In this paper we introduce the concept of complex-valued double controlled metric like spaces. These new results generalize and extend the corresponding results about complex-valued double controlled metric type spaces. We prove some complex-valued fixed point theorems in this new complex-valued metric like spaces and, as application, we give an existence and uniqueness of the solution of a Fredholm type integral equation result. Moreover, some examples are also presented in favor of our given results.
Citation: Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Isra Manzoor, Thabet Abdeljawad, Dania Santina, Nabil Mlaiki. Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations[J]. AIMS Mathematics, 2023, 8(2): 4944-4963. doi: 10.3934/math.2023247
[1] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended $ b $-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[2] | Sahibzada Waseem Ahmad, Muhammad Sarwar, Thabet Abdeljawad, Gul Rahmat . Multi-valued versions of Nadler, Banach, Branciari and Reich fixed point theorems in double controlled metric type spaces with applications. AIMS Mathematics, 2021, 6(1): 477-499. doi: 10.3934/math.2021029 |
[3] | Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274 |
[4] | A. M. Zidan, Z. Mostefaoui . Double controlled quasi metric-like spaces and some topological properties of this space. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672 |
[5] | Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025 |
[6] | Haroon Ahmad, Sana Shahab, Wael F. M. Mobarak, Ashit Kumar Dutta, Yasser M. Abolelmagd, Zaffar Ahmed Shaikh, Mohd Anjum . Convergence results for cyclic-orbital contraction in a more generalized setting with application. AIMS Mathematics, 2024, 9(6): 15543-15558. doi: 10.3934/math.2024751 |
[7] | Anas A. Hijab, Laith K. Shaakir, Sarah Aljohani, Nabil Mlaiki . Double composed metric-like spaces via some fixed point theorems. AIMS Mathematics, 2024, 9(10): 27205-27219. doi: 10.3934/math.20241322 |
[8] | Hasanen A. Hammad, Maryam G. Alshehri . Generalized $ \Xi $-metric-like space and new fixed point results with an application. AIMS Mathematics, 2023, 8(2): 2453-2472. doi: 10.3934/math.2023127 |
[9] | Zeynep Kalkan, Aynur Şahin, Ahmad Aloqaily, Nabil Mlaiki . Some fixed point and stability results in $ b $-metric-like spaces with an application to integral equations on time scales. AIMS Mathematics, 2024, 9(5): 11335-11351. doi: 10.3934/math.2024556 |
[10] | Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad . Fixed point theory in complex valued controlled metric spaces with an application. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663 |
In this paper we introduce the concept of complex-valued double controlled metric like spaces. These new results generalize and extend the corresponding results about complex-valued double controlled metric type spaces. We prove some complex-valued fixed point theorems in this new complex-valued metric like spaces and, as application, we give an existence and uniqueness of the solution of a Fredholm type integral equation result. Moreover, some examples are also presented in favor of our given results.
Fixed point theory concept is a widely recognized as a subject with implications in different domains as mathematical sciences, engineering, computer sciences. This area interact with all the mathematics research branches, including geometry, algebra and topology. The start point of fixed point theory has been done by Banach [1] by introducing the notion of contraction mapping in a complete metric space, in order to find fixed point of the specified operators. This classical theorem of Banach [1], well-known as Banach contraction principle, has been studied and generalized by many researchers in diverse methods (see [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]). Moreover, fixed point techniques play a very important role in proving of the existence and uniqueness of the solution of different type of equations as: integral equations, differential equations, fractional differential equations, etc. In this direction we recall [24,25,26,27,28,29,30,31,32].
Classical definition of metric space was generalized by Harandi [3] by introducing the notion of metric like space. Azam et al. introduced in [2] the notion of complex valued metric space. Then, the notion was generalized by Hosseni and Karizaki [4], giving the notion complex valued metric like space. Bakhtin [5] and Czerwik [6] generalized the metric space by giving the idea of b-metric spaces. Aslam et al. [7] introduced later the notion of complex valued controlled metric type space.
Abdeljawad et al. presented the idea of double controlled metric type space (DCMLS) in [10], which was a generalization of Kamran et al. [8] and Mlaiki et al. [9] notions.
Further, let us recall some definitions and results useful in the introduction of our new concept.
Let C be the set of complex numbers and w1,w2∈C. Since we cannot compare in usual way two complex numbers, let us add to the complex set C the following partial order ≾, known in related literature as lexicographic order
w1≾w2 if and only if Re(w1)⪯Re(w2) or (Re(w1)=Re(w2) and Im(w1)⪯Im(w2)). |
Taking into account the previous definition, we have that w1≾w2 if one of the next conditions is satisfied:
(P1) Re(w1)<Re(w2) and Im(w1)<Im(w2);
(P2) Re(w1)<Re(w2) and Im(w1)=Im(w2);
(P3) Re(w1)<Re(w2) and Im(w1)>Im(w2);
(P4) Re(w1)=Re(w2) and Im(w1)<Im(w2).
Let us recall the definition of complex valued extended b-metric given by N. Ullah et al. in [12].
Definition 1.1. [12] Let X be a non empty set and let ϑ:X×X→[1,∞) be a function. The function heb: X×X→C is said to be complex valued extended b-metric if the following conditions are satisfied:
(CEB1) 0≾heb(p,q) and heb(p,q)=0 if and only if p=q,
(CEB2) heb(p,q)=heb(q,p),
(CEB3) heb(p,r)≾ϑ(p,r)[heb(p,q)+heb(q,r)],
for allp, q, r∈X. A pair (X,heb) is called a complex valued extended b-metric space.
Mlaiki et al. [9] generalized the notion of b-metric spaces as follows.
Definition 1.2. [9] Given ϱ: X×X→[1,∞), where X is nonempty and let hc: X×X→[0,∞). Suppose that
(CMT1) hc(p,q)=0 if and only if p=q,
(CMT2) hc(p,q)=hc(q,p),
(CMT3) hc(p,q)≤ϱ(p,r)hc(p,r)+ϱ(r,q)hc(r,q),
for all p, q, r∈X. Then, hc is called a controlled metric type and the pair (X,hc) is called a controlled metric type space.
Definition 1.3. [16] Be given two non-comparable functions ϱ, ς: X×X→[1,∞), where X is nonempty. If hdl: X2→[0,∞) satisfies
(DCML1) hdl(p,q)=0 ⟹ p=q,
(DCML2) hdl(p,q)=hdl(q,p),
(DCML3) hdl(p,q)≤ϱ(p,r)hdl(p,r)+ς(r,q)hdl(r,q),
for all p, q, r∈X, then, hdl is called a double controlled metric like by ϱ and ς, and (X,hdl) is called a double controlled metric like space (DCMLS).
Definition 1.4. [11] Be given two non-comparable functions ϱ,ς: X×X→[1,∞), where X is nonempty. If hcdt: X2→[0,∞) satisfies
(CDCMT1) hcdt(p,q)=0 ⟺ p=q,
(CDCMT2) hcdt(p,q)=hcdt(q,p),
(CDCMT3) hcdt(p,q)≾ϱ(p,r)hcdt(p,r)+ς(r,q)hcdt(r,q),
for all p, q, r∈X, then, hcdt is called a complex valued double controlled metric type by ϱ and ς, and (X,hcdt) is called a complex valued double controlled metric type space(CDCMTS).
Recently Panda et al. [11] presented idea of complex valued double controlled metric type space (CDCMTS). Inspired by Panda et al. [11], in this article we will present the concept of complex valued double controlled metric like space (CDCMLS). Then two fixed point theorems in CDCMLS are presented. One of them is the Banach contraction principle and the second one is the related to Reich type result. The theorems are validate with the help of some examples. Moreover, an application to prove the existence and the uniqueness of a solution of a Fredholm type integral equation is given.
This section is dedicated to the introduction of our generalization-complex valued double controlled metric like spaces (CDCMLS). Then let us present first the definition of such a type of space and then, an illustrative example of it.
Definition 2.1. Be given two non-comparable functions ϱ,ς: X×X→[1,∞), where X is nonempty. If hcdl: X2→[0,∞) satisfies
(CDCML1) hcdl(p,q)=0 ⟹ p=q,
(CDCML2) hcdl(p,q)=hcdl(q,p),
(CDCML3) hcdl(p,r)≾ϱ(p,q)hcdl(p,q)+ς(q,r)hcdl(q,r),
for all p, q, r∈X, then hcdl is called a complex valued double controlled metric like by ϱ and ς and (X,hcdl) is called a complex valued double controlled metric like space(CDCMLS).
Remark 2.1. A complex valued double controlled metric type space is also a complex valued double controlled metric like space in general. The converse is not true in general. This conclude that, it is a more generalized version than the one of complex valued extended b- metric type space.
Example 2.1. Let X={1,2,3}. Consider the complex valued double controlled metric like h=hcdl defined by
h(1,1)=h(2,2)=0 and h(3,3)=i2,h(1,2)=h(2,1)=2+4i,h(2,3)=h(3,2)=i,h(1,3)=h(3,1)=1−i. |
Taking ϱ,ς: X×X→[1,∞) to be symmetric and defined by
ϱ(1,1)=ϱ(2,2)=ϱ(3,3)=1, ϱ(1,2)=ϱ(2,1)=65, ϱ(2,3)=ϱ(3,2)=85, ϱ(3,1)=ϱ(1,3)=151100, |
and
ς(1,1)=ς(2,2)=ς(3,3)=1, ς(1,2)=ς(2,1)=65, ς(2,3)=ς(3,2)=3320, ς(3,1)=ς(1,3)=83. |
The conditions (CDCML1) and (CDCML2) hold.
Next, we will verify (CDCML3).
Case 1. When p=q=r=1,
|h(p,r)|=|h(1,1)|=0⪯0=0+0=ϱ(1,1)|h(1,1)|+ς(1,1)|h(1,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 2. When p=2, q=r=1,
|h(p,r)|=|h(2,1)|=√20⪯65√20=65√20+0=ϱ(2,1)|h(2,1)|+ς(1,1)|h(1,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 3. When p=3, q=r=1,
|h(p,r)|=|h(3,1)|=√2⪯151100√2=151100√2+0=ϱ(3,1)|h(3,1)|+ς(1,1)|h(1,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 4. When p=r=1, q=2,
|h(p,r)|=|h(1,1)|=0⪯125√20=65√20+65√20=ϱ(1,2)|h(1,2)|+ς(2,1)|h(2,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 5. When p=r=1, q=3,
|h(p,r)|=|h(1,1)|=0⪯1253300√2=151100√2+83√2=ϱ(1,3)|h(1,3)|+ς(3,1)|h(3,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 6. When p=q=1, r=2,
|h(p,r)|=|h(1,2)|=√20⪯65√20=0+65√20=ϱ(1,1)|h(1,1)|+ς(1,2)|h(1,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 7. When p=q=1, r=3,
|h(p,r)|=|h(1,3)|=√2⪯83√2=0+83√2=ϱ(1,1)|h(1,1)|+ς(1,3)|h(1,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 8. When p=q=2, r=1,
|h(p,r)|=|h(2,1)|=√20⪯65√20=0+65√20=ϱ(2,2)|h(2,2)|+ς(2,1)|h(2,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 9. When p=2,q=3, r=1,
|h(p,r)|=|h(2,1)|=√20⪯24+40√215=85+83√2=ϱ(2,3)|h(2,3)|+ς(3,1)|h(3,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 10. When p=3,q=2, r=1,
|h(p,r)|=|h(3,1)|=√2⪯8+6√205=85+65√20=ϱ(3,2)|h(3,2)|+ς(2,1)|h(2,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 11. When p=q=3, r=1,
|h(p,r)|=|h(3,1)|=√2⪯3+16√26=12+83√2=ϱ(3,3)|h(3,3)|+ς(3,1)|h(3,1)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 12. When p=1, q=r=2,
|h(p,r)|=|h(1,2)|=√20⪯65√20=65√20+0=ϱ(1,2)|h(1,2)|+ς(2,2)|h(2,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 13. When p=1, q=3, r=2,
|h(p,r)|=|h(1,2)|=√20⪯453√2+800300=151100√2+83=ϱ(1,3)|h(1,3)|+ς(3,2)|h(3,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 14. When p=r=2, q=1,
|h(p,r)|=|h(2,2)|=0⪯125√20=65√20+65√20=ϱ(2,1)|h(2,1)|+ς(1,2)|h(1,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 15. When p=q=r=2,
|h(p,r)|=|h(2,2)|=0⪯0=0+0=ϱ(2,2)|h(2,2)|+ς(2,2)|h(2,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 16. When p=r=2, q=3,
|h(p,r)|=|h(2,2)|=0⪯134=85+3320=ϱ(2,3)|h(2,3)|+ς(3,2)|h(3,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 17. When p=3, q=1, r=2,
|h(p,r)|=|h(3,2)|=1⪯151√2+120√20100=151100√2+65√20=ϱ(3,1)|h(3,1)|+ς(1,2)|h(1,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 18. When p=3, q=r=2,
|h(p,r)|=|h(3,2)|=1⪯85=85+0=ϱ(3,2)|h(3,2)|+ς(2,2)|h(2,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 19. When p=q=3, r=2,
|h(p,r)|=|h(3,2)|=1⪯4320=12+3320=ϱ(3,3)|h(3,3)|+ς(3,2)|h(3,2)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 20. When p=1, q=2, r=3,
|h(p,r)|=|h(1,3)|=√2⪯24√20+3320=65√20+3320=ϱ(1,2)|h(1,2)|+ς(2,3)|h(2,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 21. When p=1, q=r=3,
|h(p,r)|=|h(1,3)|=√2⪯151√2+50100=151100√2+12=ϱ(1,3)|h(1,3)|+ς(3,3)|h(3,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 22. When p=2, q=1, r=3,
|h(p,r)|=|h(2,3)|=1⪯18√20+40√215=65√20+83√2=ϱ(2,1)|h(2,1)|+ς(1,3)|h(1,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 23. When p=q=2, r=3,
|h(p,r)|=|h(2,3)|=1⪯3320=0+3320=ϱ(2,2)|h(2,2)|+ς(2,3)|h(2,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 24. When p=2, q=r=3,
|h(p,r)|=|h(2,3)|=1⪯2110=85+12=ϱ(2,3)|h(2,3)|+ς(3,3)|h(3,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 25. When p=r=3, q=1,
|h(p,r)|=|h(3,3)|=12⪯1253300√2=151100√2+83√2=ϱ(3,1)|h(3,1)|+ς(1,3)|h(1,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 26. When p=r=3, q=2,
|h(p,r)|=|h(3,3)|=12⪯134=85+3320=ϱ(3,2)|h(3,2)|+ς(2,3)|h(2,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Case 27. When p=q=r=3,
|h(p,r)|=|h(3,3)|=12⪯1=12+12=ϱ(3,3)|h(3,3)|+ς(3,3)|h(3,3)|=ϱ(p,q)|h(p,q)|+ς(q,r)|h(q,r)|. |
Thus, h=hcdl is complex valued double controlled metric like space(CDCMLS).
But when p=2, q=3, r=1,
|h(p,r)|=|h(2,1)|=√20⋠65(1+√2)=65[1+√2]=ϑ(2,1)[|h(2,3)|+|h(3,1)|]=ϑ(p,q)[|h(p,r)|+|h(q,r)|]. |
Thus, h=hcdl is not a complex valued extended b-metric type for the function ϑ.
Let us discuss in the following the continuity property in the complex valued double controlled metric like space (CDCMLS).
Definition 2.2. Let (X,hcdl) be a complex valued double controlled metric like space (CDCMLS) by one or two functions.
(1) The sequence {pn} is convergent to some p in X, if for each positive ε, there is some integer Zε such that hcdl(pn,p)≺ε for each n≥Zε. It is written as limn→∞pn=p.
(2) The sequence {pn} is said Cauchy, if for every ε>0, hcdl(pn,pm)≺ε for all m,n≥Zε, where Zε is some integer.
(3) (X, hcdl) is said complete if every Cauchy sequence is convergent.
Definition 2.3. Let (X,hcdl) be a complex valued double controlled metric like space (CDCMLS) by either one function or two functions—for p∈X and l>0.
(i) We define B(p,l) as
B(p,l)={y∈X,hcdl(p,y)≺l}. |
(ii) The self-map Υ on X is said to be continuous at p in X if for all δ>0, there exists l>0 such that
Υ(B(p,l))⊆B(Υp,δ). |
Note that if Υ is continuous at p in (X,hcdl), then pn→p implies that Υpn→Υp when n tends to ∞.
One can prove the following lemmas for the specific case of CDCMLS, in a similar way as in [14].
Lemma 2.1. Let (X,hcdl) be a CDCMLS and assume a sequence {dn} in X. Then {dn} is Cauchy sequence ⟺ |hcdl(dm,dn)|→0 as m,n→∞, where m,n∈N.
Lemma 2.2. Suppose (X,hcdl) be a CDCMLS and {dn} be sequence in X. Then {dn} converges to d⟺ |hcdl(dn,d)|→0 as n→∞.
Lemma 2.3. Let (X,hcdl) be a CDCMLS. Then a sequence {dn} in X is Cauchy sequence, such that dm≠dn, whenever m≠n. Then {dn} converges to at most one point.
Lemma 2.4. For a given complex valued controlled space (X,hcdl), the complex valued double controlled (c.v.dc) metric like function hcdl: X×X→C is continuous, with respect to the partial order "≾".
Lemma 2.5. Consider (X,hcdl) be a CDCMLS. Limit of every convergent sequence in X is unique, if the functional hcdl: X×X→X is continuous.
The next scheme it is necessary to draw the relations between the recently generalizations of complex valued metric space.
![]() |
In our first theorem of this section we prove the Banach contraction type theorem in CDCMLS.
Theorem 3.1. Let (X,hcdl) be a CDCMLS by the functions ϱ,ς: X×X→[1,∞). Suppose that Υ: X→X satisfies
h(Υp,Υq)≾lhcdl(p,q), | (3.1) |
for all p,q∈X, where l∈(0,1). For p0∈X, choose pn=Υnp0. Assume that
supm≥1limι→∞ϱ(pι+1,pι+2)ϱ(pι,pι+1)ς(pι+1,pm)<1l. | (3.2) |
In addition, for each p∈X, suppose that
limn→∞ϱ(p,pn) and limn→∞ς(pn,p) exist and are finite. | (3.3) |
Then, Υ has a unique fixed point.
Proof. Consider the sequence {pn=Υnp0} in X that satisfies the hypothesis of the theorem. By using (3.1), we get
hcdl(pn,pn+1)≾lnhcdl(p0,p1), for all n≥0. | (3.4) |
Let n,m be integers such that n<m. We have
hcdl(pn,pm)≾ϱ(pn,pn+1)hcdl(pn,pn+1)+ς(pn+1,pm)hcdl(pn+1,pm)≾ϱ(pn,pn+1)hcdl(pn,pn+1)+ς(pn+1,pm)ϱ(pn+1,pn+2)hcdl(pn+1,pn+2)+ς(pn+1,pm)ς(pn+2,pm)hcdl(pn+2,pm)≾ϱ(pn,pn+1)hcdl(pn,pn+1)+ς(pn+1,pm)ϱ(pn+1,pn+2)hcdl(pn+1,pn+2)+ς(pn+1,pm)ς(pn+2,pm)ϱ(pn+2,pn+3)hcdl(pn+2,pn+3)+ς(pn+1,pm)ς(pn+2,pm)ς(pn+3,pm)hcdl(pn+3,pm)≾⋅⋅⋅≾ϱ(pn,pn+1)hcdl(pn,pn+1)+m−2∑ι=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)hcdl(pι,pι+1)+m−1∏k=n+1ς(pk,pm)hcdl(pm−1,pm)≾ϱ(pn,pn+1)lnhcdl(p0,p1)+m−2∑ι=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p0,p1)+m−1∏ι=n+1ς(pι,pm)lm−1hcdl(p0,p1)≾ϱ(pn,pn+1)lnhcdl(p0,p1)+m−2∑ι=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p0,p1)+(m−1∏ι=n+1ς(pι,pm))lm−1ϱ(pm−1,pm)hcdl(p0,p1)=ϱ(pn,pn+1)lnhcdl(p0,p1)+m−1∑ι=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p0,p1)≾ϱ(pn,pn+1)lnhcdl(p0,p1)+m−1∑ι=n+1(ι∏j=0ς(pj,pm))ϱ(pι,pι+1)lihcdl(p0,p1). |
We used ϱ(p,q)≥1. Let
Rg=g∑ι=0(ι∏j=0ς(pj,pm))ϱ(pι,pι+1)lι⋅ |
Hence, we have
hcdl(pn,pm)≾hcdl(p0,p1)[lnϱ(pn,pn+1)+(Rm−1,Rn)]. | (3.5) |
The ratio test together with (3.2) imply that the limit of the real number sequence {Rn} exits. Then {Rn} is a Cauchy sequence.
Indeed, the ration test is applied to the term vι=(∏ιj=0ς(pj,pm))ϱ(pι,pι+1). Letting n,m tend to ∞ in (3.5) yields
limn,m→∞hcdl(pn,pm)=0, |
so the sequence {pn} is Cauchy. Since (X,hcdl) is a complete double controlled metric type space, there exists some κ∈X such that
limn→∞hcdl(pn,κ)=0. |
We claim that Υκ=κ. By (DCML3), we have
h(κ,pn+1)≾ϱ(κ,pn)hcdl(κ,pn)+ς(pn,pn+1)hcdl(pn,pn+1). | (3.6) |
Using (3.3) and (3.6), we get that
limn→∞h(κ,pn+1)=0. | (3.7) |
By (3.1), we have
h(κ,Υκ)≾ϱ(κ,pn+1)hcdl(κ,pn+1)+ς(pn+1,Υκ)hcdl(pn+1,Υκ)≾ϱ(p,pn+1)hcdl(κ,pn+1)+lς(pn+1,Υκ)hcdl(pn,κ). |
Using (3.3) and (3.7), we get at the limit hcdl(κ,Υκ)=0, that is, Υκ=κ. Let ϖ in X be such that Υη=ϖ and κ≠ϖ. We have
0≺hcdl(κ,ϖ)=hcdl(Υκ,Υκ)⪯lhcdl(κ,ϖ). |
Contradiction. Then κ=ϖ. Hence, κ is the unique fixed point of Υ.
Remark 3.1. The assumption (3.3) of the Theorem 3.1 above given can be replaced by the assumptions that the mapping Υ and the complex valued double controlled metric h are continuous. Indeed, when pn→κ, then Υpn→Υκ and hence we have
limn→∞hcdl(Υpn,Υκ)=0=limn→∞hcdl(Υpn+1,Υκ)=p(κ,Υκ), |
and hence Υκ=κ.
The Theorem 3.1 is illustrated by the following examples.
Example 3.1. We endow X={1,2,3} by the following CDCMLS h=hcdl
h(1,1)=h(2,2)=0 and h(3,3)=i2,h(1,2)=h(2,1)=2+4i,h(2,3)=h(3,2)=i,h(1,3)=h(3,1)=1−i. |
We consider ϱ,ς: X×X→[1,∞) to be symmetric and defined by
ϱ(1,1)=ϱ(2,2)=ϱ(3,3)=1, ϱ(1,2)=ϱ(2,1)=65, ϱ(2,3)=ϱ(3,2)=85, ϱ(3,1)=ϱ(1,3)=151100. |
and
ς(1,1)=ς(2,2)=ς(3,3)=1, ς(1,2)=ς(2,1)=65, ς(2,3)=ς(3,2)=3320, ς(3,1)=ς(1,3)=83. |
Let us define the self mapping Υ on X as follows:
Υ1=Υ2=Υ3=2. |
Next, we will verify the condition 1:
Case 1. When p=q=1,
|h(Υp,Υq)|=|h(Υ(1),Υ(1))|=|h(2,2)|=0≾l|h(1,1)|. |
Case 2. When p=1, q=2,
|h(Υp,Υq)|=|h(Υ(1),Υ(2))|=|h(2,2)|=0≾l|h(1,2)|. |
Case 3. When p=1, q=3,
|h(Υp,Υq)|=|h(Υ(1),Υ(3))|=|h(2,2)|=0≾l|h(1,3)|. |
Case 4. When p=2, q=1,
|h(Υp,Υq)|=|h(Υ(2),Υ(1))|=|h(2,2)|=0≾l|h(2,1)|. |
Case 5. When p=q=2,
|h(Υp,Υq)|=|h(Υ(2),Υ(2))|=|h(2,2)|=0≾l|h(2,2)|. |
Case 6. When p=2, q=3,
|h(Υp,Υq)|=|h(Υ(2),Υ(3))|=|h(2,2)|=0≾l|h(2,3)|. |
Case 7. When p=3, q=1,
|h(Υp,Υq)|=|h(Υ(3),Υ(1))|=|h(2,2)|=0≾l|h(3,1)|. |
Case 8. When p=3, q=2,
|h(Υp,Υq)|=|h(Υ(3),Υ(2))|=|h(2,2)|=0≾l|h(3,2)|. |
Case 9. When p=q=3,
|h(Υp,Υq)|=|h(Υ(3),Υ(3))|=|h(2,2)|=0≾l|h(3,3)|. |
For all k∈(0,1), it is clear that the above conditions are satisfied, these conditions are also satisfied for Υ1=Υ2=Υ3=1. For any p0∈X condition (2) holds along with conditions of Theorem 3.1. Therefore, there exists a unique fixed point at 1.
Definition 3.1. Given p0∈X, the orbit O(u0) of p0 is defined as O(u0)={p0,Υp0,Υ2u0,⋅⋅⋅}, where Υ is a self-map on the set X. The operator Γ:X→R is called Υ-orbitally lower semi-continuous at ϖ∈X if when {pn} in O(p0) such that limn→∞hcdl(pn,ϖ)=0, we get that Γ(ϖ)⪯limn→∞infΓ(pn).
Following same steps as in [34] and using Definition 3.1, we have the following corollary, generalizing the Theorem 3.1 of [16].
Corollary 3.1. Let Υ be a self-map on (X,hcdl) a complete complex valued double controlled metric lke space by two mappings ϱ,ς. Given p0∈X, let l∈(0,1) be such that
hcdl(Υz,Υ2z)≾lhcdl(z,Υz),for eachz∈O(p0). |
Take pn=Υnp0 and suppose that
supm≥1limι→∞ϱ(pι+1,pι+2)ϱ(pι,pι+1)ς(pι+1,pm)<1l. |
Then, limn→∞hcdl(pn,κ)=0. We also we have that Υκ=κ if and only if the operator x↦hcdl(x,Υx) is Υ-orbitally lower semi-continuous at p.
Our next fixed point result involve a Reich type inequality, as follows.
Theorem 3.2. Let (X,hcdl) be a CDCMLS by the functions ϱ,ς: X×X→[1,∞) and Υ be a self mapping satisfying Reich condition. That is, Υ satisfies
hcdl(Υp,Υq)≾αhcdl(p,q)+β(p,Υp)+γ(q,Υq), | (3.8) |
for α,β,γ∈(0,1) with α+β+γ<1 and γ=α+β1−γ<1, for all p,q∈X.
For p0∈X we choose pn=Υnp0. Assume that
supm≥1limι→∞ϱ(pι+1,pι+2)ϱ(pι,pι+1)ς(pι+1,pm)<1l, | (3.9) |
limn→∞ϱ(p,pn)<∞ exist and finite and limn→∞ς(pn,p)<1γ. | (3.10) |
Then, Υ has a unique fixed point.
Proof. Let p0∈X. Consider the sequence {pn} with pn+1=Υpn for all n∈N. It is clear that if there exist n0 for which pn0+1=pn0 then Υpn0=pn0. Then the proof is finished.
