ = }C[a, b] and x\in X be any arbitrary point. By Michael's selection theorem, there exists a continuous operator k_{x}(t, s) : [a, b]\times \lbrack a, b]\rightarrow \mathbb{R} such that k_{x}(t, s)\in K_{x}(t, s) for every t, s\in \lbrack a, b] and set-valued function K_{x}(t, s) : [a, b]\times \lbrack a, b]\rightarrow K_{cv}(\mathbb{R}). This yields that

    \mathfrak{g}(t)+\int_{a}^{b}k_{x}(t,s)ds\in \left[ Tx \right] _{\alpha }.

    Thus, \left[ Tx\right] _{\alpha }\not = \emptyset. It is very simple to manifest that \left[ Tx\right] _{\alpha } is closed. Moreover, since the functions \mathfrak{g} and K_{x}(t, s) are continuous, the ranges of both functions are bounded. It also follows that \left[ Tx\right] _{\alpha } is bounded. Thus \left[ Tx\right] _{\alpha }\in P_{cb}(X).

    For this, let x, y\in X; then, there exist \left[ Tx\right] _{\alpha } and \left[ Ty\right] _{\alpha } such that \left[ Tx\right] _{\alpha } , \left[ Ty\right] _{\alpha }\in P_{cb}(X). Let u\in \left[ Tx\right] _{\alpha } be an arbitrary point such that

    \begin{equation*} u(t)\in \mathfrak{g}(t)+\int_{a}^{b}K(t,s,x(s))ds \end{equation*}

    for t\in \lbrack a, b] holds. It means that \forall t, s\in \lbrack a, b] and \exists k_{x}(t, s)\in K_{x}(t, s) = K(t, s, x(s)) such that

    \begin{equation*} u(t) = \mathfrak{g}(t)+\int_{a}^{b}k_{x}(t,s)ds \end{equation*}

    for t\in \lbrack a, b]. From (b), we have

    \begin{equation*} d(K(t,s,x)-K(t,s,y)\preceq \mathfrak{O}(t,s)A\left( x(s),y(s)\right) + \mathfrak{P}(t,s)B\left( x(s),y(s)\right) , \end{equation*}

    for all x, y\in X , where

    \begin{equation*} A\left( x(s),y(s)\right) = \max\limits_{t\in \lbrack a,b]}\left( |x(s)-\left[ Ty(s) \right] _{\alpha }|+|y(s)-\left[ Tx(s)\right] _{\alpha }|\right) e^{it},\quad\quad\ \ \end{equation*}
    \begin{equation*} \quad\quad\ \ \ B\left( x(s),y(s)\right) = \frac{\max\limits_{t\in \lbrack a,b]}\left \vert x(s)- \left[ Ty(s))\right] _{\alpha }\right \vert e^{it}\max\limits_{t\in \lbrack a,b]}\left \vert y(s)-\left[ Tx(s)\right] _{\alpha }|\right \vert e^{it}}{ 1+\max\limits_{t\in \lbrack a,b]}\left \vert x(s)-y(s)\right \vert e^{it}}. \end{equation*}

    This implies that \exists z(t, s)\in K_{y}(t, s) such that

    \begin{equation*} \left \vert k_{x}(t,s)-z(t,s)\right \vert ^{2}\preceq \mathfrak{O} (t,s)A\left( x(s),y(s)\right) +\mathfrak{P}(t,s)B\left( x(s),y(s)\right), \end{equation*}

    for all t, s\in \lbrack a, b] and

    \begin{equation*} A\left( x(s),y(s)\right) = \max\limits_{t\in \lbrack a,b]}\left( |x(s)-\left[ Ty(s) \right] _{\alpha }|+|y(s)-\left[ Tx(s)\right] _{\alpha }|\right) e^{it},\quad\quad\ \end{equation*}
    \begin{equation*} \quad\quad\ \ \ \ B\left( x(s),y(s)\right) = \frac{\max\limits_{t\in \lbrack a,b]}\left \vert x(s)- \left[ Ty(s))\right] _{\alpha }\right \vert e^{it}\max\limits_{t\in \lbrack a,b]}\left \vert y(s)-\left[ Tx(s)\right] _{\alpha }|\right \vert e^{it}}{ 1+\max\limits_{t\in \lbrack a,b]}\left \vert x(s)-y(s)\right \vert e^{it}}. \end{equation*}

