In this paper we prove a Dwork-type supercongruence: for any prime p≥3 and integer r≥1,
pr−1∑k=03k+116k(2kk)3≡ppr−1−1∑k=03k+116k(2kk)3(modp3r+1−δp,3),
which extends a result of Guo and Zudilin.
Citation: Yong Zhang, Peisen Yuan. Proof of a Dwork-type supercongruence by induction[J]. AIMS Mathematics, 2021, 6(10): 11568-11583. doi: 10.3934/math.2021671
[1] | Zhi-Hong Sun . Supercongruences involving Apéry-like numbers and binomial coefficients. AIMS Mathematics, 2022, 7(2): 2729-2781. doi: 10.3934/math.2022153 |
[2] | Chuanan Wei, Chun Li . New $ q $-supercongruences arising from a summation of basic hypergeometric series. AIMS Mathematics, 2022, 7(3): 4125-4136. doi: 10.3934/math.2022228 |
[3] | Ahmed Ghezal, Mohamed Balegh, Imane Zemmouri . Solutions and local stability of the Jacobsthal system of difference equations. AIMS Mathematics, 2024, 9(2): 3576-3591. doi: 10.3934/math.2024175 |
[4] | Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada . Some new identities of a type of generalized numbers involving four parameters. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718 |
[5] | Pongsakorn Kitpratyakul, Bundit Pibaljommee . On substructures of semigroups of inductive terms. AIMS Mathematics, 2022, 7(6): 9835-9845. doi: 10.3934/math.2022548 |
[6] | Faik Babadağ . A new approach to Jacobsthal, Jacobsthal-Lucas numbers and dual vectors. AIMS Mathematics, 2023, 8(8): 18596-18606. doi: 10.3934/math.2023946 |
[7] | Pongsakorn Kitpratyakul, Bundit Pibaljommee . Clones of inductive superpositions of terms. AIMS Mathematics, 2023, 8(4): 7747-7765. doi: 10.3934/math.2023389 |
[8] | Sufyan Asif, Muhammad Khalid Mahmood, Amal S. Alali, Abdullah A. Zaagan . Structures and applications of graphs arising from congruences over moduli. AIMS Mathematics, 2024, 9(8): 21786-21798. doi: 10.3934/math.20241059 |
[9] | Jizhen Yang, Yunpeng Wang . Congruences involving generalized Catalan numbers and Bernoulli numbers. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240 |
[10] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . $ (m, n) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
In this paper we prove a Dwork-type supercongruence: for any prime p≥3 and integer r≥1,
pr−1∑k=03k+116k(2kk)3≡ppr−1−1∑k=03k+116k(2kk)3(modp3r+1−δp,3),
which extends a result of Guo and Zudilin.
In the spirit of [25], the supercongruence
p−1∑k=03k+116k(2kk)3≡p(modp3)for p>2 | (1.1) |
corresponds to a divergent Ramanujan-type series for 1/π. In [8], Guillera and Zudilin made use of the Wilf-Zeilberger algorithmic technique to show that
p−12∑k=03k+116k(2kk)3≡p(modp3)for p>2. | (1.2) |
Note that (1.2) is equivalent to (1.1) since p∣(2kk) for p+12≤k≤p−1. The supercongruence (1.2) was independently observed numerically by Sun [21,Conjecture 5.1 (ii)]).
Given a prime p and a positive integer k, for any positive integer n, we call a congruence as a Dwork-type congruence on a sequence {an}n≥0 of integers if
anp≡γp⋅an(modpkνp(n)), |
where νp(n) is the largest integer such that pνp(n)∣n. We refer the reader to [2,3,5,14] for Dwork-type congruences and [9,11,16,22] for q-analogues of Dwork-type congruences.
For any odd prime p and integer r≥1, Guo [10] gave a q-analogue of (1.2) and made the following Dwork-type supercongruence conjecture:
pr−1∑k=03k+116k(2kk)3≡ppr−1−1∑k=03k+116k(2kk)3(modp4r−δp,3) | (1.3) |
and
pr−12∑k=03k+116k(2kk)3≡ppr−1−12∑k=03k+116k(2kk)3(modp3r), | (1.4) |
where the Kronecker delta function is defined as δm,n=1 if m=n and δm,n=0 otherwise. Guo and Zudilin [11] proved (1.3) and (1.4) modulo p3r by establishing their q-analogues.
Recently, Sun [20] conjectured that, for any prime p>3 and positive integers n,r,
16npr−1n4p4r(2npr−1npr−1)4(npr−1∑k=03k+116k(2kk)3−pnpr−1−1∑k=03k+116k(2kk)3)≡73Bp−3(modp), | (1.5) |
where Bn are the Bernoulli numbers which can be defined by
B0=1, n−1∑k=0(nk)Bk=0 (n≥2), |
and
4npr−1−1n3p3r(npr−1−1(npr−1−1)/2)3(npr−12∑k=03k+116k(2kk)3−pnpr−1−12∑k=03k+116k(2kk)3)≡2(−1p)Ep−3(modp), | (1.6) |
where En are the Euler numbers, i.e.,
E0=1, En=−⌊n/2⌋∑k=1(n2k)En−2k (n≥1) |
and (⋅p) denotes the Legendre symbol. Clearly (1.3) and (1.4) follow from (1.5) and (1.6) by taking n=1, respectively. In this paper, we shall prove the following result, which asserts that (1.3) is true modulo p3r+1−δp,3.
