In present paper, we introduce a new extension of the double controlled metric-like spaces, so called double controlled quasi metric-like spaces "assuming that the self-distance may not be zero". Also, if the value of the metric is zero, then it has to be "a self-distance". After that, by using this new type of quasi metric spaces, we generalize many results in the literature and we prove fixed point theorems along with some examples illustrating.
Citation: A. M. Zidan, Z. Mostefaoui. Double controlled quasi metric-like spaces and some topological properties of this space[J]. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672
In present paper, we introduce a new extension of the double controlled metric-like spaces, so called double controlled quasi metric-like spaces "assuming that the self-distance may not be zero". Also, if the value of the metric is zero, then it has to be "a self-distance". After that, by using this new type of quasi metric spaces, we generalize many results in the literature and we prove fixed point theorems along with some examples illustrating.
[1] | T. Abdeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, J. Comput. Anal. Appl., 19 (2015), 883–891. |
[2] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. doi: 10.3390/math6120320 |
[3] | T. Abedeljawad, E. Karapinar, K. Tas, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011), 1900–1904. doi: 10.1016/j.aml.2011.05.014 |
[4] | A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 204. doi: 10.1186/1687-1812-2012-204 |
[5] | H. Aydi, E. Karapinar, C. Vetro, On Ekeland's variational principle in partial metric spaces, Appl. Math. Inf. Sci., 9 (2015), 257–262. doi: 10.12785/amis/090131 |
[6] | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[7] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
[8] | V. Berinde, Generalized contractions in quasimetric spaces, Seminar Fixed Point Theory, 3 (1993), 3–9. |
[9] | V. Berinde, Sequences of operators and fixed points in quasimetric spaces, Stud. Univ. Babes-Bolyai Math., 16 (1996), 23–27. |
[10] | M. Bousselsal, Z. Mostefaoui, Some fixed point results in partial metric spaces for generalized rational type contraction mappings, NFAA, 20 (2015), 43–54. |
[11] | P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3–7. |
[12] | E. Karapinar, S. Czerwik, H. Aydi, $(\alpha, \psi)$- Meir-Keeler contraction mappings in generalized b-metric spaces, J. Funct. Spaces, 2018 (2018), 3264620. |
[13] | T. Kamran, M. Samreen, Q. U. Ain, A Generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. doi: 10.3390/math5020019 |
[14] | S. G. Matthews, Metric domains for completeness, PhD thesis, University of Warwick, Academic Press, 1986. |
[15] | S. G. Matthews, Partial metric spaces, Annals of the New York Academy of Sciences-Paper Edition, 728 (1994), 183–197. |
[16] | N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 189. doi: 10.1186/s13660-020-02456-z |
[17] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. doi: 10.3390/math6100194 |
[18] | J. J. M. M. Rutten, Elements of generalized ultrametric domain theory, Theor. Comput. Sci., 170 (1996), 349–381. doi: 10.1016/S0304-3975(96)80711-0 |
[19] | A. H. Soliman, A. M. Zidan, A new coupled fixed point result in extended metric spaces with an application to study the stability of set-valued functional equations, J. Funct. Spaces, 2019 (2019), 4146328. |
[20] | A. H. Soliman, T. Nabil, A. M. Zidan, On quasi-partial generalized type of metric spaces and an application to complexity analysis of computer algorithms, Alex. Eng. J., 59 (2020), 1233–1238. doi: 10.1016/j.aej.2020.01.053 |
[21] | A. H. Soliman, A. M. Zidan, Existential examination of the coupled fixed point in generalized b-metric spaces and an application, J. Intell. Fuzzy Syst., 38 (2020), 2801–2807. doi: 10.3233/JIFS-179565 |
[22] | A. M. Zidan, A. H Soliman, T. Nabil, M. A. Barakat, An investigation of new quicker implicit iterations in hyperbolic spaces, Therm. Sci., 24 (2020), 199–207. doi: 10.2298/TSCI20S1199Z |
[23] | A. M. Zidan, A. Al Rwaily, On new type of F-contractive mapping for quasipartial b-metric spaces and some results of fixed-point theorem and application, J. Math., 2020 (2020), 8825805. |