    Now we consider U given as

    \begin{equation*} U(t,s) = K_{y}(t,s)\cap \{w\in \mathbb{R} :\left \vert k_{x}(t,s)-w\right \vert \preceq \mathfrak{O}(t,s)A\left( x(s),y(s)\right) +\mathfrak{P}(t,s)B\left( x(s),y(s)\right) \}, \end{equation*}

    which is a multivalued function. Thus, by (a), the multivalued function U is lower semicontinuous. This yields that there exists a continuous operator

    k_{y}(t,s):[a,b]\times \lbrack a,b]\rightarrow \mathbb{R}

    such that k_{y}(t, s)\in U(t, s) for t, s\in \lbrack a, b]. Then

    v(t) = \mathfrak{g}(t)+\int_{a}^{b}k_{x}(t,s)ds

    satisfies that

    \begin{equation*} v(t)\in \mathfrak{g}(t)+\int_{a}^{b}K(t,s,y(s))ds,{\rm{ \ \ }}t\in \lbrack a,b], \end{equation*}

    t\in \lbrack a, b]. That is v\in \left[ Ty\right] _{\alpha } and

    \begin{eqnarray*} \left \vert u(t)-v(t)\right \vert e^{it} &\preceq &\left( \int_{a}^{b}\left \vert k_{x}(t,s)-k_{y}(t,s)\right \vert e^{it}ds\right) \\ &\preceq &\left( \int_{a}^{b}\mathfrak{O}(t,s)A\left( x(s),y(s)\right) + \mathfrak{P}(t,s)B\left( x(s),y(s)\right) \right) \\ &\preceq &\left( \int_{a}^{b}\mathfrak{O}(t,s)A\left( x(s),y(s)\right) \right) ds +\left( \int_{a}^{b}\mathfrak{P}(t,s)B\left( x(s),y(s)\right) \right) ds \\ &\preceq &\max\limits_{t\in \lbrack a,b]}\left( \int_{a}^{b}\mathfrak{O} (t,s)A\left( x(s),y(s)\right) \right) ds +\max\limits_{t\in \lbrack a,b]}\left( \int_{a}^{b}\mathfrak{P}(t,s)B\left( x(s),y(s)\right) \right) ds \\ &\preceq &\ell _{1}\left( d(x,\left[ Ty\right] _{\alpha })+d(y,\left[ Tx \right] _{\alpha })\right) +\ell _{2}\frac{d(x,\left[ Ty\right] _{\alpha })d(y,\left[ Tx\right] _{\alpha })}{1+d(x,y)}, \end{eqnarray*}

    \forall t, s\in \lbrack a, b]. Hence, we get

    \begin{eqnarray*} d(u,v) \preceq \ell _{1}\left( d(x,\left[ Ty\right] _{\alpha })+d(y,\left[ Tx\right] _{\alpha })\right) +\ell _{2}\frac{d(x,\left[ Ty\right] _{\alpha })d(y,\left[ Tx\right] _{\alpha })}{1+d(x,y)}. \end{eqnarray*}

    Interchanging the roles of u and v , we obtain that

    \begin{eqnarray*} d(\left[ Tx\right] _{\alpha },\left[ Ty\right] _{\alpha }) \preceq \ell _{1}\left( d(x,\left[ Ty\right] _{\alpha })+d(y,\left[ Tx\right] _{\alpha })\right)+\ell _{2}\frac{d(x,\left[ Ty\right] _{\alpha })d(y,\left[ Tx\right] _{\alpha })}{1+d(x,y)}, \end{eqnarray*}

    by the definition of " s ", we have

    \begin{equation*} \ell _{1}\left( d(x,\left[ Ty\right] _{\alpha })+d(y,\left[ Tx\right] _{\alpha })\right) +\ell _{2}\frac{d(x,\left[ Ty\right] _{\alpha })d(y,\left[ Tx\right] _{\alpha })}{1+d(x,y)}\in s\left( \left[ Tx\right] _{\alpha },\left[ Ty \right] _{\alpha }\right) . \end{equation*}

    Hence all assumptions of Corollary 1 are fulfilled. Thus, there exists a solution of integral inclusion (5.1) by Corollary 1.

    In this article, we utilized the notion of a CVEbMS and set up common \alpha -fuzzy fixed point results for Chatterjea type contractions involving rational expressions. Some common \alpha - fixed point theorems for self mappings and multivalued mappings have been established for CVEbMS as consequences of our leading results. In this way, we derived the leading results of Azam et al. [8], Rouzkard and Imdad [9], Ahmad et al. [11] and Kutbi et al.[18] from our results. As an application, we investigated the solution of Fredholm integral inclusion.

    The study of L -FMs and common L -fuzzy fixed point results for CVE b MS can be the focus of our future work in this way.

    The author declares she has not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-21-DR-68). The author, therefore, thanks the University of Jeddah for its technical and financial support.

    The author declares that she has no conflict of interest.



    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
    [2] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76.
    [3] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727–730.
    [4] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475
    [5] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav., 1 (1993), 5–11.
    [7] T. Kamran, M. Samreen, Q. U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [8] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253.
    [9] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
    [10] K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
    [11] A. Ahmad, C. Klin-Eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
    [12] A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
    [13] A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., 2014 (2014), 587825. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
    [14] N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended b-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
    [15] S. S. Mohammed, N. Ullah, Fixed point results in complex valued extended b-metric spaces and related applications, Ann. Math. Comput. Sci., 1 (2021), 1–11.
    [16] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [17] S. Heilpern, Fuzzy fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566–569.
    [18] M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
    [19] Humaira, M. Sarwar, G. N. V. Kishore, Fuzzy fixed point results for \phi contractive mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815
    [20] Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with Homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
    [21] A. E. Shammaky, J. Ahmad, A. F. Sayed, On fuzzy fixed point results in complex valued extended b-metric spaces with application, J. Math., 2021 (2021), 9995897. https://doi.org/10.1155/2021/9995897 doi: 10.1155/2021/9995897
    [22] A. H. Albargi, J. Ahmad, Common \alpha -fuzzy fixed point results for Kannan type contractions with application, J. Funct. Spaces, 2022 (2022), 5632119. https://doi.org/10.1155/2022/5632119 doi: 10.1155/2022/5632119
    [23] M. M. A. Khater, S. H. Alfalqi, J. F. Alzaidi, R. A. M. Attia, Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a quasi-monochromatic medium, Results Phys., 46 (2023), 106312. https://doi.org/10.1016/j.rinp.2023.106312 doi: 10.1016/j.rinp.2023.106312
    [24] M. M. A. Khater, Prorogation of waves in shallow water through unidirectional Dullin-Gottwald-Holm model, computational simulations, Int. J. Mod. Phys. B, 37 (2023), 2350071. https://doi.org/10.1142/S0217979223500716 doi: 10.1142/S0217979223500716
    [25] B. Fisher, Mappings satisfying a rational inequality, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., 24 (1980), 247–251.
    [26] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory, Springer, 2021.
    [27] M. Gardaševic-Filipović, K. Kukić, D. Gardašević, Z. Mitrović, Some best proximity point results in the orthogonal 0-complete b-metric-like spaces, J. Contemp. Math. Anal., 58 (2023), 105–115. https://doi.org/10.3103/S1068362323020036 doi: 10.3103/S1068362323020036
    [28] M. M. A. Khater, A hybrid analytical and numerical analysis of ultra-short pulse phase shifts, Chaos Solitons Fract., 169 (2023), 113232. https://doi.org/10.1016/j.chaos.2023.113232 doi: 10.1016/j.chaos.2023.113232
    [29] R. A. M. Attia, X. Zhang, M. M. A. Khater, Analytical and hybrid numerical simulations for the (2+1)-dimensional Heisenberg ferromagnetic spin chain, Results Phys., 43 (2022), 106045. https://doi.org/10.1016/j.rinp.2022.106045 doi: 10.1016/j.rinp.2022.106045
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1297) PDF downloads(48) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog