In this paper we prove a Dwork-type supercongruence: for any prime $ p\geq3 $ and integer $ r\geq 1 $,
$ \begin{align*} \sum\limits_{k = 0}^{p^r-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\equiv p\sum\limits_{k = 0}^{p^{r-1}-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\pmod{p^{3r+1-\delta_{p, 3}}}, \end{align*} $
which extends a result of Guo and Zudilin.
Citation: Yong Zhang, Peisen Yuan. Proof of a Dwork-type supercongruence by induction[J]. AIMS Mathematics, 2021, 6(10): 11568-11583. doi: 10.3934/math.2021671
In this paper we prove a Dwork-type supercongruence: for any prime $ p\geq3 $ and integer $ r\geq 1 $,
$ \begin{align*} \sum\limits_{k = 0}^{p^r-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\equiv p\sum\limits_{k = 0}^{p^{r-1}-1}\frac{3k+1}{16^k}{\binom{2k}{k}}^3\pmod{p^{3r+1-\delta_{p, 3}}}, \end{align*} $
which extends a result of Guo and Zudilin.
[1] | H. Alzer, D. Karayannakis, H. M. Srivastava, Series representations for some mathematical constants, J. Math. Anal. Appl., 320 (2006), 145–162. doi: 10.1016/j.jmaa.2005.06.059 |
[2] | A. O. L. Atkin, H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics, Amer. Math. Soc., Providence, R.I., 19 (1971), 1–25. |
[3] | F. Beukers, Some congruences for the Apéry numbers, J. Number Theory, 25 (1985), 141–155. |
[4] | T. X. Cai, A congruence involving the quotients of Euler and its applications (I), Acta Arith., 103 (2002), 313–320. doi: 10.4064/aa103-4-1 |
[5] | B. Dwork, $p$-adic cycles, Inst. Hautes Études Sci. Publ. Math., 37 (1969), 27–115. |
[6] | I. Gessel, Some congruences for generalized Euler numbers, Canad. J. Math., 35 (1983), 687–709. doi: 10.4153/CJM-1983-039-5 |
[7] | A. Granville, Arithmetic properties of binomial coefficients I: Binomial coefficients modulo prime powers, CMS Conf. Proc., 20 (1997), 253–275. |
[8] | J. Guillera, W. Zudilin, "Divergent" Ramanujan-type supercongruences, Proc. Amer. Math. Soc., 14 (2012), 765–777. |
[9] | V. J. W. Guo, $q$-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl., 487 (2020), 124022. doi: 10.1016/j.jmaa.2020.124022 |
[10] | V. J. W. Guo, $q$-Analogues of two "divergent" Ramanujan-type supercongruences, Ramanujan J., 52 (2020), 605–624. doi: 10.1007/s11139-019-00161-0 |
[11] | V. J. W. Guo, W. Zudilin, Dwork-type supercongruences through a creative $q$-microscope, J. Combin. Theory Ser. A, 178 (2020), 105362. |
[12] | R. Gy, Extended congruences for harmonic numbers, 2019, arXiv: 1902.05258. |
[13] | X. Z. Lin, $p$-adic $L$-functions and classical congruences, Acta Arith., 194 (2020), 29–49. doi: 10.4064/aa181207-2-5 |
[14] | J. C. Liu, Congruences for truncated hypergeometric series ${}_2F_1$, Bull. Austral. Math. Soc., 96 (2017), 14–23. doi: 10.1017/S0004972717000181 |
[15] | G. S. Mao, T. Zhang, Proof of Sun's conjectures on supercongruences and the divisibility of certain binomial sums, Ramanujan J., 50 (2019), 1–11. doi: 10.1007/s11139-019-00138-z |
[16] | H. X. Ni, A $q$-Dwork-type generalization of Rodriguez-Villegas' supercongruences, 2020, arXiv: 2008.02541. |
[17] | R. Osburn, B. Sahu, A. Straub, Supercongruences for sporadic sequences, Proc. Edinburgh Math. Soc. (2), 59 (2016), 503–518. doi: 10.1017/S0013091515000255 |
[18] | A. Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory, 8 (2014), 1985–2008. doi: 10.2140/ant.2014.8.1985 |
[19] | Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc., 140 (2012), 415–428. |
[20] | Z. W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly, 36 (2019), 1–99. |
[21] | Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x |
[22] | X. Wang, M. Yue, A $q$-analogue of a Dwork-type supercongruence, Bull. Austral. Math. Soc., 103 (2020), 1–8. |
[23] | Y. Zhang, H. Pan, On the Atkin and Swinnerton-Dyer type congruences for some truncated hypergeometric ${}_1F_0$ series, Acta Arith., 198 (2021), 169–186. doi: 10.4064/aa200405-8-8 |
[24] | Y. Zhang, Three supercongruences for Apéry numbers or Franel numbers, Publ. Math. Debrecen, 9023 (2021), 1–20. |
[25] | W. Zudilin, Ramanujan-type supercongruences, J. Number Theory, 129 (2009), 1848–1857. doi: 10.1016/j.jnt.2009.01.013 |