Research article

Chatterjea type theorems for complex valued extended $ b $-metric spaces with applications

  • Received: 04 March 2023 Revised: 19 May 2023 Accepted: 29 May 2023 Published: 07 June 2023
  • MSC : 46S40, 47H10, 54H25

  • In this article, we establish common $ \alpha $ -fuzzy fixed point theorems for Chatterjea type contractions involving rational expression in complex valued extended $ b $-metric space. Our results generalize and extend some familiar results in the literature. Some common fixed point results for multivalued and single valued mappings are derived for complex valued extended $ b $-metric space, complex valued $ b $-metric space and complex valued metric space as consequences of our leading results. As an application, we investigate the solution of Fredholm integral inclusion.

    Citation: Afrah Ahmad Noman Abdou. Chatterjea type theorems for complex valued extended $ b $-metric spaces with applications[J]. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977

    Related Papers:

  • In this article, we establish common $ \alpha $ -fuzzy fixed point theorems for Chatterjea type contractions involving rational expression in complex valued extended $ b $-metric space. Our results generalize and extend some familiar results in the literature. Some common fixed point results for multivalued and single valued mappings are derived for complex valued extended $ b $-metric space, complex valued $ b $-metric space and complex valued metric space as consequences of our leading results. As an application, we investigate the solution of Fredholm integral inclusion.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations integrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
    [2] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76.
    [3] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25 (1972), 727–730.
    [4] S. B. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969), 475–488. https://doi.org/10.2140/PJM.1969.30.475 doi: 10.2140/PJM.1969.30.475
    [5] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [6] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Univ. Ostrav., 1 (1993), 5–11.
    [7] T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [8] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253.
    [9] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
    [10] K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
    [11] A. Ahmad, C. Klin-Eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
    [12] A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
    [13] A. A. Mukheimer, Some common fixed point theorems in complex valued $b$-metric spaces, Sci. World J., 2014 (2014), 587825. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
    [14] N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended $b$-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
    [15] S. S. Mohammed, N. Ullah, Fixed point results in complex valued extended $b$-metric spaces and related applications, Ann. Math. Comput. Sci., 1 (2021), 1–11.
    [16] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [17] S. Heilpern, Fuzzy fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566–569.
    [18] M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
    [19] Humaira, M. Sarwar, G. N. V. Kishore, Fuzzy fixed point results for $\phi$ contractive mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815
    [20] Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with Homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
    [21] A. E. Shammaky, J. Ahmad, A. F. Sayed, On fuzzy fixed point results in complex valued extended $b$-metric spaces with application, J. Math., 2021 (2021), 9995897. https://doi.org/10.1155/2021/9995897 doi: 10.1155/2021/9995897
    [22] A. H. Albargi, J. Ahmad, Common $\alpha $-fuzzy fixed point results for Kannan type contractions with application, J. Funct. Spaces, 2022 (2022), 5632119. https://doi.org/10.1155/2022/5632119 doi: 10.1155/2022/5632119
    [23] M. M. A. Khater, S. H. Alfalqi, J. F. Alzaidi, R. A. M. Attia, Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a quasi-monochromatic medium, Results Phys., 46 (2023), 106312. https://doi.org/10.1016/j.rinp.2023.106312 doi: 10.1016/j.rinp.2023.106312
    [24] M. M. A. Khater, Prorogation of waves in shallow water through unidirectional Dullin-Gottwald-Holm model, computational simulations, Int. J. Mod. Phys. B, 37 (2023), 2350071. https://doi.org/10.1142/S0217979223500716 doi: 10.1142/S0217979223500716
    [25] B. Fisher, Mappings satisfying a rational inequality, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., 24 (1980), 247–251.
    [26] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory, Springer, 2021.
    [27] M. Gardaševic-Filipović, K. Kukić, D. Gardašević, Z. Mitrović, Some best proximity point results in the orthogonal $0$-complete $b$-metric-like spaces, J. Contemp. Math. Anal., 58 (2023), 105–115. https://doi.org/10.3103/S1068362323020036 doi: 10.3103/S1068362323020036
    [28] M. M. A. Khater, A hybrid analytical and numerical analysis of ultra-short pulse phase shifts, Chaos Solitons Fract., 169 (2023), 113232. https://doi.org/10.1016/j.chaos.2023.113232 doi: 10.1016/j.chaos.2023.113232
    [29] R. A. M. Attia, X. Zhang, M. M. A. Khater, Analytical and hybrid numerical simulations for the (2+1)-dimensional Heisenberg ferromagnetic spin chain, Results Phys., 43 (2022), 106045. https://doi.org/10.1016/j.rinp.2022.106045 doi: 10.1016/j.rinp.2022.106045
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1073) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog