Research article

On substructures of semigroups of inductive terms

  • Received: 28 November 2021 Accepted: 14 March 2022 Published: 18 March 2022
  • MSC : 08A40, 08A70, 20M10

  • An inductive composition is an operation generalizing from a superposition $ S^n $ on the set of all $ n $-ary terms of type $ \tau $. A binary operation called inductive product is obtainable from such composition. It is a generalization of a tree language product but on the set of all $ n $-ary terms of type $ \tau $. Unlike the original one, this inductive product is not associative on the mentioned set. Nonetheless, it turns to be associative on some restricted set. A semigroup arising in this way is the main focus of this paper. We consider its special subsemigroups and semigroup factorizations.

    Citation: Pongsakorn Kitpratyakul, Bundit Pibaljommee. On substructures of semigroups of inductive terms[J]. AIMS Mathematics, 2022, 7(6): 9835-9845. doi: 10.3934/math.2022548

    Related Papers:

  • An inductive composition is an operation generalizing from a superposition $ S^n $ on the set of all $ n $-ary terms of type $ \tau $. A binary operation called inductive product is obtainable from such composition. It is a generalization of a tree language product but on the set of all $ n $-ary terms of type $ \tau $. Unlike the original one, this inductive product is not associative on the mentioned set. Nonetheless, it turns to be associative on some restricted set. A semigroup arising in this way is the main focus of this paper. We consider its special subsemigroups and semigroup factorizations.



    加载中


    [1] J. Almeida, J. E. Pin, P. Weil, Semigroups whose idempotents form a subsemigroup, Math. Proc. Camb. Phil. Soc., 111 (1992), 241–253. https://doi.org/10.1017/S0305004100075332 doi: 10.1017/S0305004100075332
    [2] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra - The Millennium Edition, 2012. Available from: http://www.math.uwaterloo.ca/snburris/htdocs/ualg.html
    [3] K. Denecke, Menger algebras and clones of terms, East-West J. Math., 5 (2003), 179–193.
    [4] K. Denecke, The partial clone of linear terms, Sib. Math. J., 57 (2016), 589–598. https://doi.org/10.1134/S0037446616040030 doi: 10.1134/S0037446616040030
    [5] K. Denecke, P. Glubudom, Regular elements and Green's relations in power Menger algebras of terms, Demonstr. Math., 41 (2008), 11–22. https://doi.org/10.1515/dema-2013-0055 doi: 10.1515/dema-2013-0055
    [6] K. Denecke, P. Jampachon, Regular elements and Green's relations in Menger algebras of terms, Discussiones Mathematicae - General Algebra and Applications, 26 (2006), 85–109. https://doi.org/10.7151/dmgaa.1106 doi: 10.7151/dmgaa.1106
    [7] K. Denecke, S. Leeratanavalee, Kernels of generalized hypersubstitutions, Proc. of the Sixth Int. Conf., South-West University, Blagoevgrad, Bulgaria, August 31-September 2, (2001), 87–96.
    [8] K. Denecke, N. Sarasit, Products of tree languages, Bull. Sect. Logic Univ. Lódź, 40 (2011), 13–36.
    [9] K. Denecke, S. L. Wismath, Hyperidentities and clones, Gordon and Breach Science Publishers, 2000. https://doi.org/10.1201/9781482287516
    [10] K. Denecke, S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, 2002.
    [11] O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups, Springer-Verlag London Limited, 2009. https://doi.org/10.1007/978-1-84800-281-4
    [12] F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.
    [13] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press Inc., 1995.
    [14] P. Jampachon, Locally factorizable transformation semigroups, Master Science Thesis in Mathematics, The Graduate School, Chulalongkorn University, Thailand, 1984.
    [15] P. Jampachon, M. Saichalee, R. P. Sullivan, Locally factorisable transformation semigroups, SE Asian B. Math., 25 (2001), 233–244. https://doi.org/10.1007/s10012-001-0233-8 doi: 10.1007/s10012-001-0233-8
    [16] P. Kitpratyakul, B. Pibaljommee, A generalized superposition of linear tree languages and products of linear tree languages, Asian-Eur. J. Math., 11 (2018), 1850048. https://doi.org/10.1142/S1793557118500481 doi: 10.1142/S1793557118500481
    [17] P. Kitpratyakul, B. Pibaljommee, Semigroups of an inductive composition of terms, Asian-Eur. J. Math., 15 (2022), 2250038. https://doi.org/10.1142/S1793557122500383 doi: 10.1142/S1793557122500383
    [18] P. Kitpratyakul, B. Pibaljommee, Semigroups of linear tree languages, Asian-Eur. J. Math., 11 (2018), 1850091. https://doi.org/10.1142/S1793557118500912 doi: 10.1142/S1793557118500912
    [19] J. Koppitz, K. Denecke, M-Solid Varieties of Algebras, Springer Science+Business Media, Inc., New York, USA, 2006.
    [20] N. Lekkoksung, S. Lekkoksung, On partial clones of $k$-terms, Discuss. Math. Gen. Algebra Appl., 41 (2021), 361–379. https://doi.org/10.7151/dmgaa.1376 doi: 10.7151/dmgaa.1376
    [21] L. Lohapan, P. Jampachon, Semigroup properties of linear terms, Asian-Eur. J. Math., 10 (2017), 1750051. https://doi.org/10.1142/S1793557117500516 doi: 10.1142/S1793557117500516
    [22] D. Phusanga, J. Koppitz, The semigroup of linear terms, Asian-Eur. J. Math., 12 (2019), 2050005. https://doi.org/10.1142/S1793557120500059 doi: 10.1142/S1793557120500059
    [23] Sl. Shtrakov, Composition of terms and essential positions in deduction, 2008, arXiv: 0802.2385v1.
    [24] Sl. Shtrakov, Multi-solid varieties and mh-transducers, Algebra and Discrete Math., 3 (2007), 113–131.
    [25] K. Wattanatripop, T. Changphas, The length of terms and their measurement, Int. J. Math. Comput. Sci., 16 (2021), 1103–1116.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(80) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog