An inductive composition is an operation generalizing from a superposition $ S^n $ on the set of all $ n $-ary terms of type $ \tau $. A binary operation called inductive product is obtainable from such composition. It is a generalization of a tree language product but on the set of all $ n $-ary terms of type $ \tau $. Unlike the original one, this inductive product is not associative on the mentioned set. Nonetheless, it turns to be associative on some restricted set. A semigroup arising in this way is the main focus of this paper. We consider its special subsemigroups and semigroup factorizations.
Citation: Pongsakorn Kitpratyakul, Bundit Pibaljommee. On substructures of semigroups of inductive terms[J]. AIMS Mathematics, 2022, 7(6): 9835-9845. doi: 10.3934/math.2022548
An inductive composition is an operation generalizing from a superposition $ S^n $ on the set of all $ n $-ary terms of type $ \tau $. A binary operation called inductive product is obtainable from such composition. It is a generalization of a tree language product but on the set of all $ n $-ary terms of type $ \tau $. Unlike the original one, this inductive product is not associative on the mentioned set. Nonetheless, it turns to be associative on some restricted set. A semigroup arising in this way is the main focus of this paper. We consider its special subsemigroups and semigroup factorizations.
[1] | J. Almeida, J. E. Pin, P. Weil, Semigroups whose idempotents form a subsemigroup, Math. Proc. Camb. Phil. Soc., 111 (1992), 241–253. https://doi.org/10.1017/S0305004100075332 doi: 10.1017/S0305004100075332 |
[2] | S. Burris, H. P. Sankappanavar, A Course in Universal Algebra - The Millennium Edition, 2012. Available from: http://www.math.uwaterloo.ca/snburris/htdocs/ualg.html |
[3] | K. Denecke, Menger algebras and clones of terms, East-West J. Math., 5 (2003), 179–193. |
[4] | K. Denecke, The partial clone of linear terms, Sib. Math. J., 57 (2016), 589–598. https://doi.org/10.1134/S0037446616040030 doi: 10.1134/S0037446616040030 |
[5] | K. Denecke, P. Glubudom, Regular elements and Green's relations in power Menger algebras of terms, Demonstr. Math., 41 (2008), 11–22. https://doi.org/10.1515/dema-2013-0055 doi: 10.1515/dema-2013-0055 |
[6] | K. Denecke, P. Jampachon, Regular elements and Green's relations in Menger algebras of terms, Discussiones Mathematicae - General Algebra and Applications, 26 (2006), 85–109. https://doi.org/10.7151/dmgaa.1106 doi: 10.7151/dmgaa.1106 |
[7] | K. Denecke, S. Leeratanavalee, Kernels of generalized hypersubstitutions, Proc. of the Sixth Int. Conf., South-West University, Blagoevgrad, Bulgaria, August 31-September 2, (2001), 87–96. |
[8] | K. Denecke, N. Sarasit, Products of tree languages, Bull. Sect. Logic Univ. Lódź, 40 (2011), 13–36. |
[9] | K. Denecke, S. L. Wismath, Hyperidentities and clones, Gordon and Breach Science Publishers, 2000. https://doi.org/10.1201/9781482287516 |
[10] | K. Denecke, S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, 2002. |
[11] | O. Ganyushkin, V. Mazorchuk, Classical Finite Transformation Semigroups, Springer-Verlag London Limited, 2009. https://doi.org/10.1007/978-1-84800-281-4 |
[12] | F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984. |
[13] | J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press Inc., 1995. |
[14] | P. Jampachon, Locally factorizable transformation semigroups, Master Science Thesis in Mathematics, The Graduate School, Chulalongkorn University, Thailand, 1984. |
[15] | P. Jampachon, M. Saichalee, R. P. Sullivan, Locally factorisable transformation semigroups, SE Asian B. Math., 25 (2001), 233–244. https://doi.org/10.1007/s10012-001-0233-8 doi: 10.1007/s10012-001-0233-8 |
[16] | P. Kitpratyakul, B. Pibaljommee, A generalized superposition of linear tree languages and products of linear tree languages, Asian-Eur. J. Math., 11 (2018), 1850048. https://doi.org/10.1142/S1793557118500481 doi: 10.1142/S1793557118500481 |
[17] | P. Kitpratyakul, B. Pibaljommee, Semigroups of an inductive composition of terms, Asian-Eur. J. Math., 15 (2022), 2250038. https://doi.org/10.1142/S1793557122500383 doi: 10.1142/S1793557122500383 |
[18] | P. Kitpratyakul, B. Pibaljommee, Semigroups of linear tree languages, Asian-Eur. J. Math., 11 (2018), 1850091. https://doi.org/10.1142/S1793557118500912 doi: 10.1142/S1793557118500912 |
[19] | J. Koppitz, K. Denecke, M-Solid Varieties of Algebras, Springer Science+Business Media, Inc., New York, USA, 2006. |
[20] | N. Lekkoksung, S. Lekkoksung, On partial clones of $k$-terms, Discuss. Math. Gen. Algebra Appl., 41 (2021), 361–379. https://doi.org/10.7151/dmgaa.1376 doi: 10.7151/dmgaa.1376 |
[21] | L. Lohapan, P. Jampachon, Semigroup properties of linear terms, Asian-Eur. J. Math., 10 (2017), 1750051. https://doi.org/10.1142/S1793557117500516 doi: 10.1142/S1793557117500516 |
[22] | D. Phusanga, J. Koppitz, The semigroup of linear terms, Asian-Eur. J. Math., 12 (2019), 2050005. https://doi.org/10.1142/S1793557120500059 doi: 10.1142/S1793557120500059 |
[23] | Sl. Shtrakov, Composition of terms and essential positions in deduction, 2008, arXiv: 0802.2385v1. |
[24] | Sl. Shtrakov, Multi-solid varieties and mh-transducers, Algebra and Discrete Math., 3 (2007), 113–131. |
[25] | K. Wattanatripop, T. Changphas, The length of terms and their measurement, Int. J. Math. Comput. Sci., 16 (2021), 1103–1116. |