Theorem 1.1 Let p≥3 be a prime and r be a positive integer. Then
pr−1∑k=03k+116k(2kk)3≡ppr−1−1∑k=03k+116k(2kk)3(modp3r+1−δp,3). | (1.7) |
The remainder of the paper is organized as follows. In the next section, we are going to show some basic lemmas for Theorem 1.1. The proof of Theorem 1.1 will be given in Section 3.
From now on, for an assertion A we adopt the notation:
[A]={1,if A holds,0,otherwise. |
We know that [m=n] coincides with the Kronecker delta function δm,n. For positive integers n and m, the generalized harmonic numbers of order m are defined by Hn,m=∑nj=11jm. Clearly, Hn,1=Hn=∑nj=11j. For convenience, we always abbreviate the Harmonic number Hk∈V,p∤k=∑k∈V,p∤k1k as H′k∈V.
The following lemma is a result of Beukers [3,Lemma 2 (i)].
Lemma 2.1 Let n,k,r be positive integers and p be a prime. Then
(prn−1k)≡(pr−1n−1⌊kp⌋)(−1)k−⌊kp⌋{1−nprk∑j=1,p∤j1j +n2p2r2((k∑j=1,p∤j1j)2−k∑j=1,p∤j1j2)}(modp3r). | (2.1) |
Proof. Note that
(−1)k(prn−1k)=k∏j=1j−prnj=(−1)⌊kp⌋(pr−1n−1⌊kp⌋)k∏j=1,p∤j(1−prnj)≡(−1)⌊kp⌋(pr−1n−1⌊kp⌋)(1−k∑j=1,p∤jprnj+∑1≤i<j≤kp∤ijn2p2rij)(modp3r). |
This proves (2.1).
The following result is due to Gy [12,Lemma 2.7].
Lemma 2.2 Let n≥1 be an integer and p be an odd prime such that p>n+12. We have the following congruence:
2pn−pn−1−1pn≡n−1∑j=0(−1)jqj+1p(2)j+1pj+δp,n+1qp(2)pn−1(modpn), |
where qr(a)=aϕ(r)−1r denotes Euler's quotient of an integer r with base a and ϕ(r) is Euler's totient function.
The following lemma involving Bernoulli numbers is due to Lin [13,Corollary 4.3].
Lemma 2.3 Let p be an odd prime and j be a positive integer with j≤p−2. Assume that (2,d)=1. Then, we have
⌊dp2⌋∑k=1,p∤k1k≡2j∑k=1(−1)kqkp(2)pk−1k−j−1∑k=1(2−2−k)Bpj−k−1(p−1)−kpj−k−1+k(−dp)k(modpj). | (2.2) |
We also need three more lemmas.
Lemma 2.4 For primes p and positive integers a,b,r,s, we have
(prapsb)≡(pr−1aps−1b)(−1)psb−ps−1b(modp2r+min{r,s}−δp,3−2δp,2). | (2.3) |
The congruence (2.3) is called Jacobsthal's binomial congruence. Gessel [6], Granville [7] and Straub [18] gave extensions of (2.3) to nonnegative integers a,b and negative integers a,b independently.
Lemma 2.5 Let p≥3 be an odd prime and l be a nonnegative integer. For any positive integer s, we have
H′psl+ps−1,2≡0(modps−δp,3). | (2.4) |
H′psl+ps−1≡0(modp2s−δp,3). | (2.5) |
H′psl+ps−12,2≡0(modps−δp,3). | (2.6) |
H′psl+ps−12≡H′ps−12(modp2s−δp,3). | (2.7) |
Hp−12≡−2qp(2)+pq2p(2)(modp2). | (2.8) |
Proof. The case p≥5 in (2.4) and the case p=3 in (2.5) are due to Beukers [3,Lemma 2.1] and Cai [4,Lemma 1], respectively. By (2.5),
ps−1∑k=1,p∤k1k=ps−12∑k=1,p∤k(1k+1ps−k)=ps−12∑k=1,p∤kpspsk−k2≡−psH′ps−12,2(modp2s), |
we get
H′ps−12,2≡0(modps−δp,3). | (2.9) |
By (2.4) and (2.9), we immediately get
H′psl+ps−12,2=psl−1∑j=1,p∤j1j2+ps−12∑j=1,p∤j1(psl+j)2≡H′ps−12,2≡0(modps−δp,3). |
So (2.6) is valid. With the help of (2.5) and (2.9), we have
H′psl+ps−12=psl−1∑j=1,p∤j1j+ps−12∑j=1,p∤j1psl+j≡ps−12∑j=1,p∤j1j(1−pslj)=H′ps−12−pslH′ps−12,2≡H′ps−12(modp2s−δp,3). |
This proves (2.7).
Finally, Cai [4,Theorem 1] showed that, for any odd integer n>1,
n−12∑k=1,(k,n)=11k≡−2qn(2)+nq2n(2)(modn2). | (2.10) |
The congruence (2.8) is just the n=p case of the above congruence.
Lemma 2.6 Let p≥5 be a prime. Then
p−32∑t=0Ht2t+1≡−2q2p(2)(modp). | (2.11) |
Proof. Using the principle of mathematical induction, Alzer et al. [1] showed that
n∑k=1Hkk=12(H2n+Hn,2). |
Note that
p−32∑t=0Ht2t+1=p−12∑t=1Hp−12−t2(p−12−t)+1=p−12∑t=1Hp−12−tp−2t≡−12p−12∑t=1Hp−12+tt(modp), |
and
Hp−k≡Hk−1(modp) | (2.12) |
for any positive integer k≤p−1 (see Sun [19,Lemma 2.1]). Using
p−12∑t=1Hp−12+tt=p−12∑t=1Htt+p−12∑t=11tp−12∑i=11t+i |
and
p−12∑t=11tp−12∑i=11t+i=p−12∑i=11ip−12∑t=1(1t−1t+i)=H2p−12−p−12∑t=11tp−12∑i=11t+i, |
the congruence (2.11) follows from
p−32∑t=0Ht2t+1≡−12(p−12∑t=1Htt+12H2p−12)=−2H2p−12+Hp−12,24≡−2q2p(2)(modp) |
by (2.8) and (2.9).
We start with the following identity due to Mao and Zhang [15]:
n−1∑k=03k+116k(2kk)3=n(2nn)4⋅16n−1n−1∑k=0(n−1k)2(−1)k(2k)!(4n−2k−2)!k!(2n−1)!(2n−k−1)!=n2(2nn)4⋅16n−1n−1∑k=0(n−1k)2(−1)k(2nk)(4n2n)(4n−2k−1)(4n2k). | (3.1) |
Setting n=pr−1+j for j∈{0,1} in (3.1) yields
pr−1∑k=03k+116k(2kk)3−ppr−1−1∑k=03k+116k(2kk)3≡pr(2pr−1pr−1)4⋅16pr−1(prpr−1∑k=0(pr−1k)2(−1)k(2prk)(4pr2pr)(4pr−2k−1)(4pr2k)−pr−1⋅16pr−pr−1×pr−1−1∑k=0(pr−1−1k)2(−1)k(2pr−1k)(4pr−12pr−1)(4pr−1−2k−1)(4pr−12k))(modp4r−δp,3), | (3.2) |
since for any odd prime p, we have (2prpr)≡(2pr−1pr−1)(modp3r−δp,3) by (2.3). In view of [23,Lemma 2.3], for any odd prime p and positive integers r,s with r≥s, we get
2pr−pr−1−1pr≡2ps−ps−1−1ps(modps). | (3.3) |
It follows that
16pr−pr−1=(1+(2pr−pr−1−1))4≡1+4(2pr−pr−1−1)+6(2pr−pr−1−1)2≡1+4(2pr−pr−1−1)+[p≥5]⋅6p2rq2p(2)(modp2r+1) |
by Euler's theorem. For any integer l∈{0,3r−1−1},
H′3l+1,2≡3l−1∑j=1,3∤j1j2+1≡54l+1≡2l+1(mod3). |
Clearly, (126)≡(42)(mod27). As in [17], we know that the super Catalan numbers S(m,n) are defined by (2m)!(2n)!(m+n)!m!n! and
S(n−k,k)=(nk)(2nn)(2n2k)=(n−1k)(2nn)(2n−12k) |
is an integer. With the help of Lemmas 2.1, 2.4, 2.5 and the above congruences, we obtain
(2pr−1pl+p−12)(4pr2pr)(4pr−12pl+p−1)≡(−1)p−12(2pr−1−1l)(1−2prH′pl+p−12+2p2r((H′pl+p−12)2−H′pl+p−12,2))(4pr−12pr−1)(4pr−1−12l)(1−4prH′2pl+p−1+8p2r((H′2pl+p−1)2−H′2pl+p−1,2))≡(−1)p−12(2pr−1−1l)(4pr−12pr−1)(4pr−1−12l)⋅(1−2prH′pl+p−12+4prH′2pl+p−1 +[p≥5]⋅8p2rq2p(2)−(2l−1)p2rδp,3)(modp2r+1). |
It follows that
prpr−1∑k=0,p∣(2k+1)(pr−1k)2(−1)k(2prk)(4pr2pr)(4pr−2k−1)(4pr2k) −pr−1⋅16pr−pr−1pr−1−1∑k=0(pr−1−1k)2(−1)k(2pr−1k)(4pr−12pr−1)(4pr−1−2k−1)(4pr−12k)≡pr−1pr−1−1∑l=0(pr−1−1l)2(−1)l(2pr−1−1l)(4pr−12pr−1)(4pr−1−2l−1)(4pr−1−12l) ⋅{(1−2prH′pl+p−12+4prH′2pl+p−1+[p≥5]⋅8p2rq2p(2)−(2l−1)p2rδp,3) ⋅(1−prH′pl+p−12+p2r2((H′pl+p−12)2−H′pl+p−12,2))2 −1−4(2pr−pr−1−1)−[p≥5]⋅6p2rq2p(2)}≡p2r−1pr−1−1∑l=0(pr−1−1l)2(−1)l(2pr−1−1l)(4pr−12pr−1)(4pr−1−2l−1)(4pr−1−12l)⋅(4H′2pl+p−1−4H′pl+p−12 −42pr−pr−1−1pr+[p≥5]⋅26prq2p(2)−lprδp,3)(modp2r+1) | (3.4) |
by Lemma 2.5. Noting that
pr−1∑k=0,p∤(2k+1)(pr−1k)2(−1)k(2pr−1k)(4pr2pr)(4pr−2k−1)(4pr−12k)=pr−1−1∑s=0p−1∑t=0,t≠p−12(pr−1ps+t)2(−1)s+t(2pr−1ps+t)(4pr2pr)(4pr−2ps−2t−1)(4pr−12ps+2t)≡pr−1−1∑s=0{p−32∑t=0(pr−1−1s)2(−1)s(2pr−1−1s)(4pr−12pr−1)(1−prH′ps+t)2(1−2prH′ps+t)(4pr−2ps−2t−1)(4pr−1−12s)(1−4prH′2ps+2t) −p−1∑t=p+12(pr−1−1s)2(−1)s(2pr−1−1s)(4pr−12pr−1)(1−prH′ps+t)2(1−2prH′ps+t)(4pr−2ps−2t−1)(4pr−1−12s+1)(1−4prH′2ps+2t)}(modpr+1) |
by Lemma 2.1, and
(4pr−1−12s+1)=(4pr−1−12s)4pr−1−2s−12s+1, | (3.5) |
we have
pr−1∑k=0,p∤(2k+1)(pr−1k)2(−1)k(2pr−1k)(4pr2pr)(4pr−2k−1)(4pr−12k)≡pr−1−1∑s=0(pr−1−1s)2(−1)s(2pr−1−1s)(4pr−12pr−1)(4pr−1−12s)p−1∑t=0,t≠p−121−4prH′ps+t+4prH′2ps+2t4pr−2ps−2t−1 −4pr−1pr−1−1∑s=0(pr−1−1s)2(−1)s(2pr−1−1s)(4pr−12pr−1)(4pr−1−2s−1)(4pr−1−12s) ×p−1∑t=p+121−4prH′ps+t+4prH′2ps+2t4pr−2ps−2t−1(modpr+1). | (3.6) |
In view of [24,Lemma 2.4] and (2.9), for any integer l and nonnegative integer s, we get
ps−1∑t=0,p∤(2t+1)12psl+2t+1=∑⌊kps⌋=l,p∤(2k+1)12k+1≡0(modp2s−δp,3) | (3.7) |
and
p−1∑t=0,t≠p−121(2t+1)2=p−12∑j=1(1(p+2j)2+1(p−2j)2)≡12Hp−12,2≡2δp,3(modp). | (3.8) |
By (2.9),
p−1∑t=p+121(2t+1)2=p−12∑t=11(2(p−12+t)+1)2≡14Hp−12,2≡δp,3(modp). | (3.9) |
It follows that
p−1∑t=0,t≠p−1214pr−2ps−2t−1≡−p−1∑t=0,t≠p−1212ps+2t+1(1+4pr2ps+2t+1)≡−p−1∑t=0,t≠p−12(12ps+2t+1+4pr(2t+1)2)≡−p−1∑t=0,t≠p−1212ps+2t+1−8prδp,3(modpr+1) |
and
p−1∑t=p+1214pr−2ps−2t−1≡−p−1∑t=p+12(12ps+2t+1+4pr(2t+1)2)≡−p−1∑t=p+1212ps+2t+1−4prδp,3(modpr+1). |
For any nonnegative integer s, by (2.5), (2.12), (3.8) and (3.9), we have
p−1∑t=0,t≠p−12H′2ps+2t−H′ps+t4pr−2ps−2t−1≡−([p≥5]⋅p−32∑t=0H2t−Ht2t+1+p−1∑t=p+12H2t−p−Ht2t+1)=−([p≥5]⋅p−32∑t=0H2t−Ht2t+1+p−32∑t=0Hp−2−2t−Hp−1−t2(p−1−t)+1)≡−p−32∑t=0[p≥5]⋅H2t−H2t+12t+1≡δp,3(modp). |
For any positive integer k≤p−1, we have (p−1k)(−1)k≡1−pHk(modp2). By (2.5) and (2.8),
p−1∑t=p+12H′2ps+2t4pr−2ps−2t−1≡−p−1∑t=p+12H2t−p2t+1=−p−12∑t=1H2(p−12+t)−p2(p−12+t)+1≡−p−12∑t=1H2t−12t≡−p−12∑t=112pt(1+(p−12t−1))=−Hp−122p−12p2p−12∑t=1((p2t)+(pp−2t))=−Hp−12+2qp(2)2p≡−q2p(2)2(modp). |
In view of (2.5), (2.12) and Lemma 2.6, we have
p−1∑t=p+12H′ps+t4pr−2ps−2t−1≡−p−1∑t=p+12Ht2t+1=−p−32∑t=0Hp−1−t2(p−1−t)+1≡p−32∑t=0Ht2t+1≡−[p≥5]⋅2q2p(2)(modp). |
Combining (3.2), (3.4), (3.6) with the above results, we get
pr−1∑k=03k+116k(2kk)3−ppr−1−1∑k=03k+116k(2kk)3≡p2r(2pr−1pr−1)4⋅16pr−1{−pr−1−1∑s=0(pr−1−1s)2(−1)s(2pr−1−1s)(4pr−12pr−1)(4pr−1−12s) ⋅(p−1∑t=0,t≠p−1212ps+2t+1+4prδp,3)+pr−1−1∑s=0(pr−1−1s)2⋅(−1)s(2pr−1−1s)(4pr−12pr−1)pr−1(4pr−1−1−2s)(4pr−1−12s)(p−1∑t=p+1242ps+2t+1+4H′2ps+p−1 −4H′ps+p−12−42pr−pr−1−1pr+2prq2p(2)+(1−s)prδp,3)}(modp3r+1). | (3.10) |
Clearly, for any nonnegative integer l and positive integer s , we have
\begin{align} &\sum\limits_{t = \frac{p^s+p^{s-1}}{2}, p\nmid(2t+1)}^{p^s-1}\frac{4}{2p^sl+2t+1}\\& = \sum\limits_{t = \frac{p^{s-1}+1}{2}, p\nmid t}^{\frac{p^s-1}{2}}\frac{4}{2(t+\frac{p^s-1}{2})+1+2p^sl} = \sum\limits_{t = \frac{p^{s-1}+1}{2}, p\nmid t}^{\frac{p^s-1}{2}}\frac{2}{t(1+\frac{p^s(2l+1)}{2t})}\\&\equiv2(H_{\frac{p^s-1}{2}}'-H_{\frac{p^{s-1}-1}{2}}'\cdot[s\geq 2])-p^s(2l+1)(H_{\frac{p^s-1}{2}, 2}'-H_{\frac{p^{s-1}-1}{2}, 2}'\cdot[s\geq 2])\\ &\equiv2(H_{\frac{p^s-1}{2}}'-H_{\frac{p^{s-1}-1}{2}}'\cdot[s\geq 2])\pmod{p^{s+1-\delta_{p, 3}}} \end{align} | (3.11) |
by (2.6). Now we will handle the case r = 1 of (3.10), that is to say, s = 0 . With the help of (2.5), (2.8) and (3.11), we obtain
\begin{align} &\sum\limits_{t = \frac{p+1}{2}}^{p-1}\frac{4}{2t+1} +4H_{p-1}-4H_{\frac{p-1}{2}}-4q_p(2)+2pq^{2}_p(2)+p\delta_{p, 3} \\ &\equiv-2H_{\frac{p-1}{2}}-4q_p(2)+2pq^{2}_p(2)\equiv0\pmod{p^{2-\delta_{p, 3}}}. \end{align} | (3.12) |
The congruence (1.7) with r = 1 follows from (3.7), (3.10) and (3.12). Next suppose that r\geq 2 . By (2.5), (2.7), (2.8), (3.3), (3.11) and Lemma 2.2 with n = 2 , we have
\begin{align} &\sum\limits_{t = \frac{p+1}{2}}^{p-1}\frac{4}{2ps+2t+1} +4H_{2ps+p-1}'-4H_{ps+\frac{p-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\\&\ \ \ \ \ +2p^rq^{2}_p(2)+(1-s)p^r\delta_{p, 3}\equiv-2H_{\frac{p-1}{2}}-4\frac{2^{p^{2}-p^{}}-1}{p^{2}}\equiv0\pmod{p^{2-\delta_{p, 3}}}. \end{align} |
For any positive integer s\leq r , by Lemma 2.1 and (3.7), we get
\begin{align} &\sum\limits_{k = 0}^{p^{r-s}-1}{\binom{p^{r-s}-1}{k}}^2\frac{(-1)^{k}\binom{2p^{r-s}-1}{k}\binom{4p^{r-s}}{2p^{r-s}}}{\binom{4p^{r-s}-1}{2k}}\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s}-1}\frac{1}{2p^sk+2t+1}\\& = \sum\limits_{i = 0}^{p^{r-s-1}-1}\sum\limits_{j = 0}^{p-1}{\binom{p^{r-s}-1}{pi+j}}^2\frac{(-1)^{i+j}\binom{2p^{r-s}-1}{pi+j}\binom{4p^{r-s}}{2p^{r-s}}}{\binom{4p^{r-s}-1}{2pi+2j}}\\&\ \ \ \ \cdot\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s}-1}\frac{1}{2p^{s+1}i+2p^{s}j+2t+1}\\&\equiv\sum\limits_{i = 0}^{p^{r-s-1}-1}{\binom{p^{r-s-1}-1}{i}}^2\frac{(-1)^{i}\binom{2p^{r-s-1}-1}{i}\binom{4p^{r-s-1}}{2p^{r-s-1}}}{\binom{4p^{r-s-1}-1}{2i}}\\&\ \ \ \ \cdot\sum\limits_{j = 0}^{\frac{p-1}{2}}\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s}-1}\frac{1}{2p^{s+1}i+2p^{s}j+2t+1}\\&\ -\sum\limits_{i = 0}^{p^{r-s-1}-1}{\binom{p^{r-s-1}-1}{i}}^2\frac{(-1)^{i}\binom{2p^{r-s-1}-1}{i}\binom{4p^{r-s-1}}{2p^{r-s-1}}}{\binom{4p^{r-s-1}-1}{2i+1}}\\&\ \ \ \ \cdot\sum\limits_{j = \frac{p+1}{2}}^{p-1}\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s}-1}\frac{1}{2p^{s+1}i+2p^{s}j+2t+1}\pmod{p^{r+s-\delta_{p, 3}}}. \end{align} |
In view of (3.5),
\begin{align} &\sum\limits_{k = 0}^{p^{r-s}-1}{\binom{p^{r-s}-1}{k}}^2\frac{(-1)^{k}\binom{2p^{r-s}-1}{k}\binom{4p^{r-s}}{2p^{r-s}}}{\binom{4p^{r-s}-1}{2k}}\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s}-1}\frac{1}{2p^sk+2t+1}\\&\equiv\sum\limits_{i = 0}^{p^{r-s-1}-1}{\binom{p^{r-s-1}-1}{i}}^2\frac{(-1)^{i}\binom{2p^{r-s-1}-1}{i}\binom{4p^{r-s-1}}{2p^{r-s-1}}}{\binom{4p^{r-s-1}-1}{2i}}\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s+1}-1}\frac{1}{2p^{s+1}i+2t+1}\\&\ \ -\sum\limits_{i = 0}^{p^{r-s-1}-1}{\binom{p^{r-s-1}-1}{i}}^2\frac{(-1)^{i}\binom{2p^{r-s-1}-1}{i}\binom{4p^{r-s-1}}{2p^{r-s-1}}p^{r-s-1}}{\binom{4p^{r-s-1}-1}{2i}(4p^{r-s-1}-1-2i)}\\ &\ \ \ \cdot \sum\limits_{t = \frac{p^{s+1}+p^{s}}{2}, p\nmid(2t+1)}^{p^{s+1}-1}\frac{4}{2p^{s+1}i+2t+1}\pmod{p^{r+s-\delta_{p, 3}}}. \end{align} | (3.13) |
By (2.6), for any positive integer s\geq 2 , we have
\begin{align} &\sum\limits_{i = 0}^{s-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{4}{(2k+1)p^s+2t}\\&\equiv\sum\limits_{i = 0}^{s-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\bigg(\frac{2}{t}-\frac{p^s(2k+1)}{t^2}\bigg)\\& = \sum\limits_{i = 0}^{s-2}\bigg(2H_{\frac{p^{i+1}-1}{2}}'-2H_{\frac{p^{i}-1}{2}}'\cdot[i\geq1]-p^s(2k+1)\bigg(H_{\frac{p^{i+1}-1}{2}, 2}'-H_{\frac{p^{i}-1}{2}, 2}'\cdot[i\geq1]\bigg)\bigg)\\ & = 2H_{\frac{p^{s-1}-1}{2}}'-p^s(2k+1)H_{\frac{p^{s-1}-1}{2}, 2}'\equiv2H_{\frac{p^{s-1}-1}{2}}'\pmod{p^{s+1-\delta_{p, 3}}}. \end{align} | (3.14) |
Combining (2.5), (2.7), (3.11) with (3.14) gives
\begin{align} &\sum\limits_{t = \frac{p^{s}+p^{s-1}}{2}, p\nmid (2t+1)}^{p^{s}-1}\frac{4}{2kp^{s}+2t+1}+[s\geq 2]\cdot\sum\limits_{i = 0}^{s-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{4}{(2k+1)p^s+2t}\\&\ \ \ \ +2p^rq^{2}_p(2) +4H_{2kp^{s}+p^{s}-1}'-4H_{kp^{s}+\frac{p^{s}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\\ &\ \ \equiv-2H_{\frac{p^{s}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}+2p^rq^{2}_p(2)\pmod{p^{s+1-\delta_{p, 3}}}. \end{align} | (3.15) |
In the case 1\leq s\leq r-1 , with the help of (2.10) with n = p^s and (3.3),
\begin{align} &-2H_{\frac{p^{s}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}+2p^rq^{2}_p(2)\\&\equiv4\frac{2^{p^{s}-p^{s-1}}-1}{p^{s}}-2p^sq^{2}_{p}(2)-4\frac{2^{p^{s+1}-p^{s}}-1}{p^{s+1}}\\ & = 4\frac{2^{p^{s}-p^{s-1}}-1}{p^{s}}-2p^sq^{2}_{p}(2)-4\frac{\sum\limits_{k = 1}^{2}\binom{p}{k}(2^{p^{s}-p^{s-1}}-1)^k}{p^{s+1}}\equiv0\pmod{p^{s+1-\delta_{p, 3}}}. \end{align} | (3.16) |
Note that
\begin{align} &\sum\limits_{k = 0, p\nmid(2k+1)}^{p^{r-s}-1}{\binom{p^{r-s}-1}{k}}^2\frac{(-1)^{k}\binom{2p^{r-s}-1}{k}\binom{4p^{r-s}}{2p^{r-s}}p^{r-s}}{\binom{4p^{r-s}-1}{2k}(4p^{r-s}-1-2k)}\\&\ \ \cdot\bigg\{\sum\limits_{t = \frac{p^{s}+p^{s-1}}{2}, p\nmid(2t+1)}^{p^{s}-1}\frac{4}{2p^{s}k+2t+1}+[s\geq 2]\cdot\sum\limits_{i = 0}^{s-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{4}{(2k+1)p^s+2t}\\&\ \ \ \ +2p^rq^{2}_p(2) +4H_{(2k+1)p^{s}-1}'-4H_{kp^{s}+\frac{p^{s}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\bigg\}\equiv0\pmod{p^{r+1-\delta_{p, 3}}} \end{align} |
by (3.15) and (3.16) for any integer 1\leq s\leq r-1 . In light of Lemma 2.1, we obtain
\begin{align} &\sum\limits_{k = 0, p\mid(2k+1)}^{p^{r-s}-1}{\binom{p^{r-s}-1}{k}}^2\frac{(-1)^{k}\binom{2p^{r-s}-1}{k}\binom{4p^{r-s}}{2p^{r-s}}p^{r-s}}{\binom{4p^{r-s}-1}{2k}(4p^{r-s}-1-2k)}\\&\ \ \cdot\bigg\{\sum\limits_{t = \frac{p^{s}+p^{s-1}}{2}, p\nmid(2t+1)}^{p^{s}-1}\frac{4}{2p^{s}k+2t+1}+\sum\limits_{i = 0}^{s-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{[s\geq 2]\cdot4}{(2k+1)p^s+2t}\\&\ \ \ \ +2p^rq^{2}_p(2) +4H_{(2k+1)p^{s}-1}'-4H_{kp^{s}+\frac{p^{s}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\bigg\}\\& = \sum\limits_{l = 0}^{p^{r-s-1}-1}{\binom{p^{r-s}-1}{pl+\frac{p-1}{2}}}^2\frac{(-1)^{l+\frac{p-1}{2}}\binom{2p^{r-s}-1}{pl+\frac{p-1}{2}}\binom{4p^{r-s}}{2p^{r-s}}p^{r-s-1}}{\binom{4p^{r-s}-1}{2pl+p-1}(4p^{r-s-1}-1-2l)}\cdot\bigg\{2p^rq^{2}_p(2)\\&\ \ \ +\sum\limits_{t = \frac{p^{s}+p^{s-1}}{2}, p\nmid(2t+1)}^{p^{s}-1}\frac{4}{2p^{s}(pl+\frac{p-1}{2})+2t+1}+\sum\limits_{i = 0}^{s-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{[s\geq 2]\cdot4}{(2l+1)p^{s+1}+2t}\\&\ \ \ \ +4H_{(2l+1)p^{s+1}-1}'-4H_{lp^{s+1}+\frac{p^{s+1}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\bigg\}\\&\equiv\sum\limits_{l = 0}^{p^{r-s-1}-1}{\binom{p^{r-s-1}-1}{l}}^2\frac{(-1)^{l}\binom{2p^{r-s-1}-1}{l}\binom{4p^{r-s-1}}{2p^{r-s-1}}p^{r-s-1}}{\binom{4p^{r-s-1}-1}{2l}(4p^{r-s-1}-1-2l)}\\&\ \ \cdot\bigg\{\sum\limits_{i = 0}^{s-1}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{4}{(2l+1)p^{s+1}+2t}+2p^rq^{2}_p(2)\\&\ \ \ \ +4H_{(2l+1)p^{s+1}-1}'-4H_{lp^{s+1}+\frac{p^{s+1}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\bigg\}\pmod{p^{r+1-\delta_{p, 3}}}. \end{align} |
By (3.13) and the above two congruences, for any integer 1\leq s\leq r-1 , we have
\begin{align} &\sum\limits_{k = 0}^{p^{r-s}-1}{\binom{p^{r-s}-1}{k}}^2\frac{(-1)^{k}\binom{2p^{r-s}-1}{k}\binom{4p^{r-s}}{2p^{r-s}}}{\binom{4p^{r-s}-1}{2k}}\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s}-1}\frac{1}{2p^sk+2t+1}\\&-\sum\limits_{k = 0}^{p^{r-s}-1}{\binom{p^{r-s}-1}{k}}^2\frac{(-1)^{k}\binom{2p^{r-s}-1}{k}\binom{4p^{r-s}}{2p^{r-s}}p^{r-s}}{\binom{4p^{r-s}-1}{2k}(4p^{r-s}-1-2k)}\\&\cdot\bigg\{\sum\limits_{t = \frac{p^{s}+p^{s-1}}{2}, p\nmid(2t+1)}^{p^{s}-1}\frac{4}{2p^{s}k+2t+1}+[s\geq 2]\cdot\sum\limits_{i = 0}^{s-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{4}{(2k+1)p^s+2t}\\&\ \ \ \ +2p^rq^{2}_p(2) +4H_{(2l+1)p^{s}-1}'-4H_{lp^{s}+\frac{p^{s}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\bigg\}\\&\equiv\sum\limits_{l = 0}^{p^{r-s-1}-1}{\binom{p^{r-s-1}-1}{l}}^2\frac{(-1)^{l}\binom{2p^{r-s-1}-1}{l}\binom{4p^{r-s-1}}{2p^{r-s-1}}}{\binom{4p^{r-s-1}-1}{2l}}\sum\limits_{t = 0, p\nmid(2t+1)}^{p^{s+1}-1}\frac{1}{2p^{s+1}l+2t+1}\\&\ \ -\sum\limits_{l = 0}^{p^{r-s-1}-1}{\binom{p^{r-s-1}-1}{l}}^2\frac{(-1)^{l}\binom{2p^{r-s-1}-1}{l}\binom{4p^{r-s-1}}{2p^{r-s-1}}p^{r-s-1}}{\binom{4p^{r-s-1}-1}{2l}(4p^{r-s-1}-1-2l)}\cdot \bigg\{2p^rq^{2}_p(2)\\&\ \ +\sum\limits_{t = \frac{p^{s+1}+p^{s}}{2}, p\nmid(2t+1)}^{p^{s+1}-1}\frac{4}{2p^{s+1}l+2t+1}+\sum\limits_{i = 0}^{s-1}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{4}{(2l+1)p^{s+1}+2t}\\ &\ \ \ \ +4H_{(2l+1)p^{s+1}-1}'-4H_{lp^{s+1}+\frac{p^{s+1}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\bigg\} \pmod{p^{r+1-\delta_{p, 3}}}. \end{align} | (3.17) |
Combining (2.5), (3.7), (3.10), (3.17) with (1.7), by induction, it suffices to prove that
\begin{align*} & \sum\limits_{t = \frac{p^{r}+p^{r-1}}{2}, p\nmid(2t+1)}^{p^{r}-1}\frac{4}{2t+1}+\sum\limits_{i = 0}^{r-2}\sum\limits_{t = \frac{p^i+1}{2}, p\nmid t}^{\frac{p^{i+1}-1}{2}}\frac{4}{p^{r}+2t}+2p^rq^{2}_p(2)\\ &\ \ \ \ -4H_{\frac{p^{r}-1}{2}}'-4\frac{2^{p^{r}-p^{r-1}}-1}{p^{r}}\equiv0 \pmod{p^{r+1-\delta_{p, 3}}}. \end{align*} |
But this congruence immediately follows from (2.10) with n = p^r , (3.3), (3.11) and (3.14).
The main result of this paper is a theorem. For any odd prime p and positive integer r , the Dwork-type supercongruence (1.7) is proved, which is a extended result of Guo and Zudilin. Since Guo has made a conjecture that (1.7) is true modulo p^{4r-\delta_{p, 3}} , we hope that this work will open new inquiry opportunities in this fields for other researchers and knowledge seekers.
The work was partially supported by National Natural Science Foundation of China (Grant Nos. 11971222, 12071208 and 61502236) and Special Program for Student Innovation and Entrepreneurship Training (S20190025). We are grateful to the anonymous referees for useful comments on this paper. We also thank Professor V. J. W. Guo for helpful discussions.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
H. Alzer, D. Karayannakis, H. M. Srivastava, Series representations for some mathematical constants, J. Math. Anal. Appl., 320 (2006), 145–162. doi: 10.1016/j.jmaa.2005.06.059
![]() |
[2] | A. O. L. Atkin, H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics, Amer. Math. Soc., Providence, R.I., 19 (1971), 1–25. |
[3] | F. Beukers, Some congruences for the Apéry numbers, J. Number Theory, 25 (1985), 141–155. |
[4] |
T. X. Cai, A congruence involving the quotients of Euler and its applications (I), Acta Arith., 103 (2002), 313–320. doi: 10.4064/aa103-4-1
![]() |
[5] | B. Dwork, p-adic cycles, Inst. Hautes Études Sci. Publ. Math., 37 (1969), 27–115. |
[6] |
I. Gessel, Some congruences for generalized Euler numbers, Canad. J. Math., 35 (1983), 687–709. doi: 10.4153/CJM-1983-039-5
![]() |
[7] | A. Granville, Arithmetic properties of binomial coefficients I: Binomial coefficients modulo prime powers, CMS Conf. Proc., 20 (1997), 253–275. |
[8] | J. Guillera, W. Zudilin, "Divergent" Ramanujan-type supercongruences, Proc. Amer. Math. Soc., 14 (2012), 765–777. |
[9] |
V. J. W. Guo, q-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl., 487 (2020), 124022. doi: 10.1016/j.jmaa.2020.124022
![]() |
[10] |
V. J. W. Guo, q-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., 52 (2020), 605–624. doi: 10.1007/s11139-019-00161-0
![]() |
[11] | V. J. W. Guo, W. Zudilin, Dwork-type supercongruences through a creative q-microscope, J. Combin. Theory Ser. A, 178 (2020), 105362. |
[12] | R. Gy, Extended congruences for harmonic numbers, 2019, arXiv: 1902.05258. |
[13] |
X. Z. Lin, p-adic L-functions and classical congruences, Acta Arith., 194 (2020), 29–49. doi: 10.4064/aa181207-2-5
![]() |
[14] |
J. C. Liu, Congruences for truncated hypergeometric series {}_2F_1, Bull. Austral. Math. Soc., 96 (2017), 14–23. doi: 10.1017/S0004972717000181
![]() |
[15] |
G. S. Mao, T. Zhang, Proof of Sun's conjectures on supercongruences and the divisibility of certain binomial sums, Ramanujan J., 50 (2019), 1–11. doi: 10.1007/s11139-019-00138-z
![]() |
[16] | H. X. Ni, A q-Dwork-type generalization of Rodriguez-Villegas' supercongruences, 2020, arXiv: 2008.02541. |
[17] |
R. Osburn, B. Sahu, A. Straub, Supercongruences for sporadic sequences, Proc. Edinburgh Math. Soc. (2), 59 (2016), 503–518. doi: 10.1017/S0013091515000255
![]() |
[18] |
A. Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory, 8 (2014), 1985–2008. doi: 10.2140/ant.2014.8.1985
![]() |
[19] | Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140 (2012), 415–428. |
[20] | Z. W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly, 36 (2019), 1–99. |
[21] |
Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x
![]() |
[22] | X. Wang, M. Yue, A q-analogue of a Dwork-type supercongruence, Bull. Austral. Math. Soc., 103 (2020), 1–8. |
[23] |
Y. Zhang, H. Pan, On the Atkin and Swinnerton-Dyer type congruences for some truncated hypergeometric {}_1F_0 series, Acta Arith., 198 (2021), 169–186. doi: 10.4064/aa200405-8-8
![]() |
[24] | Y. Zhang, Three supercongruences for Apéry numbers or Franel numbers, Publ. Math. Debrecen, 9023 (2021), 1–20. |
[25] |
W. Zudilin, Ramanujan-type supercongruences, J. Number Theory, 129 (2009), 1848–1857. doi: 10.1016/j.jnt.2009.01.013
![]() |