Thus, we suppose that pno+1≠pn for every n∈N. Therefore, we may assume that pn+1=pn for all n∈N. Now
hcdl(pn,pn+1)=hcdl(Υpn−1,Υpn)≾αhcdl(pn−1,pn)+βhcdl(pn−1,Υpn−1)+γhcdl(pn,Υpn) |
=αhcdl(pn−1,pn)+βhcdl(pn−1,Υpn)+γhcdl(Υpn,pn+1). | (3.11) |
Therefore, we get
hcdl(pn,pn+1)≾(α+β1−γ)hcdl(pn−1,pn)=lhcdl(pn−1,pn). | (3.12) |
Thus, we obtain
hcdl(pn,pn+1)≾lhcdl(pn−1,pn)≾l2hcdl((pn−2,pn−1≾...≾lnhcdl(p0,p1). | (3.13) |
For all n,m∈N with n<m we get
hcdl(pn,pm)≾ϱ(pn,pn+1)hcdl(pn,pn+1)+ς(pn+1,pm)hcdl(pn+1,pm)≾ϱ(pn,pn+1)hcdl(pn,pn+1)+ς(pn+1,pm)ϱ(pn+1,pn+2)hcdl(pn+1,pn+2)+ς(pn+1,pm)ς(pn+2,pm)hcdl(pn+2,pm)≾ϱ(pn,pn+1)hcdl(pn,pn+1)+ς(pn+1,pm)ϱ(pn+1,pn+2)hcdl(pn+1,pn+2)+ς(pn+1,pm)ς(pn+2,pm)ϱ(pn+2,pn+3)hcdl(pn+2,pn+3)+ς(pn+1,pm)ς(pn+2,pm)ς(pn+3,pm)hcdl(pn+3,pm)≾⋅⋅⋅≾ϱ(pn,pn+1)hcdl(pn,pn+1)+m−2∑ι=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)hcdl(pι,pι+1)+m−1∏k=n+1ς(pk,pm)hcdl(pm−1,pm)≾ϱ(pn,pn+1)lnhcdl(p0,p1)+m−2∑i=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p0,p1)+m−1∏ι=n+1ς(pι,pm)lm−1hcdl(p0,p1)≾ϱ(pn,pn+1)lnhcdl(p0,p1)+m−2∑ι=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p0,p1)+(m−1∏ι=n+1ς(pι,pm))lm−1ϱ(pm−1,pm)hcdl(p0,p1)=ϱ(pn,pn+1)lnhcdl(p0,p1)+m−1∑ι=n+1(ι∏j=n+1ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p0,p1)≾ϱ(pn,pn+1)lnhcdl(p0,p1)+m−1∑ι=n+1(ι∏j=0ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p0,p1). |
Rn=n∑i=0(ι∏j=0ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p1,p0)⋅ |
Then, applying the ratio test, we have
gn=(ι∏j=0ς(pj,pm))ϱ(pι,pι+1)lιhcdl(p1,p0). |
Then, we have
gn+1gn=lϱ(pι+1,pm)ς(pι+1,pι+2)(ς(pι,pι+1). |
Therefore under condition (3.9), the series ∑ngn converges. Therefore, limn→∞Rn exist. So the real number sequence {Rn} is Cauchy.
Thus we obtained the inequality hcdl(pn,pm)≾hcdl(p1,p0)[lnς(pn,pn+1)+(Rm−1−Rn].
Letting n,m→∞, we get
limn,m→∞hcdl(pn,pm)=0, |
so the sequence {pn} is Cauchy. Since (X,hcdl) is a complete CDCMLS, then there exists some p∗0∈X such that
limn→∞hcdl(pn,p∗0)=0. |
Which means pn→p∗0 and n→∞.
Now, our claim is to show that Υp∗0=p∗0.
hcdl(p∗0,Υp∗0)≾ϱ(p∗0,pn+1)hcdl(p∗0,pn+1)+ς(pn+1,Υp∗0)hcdl(pn,pn+1)hcdl(pn+1,Υp∗0)=ϱ(p∗0,pn+1)hcdl(p∗0,pn+1)+ς(pn+1,Υp∗0)hcdl(pn,pn+1)hcdl(pn+1,Υp∗0)≾ϱ(p∗0,pn+1)hcdl(p∗0,pn+1)+ς(pn+1,Υp∗0)[αhcdl(pn,Υp∗0)+βhcdl(pn,Υpn)+γhcdl(p∗0,Υp∗0)]=ς(p∗0,pn+1)h(p∗0,pn+1)+ϱ(pn+1,Υp∗0)[αhcdl(pn,Υp∗0)+βhcdl(pn,pn+1)+γhcdl(p∗0,Υp∗0)]. |
Using this facts in (3.10) and letting the limit as n→∞ we obtain
hcdl(p∗0,Υp∗0)≾ϱ(pn+1,Υp∗0)[γlimn→∞hcdl(p∗0,Υ(p0,Υp∗0)]. |
Suppose that Υp∗0≠p∗0. Since limn→∞ϱ(pn+1,Υpn)<1l we have
0≺hcdl(p∗0,Υp∗0)≾ϱ(pn+1,Υp∗0)[γhcdl(p∗0,Υp∗0)]≾ϱ(p∗0,Υp∗0). |
Contradiction. Which means p∗0=Υp∗0.
Finally, assume that Υ has two fixed points, say p and q.
Then
hcdl(p,q)=hcdl(Υp,Υq)≾αhcdl(p,q)+βhcdl(p,Υp)+γhcdl(q,Υq) |
and so
hcdl(p,q)(1−α)≾0. |
Sinceα≠1. We get hcdl(p,q)=0 which implies p=q. This completes the proof.
Example 3.2. Let E={1,2,3}. Define h=hcdl: E×E→C by
h(1,1)=h(2,2)=0 and h(3,3)=i2,h(1,2)=h(2,1)=2+i,h(2,3)=h(3,2)=i,h(1,3)=h(3,1)=1−i. |
Define ϱ,ς: E×E→[1,∞) by
ϱ(1,1)=ϱ(2,2)=ϱ(3,3)=1,ϱ(1,2)=ϱ(2,1)=1,ϱ(2,3)=ϱ(3,2)=87,ϱ(3,1)=ϱ(1,3)=32 |
and
ς(1,1)=ς(2,2)=ς(3,3)=1,ς(1,2)=ς(2,1)=76,ς(2,3)=ς(3,2)=92,ς(3,1)=ς(1,3)=1. |
Let Υ(1)=2, Υ(2)=2, Υ(3)=2,
Proof. h(Υp,Υq)≾αh(p,q)+βh(p,Υp)+γh(q,Υq).
Case 1. When p=1, q=2,
|h(Υp,Υq)|=|h(2,2)|=0≾7√512=13√5+14√5=α|h(1,2)|+β|h(1,2)|+γ|h(2,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
Case 2. When p=1, q=1,
|h(Υp,Υq)|=|h(2,2)|=0≾13√536=13√5+19√5=α|h(1,1)|+β|h(1,2)|+γ|h(1,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
Case 3. When p=2, q=2,
|h(Υp,Υq)|=|h(2,2)|=0≾0=0+0+0=α|h(2,2)|+β|h(2,2)|+γ|h(2,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
Case 4. When p=3, q=3,
|h(Υp,Υq)|=|h(2,2)|=0≾12+13√236√2=13√2+14+19=α|h(3,3)|+β|h(3,2)|+γ|h(3,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
Case 5. When p=2, q=1,
|h(Υp,Υq)|=|h(2,2)|=0≾4√59=13√5+0+19√5=α|h(2,1)|+β|h(2,2)|+γ|h(1,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
Case 6. When p=3, q=1,
|h(Υp,Υq)|=|h(2,2)|=0≾12√2+9+4√536=13√2+14+19√5=α|h(3,1)|+β|h(3,2)|+γ|h(1,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
Case 7. When p=1, q=3,
|h(Υp,Υq)|=|h(2,2)|=0≾12√2+9√5+436=13√2+14√5+19=α|h(1,3)|+β|h(1,2)|+γ|h(3,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
Case 8. When p=2, q=3,
|h(Υp,Υq)|=|h(2,2)|=0≾49=13+14(0)+19=α|h(2,3)|+β|h(2,2)|+γ|h(3,2)|=α|h(p,q)|+β|h(p,Υp)|+γ|h(q,Υq)|. |
For all α, β, γ∈(0,1)with α+β+γ<1, it is clear that the above conditions are satisfied, these conditions are also satisfied for Υ1=Υ2=Υ3=2. For any p0∈E condition (3.9) holds along with conditions of theorem 3.2. Therefore, there exists a unique fixed point at 2.
During this section we suppose the following Fredholm integral equation
p(u)=f(u)+b∫aB(u,v,p(v))dv, u,v∈[a,b], p(u)∈X, | (4.1) |
where B(u,v,p(v)): [a,b]×[a,b]×C→C and f(u): [a,b]→C be two bounded and continuous functions.
To prove the existence of solution for integral Eq (4.1) we use Theorem 3.1. Then we give the following result.
Theorem 4.1. Let X=C([a,b],C) is the set of all continuous and complex valued functions which are defined on [a,b]. Also let Υ: X→X be an operator defined as:
p(u)=f(u)+∫baB(u,v,p(v))dv, u,v∈[a,b]. | (4.2) |
Suppose the following conditions hold:
(i) The functions B(u,v,p(v)): [a,b]×[a,b]×C→C and f(u): [a,b]→C it's a continuous function.
(ii) ∣B(u,v,p(v))−B(u,v,q(v))∣≾1τ√b−a∣p(u)−q(u)∣, for all p,q∈X and ω∈(1,1λ] with λ∈(0,1).
Then the Eq (4.1) has a unique solution.
Proof. Let X=C([a,b],C) and hcdl: X×X→C such that,
hcdl(p,q)=‖p−q‖∞=∣p(u)−q(u)∣2eicos−1τ, |
where ∣x∣=√α2+β2, with α,β∈R, τ>0 and i=√−1∈C.
Let ϑu,ϱu: X×X→[1,∞) be defined as
ϱu(p,q)={1,if p,q∈[0,1],max{p(u),q(u)},otherwise. |
ςu(p,q)={1,if p,q∈(0,1],1+max{p(u),q(u)}min{p(u),q(u)},otherwise. |
We observe that (X,hcdl) is a complete CDCMLS. Then the problem (4.1) can be translated to find a fixed point of the operator Υ.
Then we have the next inequality
|Υp(u)−Υq(u)|2≾|∫baB(u,v,p(v))dv−∫baB(u,v,q(v))dv|2≾∫ba|B(u,v,p(v))−B(u,v,q(v))|2dv≾1τ2(b−a)∫ba∣p(v)−q(v)∣2dv=e−icos−1ττ2(b−a)∫ba∣p(v)−q(v)∣2eicos−1τdv=e−icos−1ττ2(b−a)‖p−q‖∞(∫badv). |
Following the calculus we obtain
∣Υp(u)−Υq(u)∣2eicos−1τ=‖Υp−Υq‖∞≾1τ2∣p(u)−q(u)∣2eicos−1τ=1τ2‖p−q‖∞. |
Using the hypothesis (ii) we have
hcdl(Υp,Υq)=‖Υp−Υq‖∞≾1τ2‖p−q‖∞=1τ2hcdl(p,q). |
It is easy to check that, for both cases of the expressions of ϱu(p,q) and ςu(p,q), the conditions (3.2) and (3.3) are true.
Then, for 0<δ=1τ2<1, all the hypothesis of Theorem 3.1 holds.
In these conditions we get that Eq (4.1) has a unique solution.
Considering the results from [15,33] we have introduced the concept of complex valued double controlled metric like spaces (CDCMLS). Some fixed point results and supporting examples in this setting, the related Banach contraction principle and a Reich type fixed point result are presented. Fredholm integral equations are powerful tools on mathematics in order to model phenomena of real world. Then, the last section of the present work is dedicated to apply our main result in order to prove the existence and uniqueness of a solution of a Fredholm type integral equation.
The authors T. Abdeljawad, D. Santina and N. Mlaiki would like to thank Prince Sultan University for paying the publication fees and for the support through TAS research lab.
The authors declare no conflicts of interest.
[1] |
S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133–181. http://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
![]() |
[2] |
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. http://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
![]() |
[3] |
A. A. Harandi, Metric-like spaces, partial metric spaces and fxed points, Fixed Point Theory Appl., 2012 (2012), 204. http://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204
![]() |
[4] |
A. Hosseini, M. M. Karizaki, On the complex valued metric-like spaces, arXiv, 2022. http://doi.org/10.48550/arXiv.2209.06551 doi: 10.48550/arXiv.2209.06551
![]() |
[5] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal., 30 (1989), 26–37. |
[6] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostra., 1 (1993), 5–11. |
[7] |
M. S. Aslam, M. S. R. Chowdhury, L. Guran, M. A. Alqudah, T. Abdeljawad, Fixed point theory in complex valued controlled metric spaces with an application, AIMS Math., 7 (2022), 11879–11904. http://doi.org/10.3934/math.2022663 doi: 10.3934/math.2022663
![]() |
[8] |
T. Kamran, M. Samreen, Q. Ul. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 1–7. http://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
![]() |
[9] |
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. http://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
![]() |
[10] |
T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
![]() |
[11] |
S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos Solitons Fract., 130 (2020), 109439. https://doi.org/10.1016/j.chaos.2019.109439 doi: 10.1016/j.chaos.2019.109439
![]() |
[12] |
N. Ullah, M. S. Shagari, A. Azam, Fixed point theoremsin complex valued extended b-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
![]() |
[13] | T. Abdeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, J. Comput. Anal. Appl., 19 (2015), 883–891. |
[14] | K. P. Rao, P. Swamy, J. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., 1 (2013). |
[15] |
N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 189. https://doi.org/10.1186/s13660-020-02456-z doi: 10.1186/s13660-020-02456-z
![]() |
[16] | T. L. Hicks, B. E. Rhodes, A Banach type fixed point theorem, Math. Jpn., 24 (1979), 327–330. |
[17] |
J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Am. Math. Soc., 62 (1977), 344–348. https://doi.org/10.2307/2041041 doi: 10.2307/2041041
![]() |
[18] |
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76. https://doi.org/10.4064/FM-74-3-181-187 doi: 10.4064/FM-74-3-181-187
![]() |
[19] | H. Afshari, M. Atapour, H. Aydi, Generalized ϱ−ψ−Geraghty multivalued mappings on b-metric spaces endowed with a graph, J. Appl. Eng. Math., 7 (2017), 248–260. |
[20] |
M. S. Aslam, M. F. Bota, M. S. R. Chowdhury, L. Guran, N. Saleem, Common fixed points technique for existence of a solution of Urysohn type integral equations system in complex valued b-metric spaces, Mathematics, 9 (2021), 400. https://doi.org/10.3390/math9040400 doi: 10.3390/math9040400
![]() |
[21] | N. Alharbi, H. Aydi, A. Felhi, C. Ozel, S. Sahmim, ϱ-contractive mappings on rectangular b-metric spaces and an application to integral equations, J. Math. Anal., 9 (2018), 47–60. |
[22] |
H. Aydi, E. Karapinar, M. F. Bota, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88
![]() |
[23] | H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), 337–346. |
[24] |
O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method Heat Fluid Flow, 28 (2018), 828–856. https://doi.org/10.1108/HFF-07-2016-0278 doi: 10.1108/HFF-07-2016-0278
![]() |
[25] |
O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Meth. Heat Fluid Flow, 11 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
![]() |
[26] |
O. A. Arqub, Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm, Fundam. Inf., 146 (2016), 231–254. https://doi.org/10.3233/FI-2016-1384 doi: 10.3233/FI-2016-1384
![]() |
[27] |
M. M. A. Khater, S. K. Elagan, M. A. El-Shorbagy, S. H. Alfalqi, J. F. Alzaidi, N. A. Alshehri, Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation, Commun. Theor. Phys., 73 (2021), 095003. https://dx.doi.org/10.1088/1572-9494/ac049f doi: 10.1088/1572-9494/ac049f
![]() |
[28] |
M. M. A. Khater, D. Lu, Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation, Mod. Phys. Let. B, 35 (2021), 2150324. https://doi.org/10.1142/S0217984921503243 doi: 10.1142/S0217984921503243
![]() |
[29] |
M. M. A. Khater, Abundant breather and semi-analytical investigation: on high-frequency waves' dynamics in the relaxation medium, Mod. Phys. Let. B, 35 (2021), 2150372. https://doi.org/10.1142/S0217984921503723 doi: 10.1142/S0217984921503723
![]() |
[30] |
S. Sivasankaran, M. M. Arjunan, V. Vijayakumar, Existence of global solutions for second order impulsive abstract partial differential equations, Nonlinear Anal., 74 (2011), 6747–6757. https://doi.org/10.1016/j.na.2011.06.054 doi: 10.1016/j.na.2011.06.054
![]() |
[31] |
V. Vijayakumar, Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke's Subdifferential type, Results Math., 73 (2018), 42. https://doi.org/10.1007/s00025-018-0807-8 doi: 10.1007/s00025-018-0807-8
![]() |
[32] |
A. Singh, A, Shukla, V. Vijayakumar, R. Udhayakumar, Asymptotic stability of fractional order (1, 2] stochastic delay differential equations in Banach spaces, Chaos Solitons Fract., 150 (2021), 111095. https://doi.org/10.1016/j.chaos.2021.111095 doi: 10.1016/j.chaos.2021.111095
![]() |
[33] |
T. Aysegul, On double controlled metric-like spaces and related fixed point theorems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 167–172. https://doi.org/10.31197/atnaa.869586 doi: 10.31197/atnaa.869586
![]() |
[34] |
T. Kamran, M. Samreen, Q. U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
![]() |
1. | Wasfi Shatanawi, Taqi A. M. Shatnawi, Some fixed point results based on contractions of new types for extended b-metric spaces, 2023, 8, 2473-6988, 10929, 10.3934/math.2023554 | |
2. | Hasanen A. Hammad, Kamaleldin Abodayeh, Wasfi Shatanawi, Applying an Extended β-ϕ-Geraghty Contraction for Solving Coupled Ordinary Differential Equations, 2023, 15, 2073-8994, 723, 10.3390/sym15030723 | |
3. | Irshad Ayoob, Ng Zhen Chuan, Nabil Mlaiki, Double-Composed Metric Spaces, 2023, 11, 2227-7390, 1866, 10.3390/math11081866 | |
4. | Muhammad Tariq, Muhammad Arshad, Eskandar Ameer, Ahmad Aloqaily, Suhad Subhi Aiadi, Nabil Mlaiki, On Relational Weak Fℜm,η-Contractive Mappings and Their Applications, 2023, 15, 2073-8994, 922, 10.3390/sym15040922 | |
5. | Dur-e-Shehwar Sagheer, Isma Urooj, Samina Batul, Ahmad Aloqaily, Nabil Mlaiki, Well-Posedness Scheme for Coupled Fixed-Point Problems Using Generalized Contractions, 2023, 12, 2075-1680, 523, 10.3390/axioms12060523 |