Research article

Double controlled quasi metric-like spaces and some topological properties of this space

  • Received: 05 April 2021 Accepted: 04 August 2021 Published: 10 August 2021
  • MSC : 30L10, 37C25, 46A19

  • In present paper, we introduce a new extension of the double controlled metric-like spaces, so called double controlled quasi metric-like spaces "assuming that the self-distance may not be zero". Also, if the value of the metric is zero, then it has to be "a self-distance". After that, by using this new type of quasi metric spaces, we generalize many results in the literature and we prove fixed point theorems along with some examples illustrating.

    Citation: A. M. Zidan, Z. Mostefaoui. Double controlled quasi metric-like spaces and some topological properties of this space[J]. AIMS Mathematics, 2021, 6(10): 11584-11594. doi: 10.3934/math.2021672

    Related Papers:

  • In present paper, we introduce a new extension of the double controlled metric-like spaces, so called double controlled quasi metric-like spaces "assuming that the self-distance may not be zero". Also, if the value of the metric is zero, then it has to be "a self-distance". After that, by using this new type of quasi metric spaces, we generalize many results in the literature and we prove fixed point theorems along with some examples illustrating.



    加载中


    [1] T. Abdeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, J. Comput. Anal. Appl., 19 (2015), 883–891.
    [2] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. doi: 10.3390/math6120320
    [3] T. Abedeljawad, E. Karapinar, K. Tas, Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett., 24 (2011), 1900–1904. doi: 10.1016/j.aml.2011.05.014
    [4] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 204. doi: 10.1186/1687-1812-2012-204
    [5] H. Aydi, E. Karapinar, C. Vetro, On Ekeland's variational principle in partial metric spaces, Appl. Math. Inf. Sci., 9 (2015), 257–262. doi: 10.12785/amis/090131
    [6] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37.
    [7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11.
    [8] V. Berinde, Generalized contractions in quasimetric spaces, Seminar Fixed Point Theory, 3 (1993), 3–9.
    [9] V. Berinde, Sequences of operators and fixed points in quasimetric spaces, Stud. Univ. Babes-Bolyai Math., 16 (1996), 23–27.
    [10] M. Bousselsal, Z. Mostefaoui, Some fixed point results in partial metric spaces for generalized rational type contraction mappings, NFAA, 20 (2015), 43–54.
    [11] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3–7.
    [12] E. Karapinar, S. Czerwik, H. Aydi, $(\alpha, \psi)$- Meir-Keeler contraction mappings in generalized b-metric spaces, J. Funct. Spaces, 2018 (2018), 3264620.
    [13] T. Kamran, M. Samreen, Q. U. Ain, A Generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. doi: 10.3390/math5020019
    [14] S. G. Matthews, Metric domains for completeness, PhD thesis, University of Warwick, Academic Press, 1986.
    [15] S. G. Matthews, Partial metric spaces, Annals of the New York Academy of Sciences-Paper Edition, 728 (1994), 183–197.
    [16] N. Mlaiki, Double controlled metric-like spaces, J. Inequal. Appl., 2020 (2020), 189. doi: 10.1186/s13660-020-02456-z
    [17] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. doi: 10.3390/math6100194
    [18] J. J. M. M. Rutten, Elements of generalized ultrametric domain theory, Theor. Comput. Sci., 170 (1996), 349–381. doi: 10.1016/S0304-3975(96)80711-0
    [19] A. H. Soliman, A. M. Zidan, A new coupled fixed point result in extended metric spaces with an application to study the stability of set-valued functional equations, J. Funct. Spaces, 2019 (2019), 4146328.
    [20] A. H. Soliman, T. Nabil, A. M. Zidan, On quasi-partial generalized type of metric spaces and an application to complexity analysis of computer algorithms, Alex. Eng. J., 59 (2020), 1233–1238. doi: 10.1016/j.aej.2020.01.053
    [21] A. H. Soliman, A. M. Zidan, Existential examination of the coupled fixed point in generalized b-metric spaces and an application, J. Intell. Fuzzy Syst., 38 (2020), 2801–2807. doi: 10.3233/JIFS-179565
    [22] A. M. Zidan, A. H Soliman, T. Nabil, M. A. Barakat, An investigation of new quicker implicit iterations in hyperbolic spaces, Therm. Sci., 24 (2020), 199–207. doi: 10.2298/TSCI20S1199Z
    [23] A. M. Zidan, A. Al Rwaily, On new type of F-contractive mapping for quasipartial b-metric spaces and some results of fixed-point theorem and application, J. Math., 2020 (2020), 8825805.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1975) PDF downloads(98) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog