The two-mode Nizhnik-Novikov-Veselov (TMNNV) equation finds wide-ranging utility across engineering and scientific fields. It stands as a notable nonlinear physical model for explaining nonlinear soliton propagation. This study explores bifurcation analysis for the (2+1)-dimensional conformable time-fractional TMNNV model for the first time. Also, we have derived the explicit solutions of this model, and these solutions exhibit some unique dynamical patterns: combo bright-dark bell wave, periodic wave, bright soliton, and dark soliton, which are used in several optical applications. 2-D plots and combined 3-D with density plots are presented with the impacts of different parameters. Later, phase portraits and the multistability of this dynamical model are analyzed via intersecting figures with the help of the planner dynamical system. We also examine the quasi-periodic and chaotic behaviors of the governing model under different conditions. Finally, conclusions are drawn based on the results.
Citation: Noor Alam, Mohammad Safi Ullah, Jalil Manafian, Khaled H. Mahmoud, A. SA. Alsubaie, Hamdy M. Ahmed, Karim K. Ahmed, Soliman Al Khatib. Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics[J]. AIMS Mathematics, 2025, 10(3): 4558-4578. doi: 10.3934/math.2025211
The two-mode Nizhnik-Novikov-Veselov (TMNNV) equation finds wide-ranging utility across engineering and scientific fields. It stands as a notable nonlinear physical model for explaining nonlinear soliton propagation. This study explores bifurcation analysis for the (2+1)-dimensional conformable time-fractional TMNNV model for the first time. Also, we have derived the explicit solutions of this model, and these solutions exhibit some unique dynamical patterns: combo bright-dark bell wave, periodic wave, bright soliton, and dark soliton, which are used in several optical applications. 2-D plots and combined 3-D with density plots are presented with the impacts of different parameters. Later, phase portraits and the multistability of this dynamical model are analyzed via intersecting figures with the help of the planner dynamical system. We also examine the quasi-periodic and chaotic behaviors of the governing model under different conditions. Finally, conclusions are drawn based on the results.
[1] |
A. S. Joglekar, A. G. R. Thomas, Unsupervised discovery of nonlinear plasma physics using differentiable kinetic simulations, J. Plasma Phys., 88 (2022), 905880608. https://doi.org/10.1017/S0022377822000939 doi: 10.1017/S0022377822000939
![]() |
[2] |
O. A. Ilhan, J. Manafian, M. Lakestani, G. Singh, Some novel optical solutions to the perturbed nonlinear Schrödinger model arising in nano-fibers mechanical systems, Mod. Phys. Lett. B, 36 (2022), 2150551. https://doi.org/10.1142/S0217984921505515 doi: 10.1142/S0217984921505515
![]() |
[3] |
N. Alam, S. Poddar, M. E. Karim, M. S. Hasan, G. Lorenzini, Transient MHD radiative fluid flow over an inclined porous plate with thermal and mass diffusion: an EFDM numerical approach, Math. Model. Eng. Probl., 8 (2021), 739–749. https://doi.org/10.18280/MMEP.080508 doi: 10.18280/MMEP.080508
![]() |
[4] |
N. Zhao, J. Manafian, O. A. Ilhan, G. Singh, R. Zulfugarova, Abundant interaction between lump and k-kink, periodic and other analytical solutions for the (3+1)-D Burger system by bilinear analysis, Int. J. Mod. Phys. B, 35 (2021), 2150173. https://doi.org/10.1142/S0217979221501733 doi: 10.1142/S0217979221501733
![]() |
[5] |
W. X. Ma, Soliton hierarchies and soliton solutions of type (−λ*, −λ) reduced nonlocal nonlinear Schrödinger equations of arbitrary even order, Partial Differ. Equ. Appl. Math., 7 (2023), 100515. https://doi.org/10.1016/J.PADIFF.2023.100515 doi: 10.1016/J.PADIFF.2023.100515
![]() |
[6] |
S. Duran, A. Yokus, G. Kilinc, A study on solitary wave solutions for the Zoomeron equation supported by two-dimensional dynamics, Phys. Scr., 98 (2023), 125265. https://doi.org/10.1088/1402-4896/AD0C3C doi: 10.1088/1402-4896/AD0C3C
![]() |
[7] |
M. Z. Baber, N. Ahmed, C. J. Xu, M. S. Iqbal, T. A. Sulaiman, A computational scheme and its comparison with optical soliton solutions for the stochastic Chen-Lee-Liu equation with sensitivity analysis, Mod. Phys. Lett. B, 39 (2025), 2450376. https://doi.org/10.1142/S0217984924503767 doi: 10.1142/S0217984924503767
![]() |
[8] | X. Shi, U. Ishtiaq, M. Din, M. Akram, Fractals of interpolative Kannan mappings, Fractal Fract., 8 (2024), 493. |
[9] |
H. X. Zhang, J. Manafian, G. Singh, O. A. Ilhan, A. O. Zekiy, N-lump and interaction solutions of localized waves to the (2+1)-dimensional generalized KP equation, Results Phys., 25 (2021), 104168. https://doi.org/10.1016/J.RINP.2021.104168 doi: 10.1016/J.RINP.2021.104168
![]() |
[10] |
N. Ahmed, M. Z. Baber, M. S. Iqbal, A. Akgül, M. Rafiq, A. Raza, et al., Investigation of soliton structures for dispersion, dissipation, and reaction time-fractional KdV-burgers-Fisher equation with the noise effect, Int. J. Mod. Simul., 2024, 1–17. https://doi.org/10.1080/02286203.2024.2318805 doi: 10.1080/02286203.2024.2318805
![]() |
[11] |
M. Alquran, M. Ali, H. Jadallah, New topological and non-topological unidirectional-wave solutions for the modified-mixed KdV equation and bidirectional-waves solutions for the Benjamin Ono equation using recent techniques, J. Ocean Eng. Sci., 7 (2022), 163–169. https://doi.org/10.1016/J.JOES.2021.07.008 doi: 10.1016/J.JOES.2021.07.008
![]() |
[12] |
X. Y. Gao, In plasma physics and fluid dynamics: symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system, Appl. Math. Lett., 159 (2025), 109262. https://doi.org/10.1016/j.aml.2024.109262 doi: 10.1016/j.aml.2024.109262
![]() |
[13] |
M. C. Zhang, X. Xie, J. Manafian, O. A. Ilhan, G. Singh, Characteristics of the new multiple rogue wave solutions to the fractional generalized CBS-BK equation, J. Adv. Res., 38 (2022), 131–142. https://doi.org/10.1016/J.JARE.2021.09.015 doi: 10.1016/J.JARE.2021.09.015
![]() |
[14] |
W. X. Ma, A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations, Mod. Phys. Lett. B, 36 (2022), 2250094. https://doi.org/10.1142/S0217984922500944 doi: 10.1142/S0217984922500944
![]() |
[15] |
A. H. Arnous, Q. Zhou, A. Biswas, P. Guggilla, S. Khan, Y. Yıldırım, et al., Optical solitons in fiber Bragg gratings with cubic-quartic dispersive reflectivity by enhanced Kudryashov's approach, Phys. Lett. A, 422 (2022), 127797. https://doi.org/10.1016/J.PHYSLETA.2021.127797 doi: 10.1016/J.PHYSLETA.2021.127797
![]() |
[16] |
S. T. Mohyud-Din, A. Irshad, N. Ahmed, U. Khan, Exact solutions of (3 + 1)-dimensional generalized KP equation arising in physics, Results Phys., 7 (2017), 3901–3909. https://doi.org/10.1016/J.RINP.2017.10.007 doi: 10.1016/J.RINP.2017.10.007
![]() |
[17] |
I. Onder, A. Secer, M. Ozisik, M. Bayram, On the optical soliton solutions of Kundu-Mukherjee-Naskar equation via two different analytical methods, Optik, 257 (2022), 168761. https://doi.org/10.1016/J.IJLEO.2022.168761 doi: 10.1016/J.IJLEO.2022.168761
![]() |
[18] |
Y. Xu, Z. Xie, J. Zhao, W. Li, P. Li, P. K. Wong, Robust non-fragile finite frequency H∞ control for uncertain active suspension systems with time-delay using T-S fuzzy approach, J. Franklin Inst., 358 (2021), 4209–4238. https://doi.org/10.1016/j.jfranklin.2021.03.019 doi: 10.1016/j.jfranklin.2021.03.019
![]() |
[19] | D. A. Juraev, Y. S. Gasimov, On the regularization Cauchy problem for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain, Azerbaijan J. Math., 12 (2022), 142–161. |
[20] |
L. Wang, G. Y. Liu, G. L. Wang, K. Zhang, M-PINN: A mesh-based physics-informed neural network for linear elastic problems in solid mechanics, Int. J. Numer. Methods Eng., 125 (2024), e7444. https://doi.org/10.1002/nme.7444 doi: 10.1002/nme.7444
![]() |
[21] |
M. A. Akbar, N. H. M. Ali, S. T. Mohyud-Din, The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation, SpringerPlus, 2 (2013), 327. https://doi.org/10.1186/2193-1801-2-327 doi: 10.1186/2193-1801-2-327
![]() |
[22] |
N. Alam, A. Akbar, M. S. Ullah, M. Mostafa, Dynamic waveforms of the new Hamiltonian amplitude model using three different analytic techniques, Indian J. Phys., 2024, 1–8. https://doi.org/10.1007/s12648-024-03426-7 doi: 10.1007/s12648-024-03426-7
![]() |
[23] |
Y. H. Wu, T. L. Shen, A finite convergence criterion for the discounted optimal control of stochastic logical networks, IEEE Trans. Automatic Control, 63 (2018), 262–268. https://doi.org/10.1109/TAC.2017.2720730 doi: 10.1109/TAC.2017.2720730
![]() |
[24] |
A. Ghosh, S. Maitra, The first integral method and some nonlinear models, Comput. Appl. Math., 40 (2021), 79. https://doi.org/10.1007/S40314-021-01470-1/METRICS doi: 10.1007/S40314-021-01470-1/METRICS
![]() |
[25] |
E. H. M. Zahran, M. M. A. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40 (2016), 1769–1775. https://doi.org/10.1016/J.APM.2015.08.018 doi: 10.1016/J.APM.2015.08.018
![]() |
[26] |
K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Unveiling optical solitons and other solutions for fourth-order (2+1)-dimensional nonlinear Schrödinger equation by modified extended direct algebraic method, J. Opt., 2024, 1–13. https://doi.org/10.1007/s12596-024-01690-8 doi: 10.1007/s12596-024-01690-8
![]() |
[27] | W. Li, Z. Xie, P. K. Wong, X. Mei, J. Zhao, Adaptive-event-trigger-based fuzzy nonlinear lateral dynamic control for autonomous electric vehicles under insecure communication networks, IEEE Trans. Indust. Electronics, 68 (2021), 2447–2459. |
[28] |
X. H. Wu, Y. T. Gao, X. Yu, Dark-soliton asymptotics for a repulsive nonlinear system in a baroclinic flow, Phys. Fluids, 36 (2024), 056615. https://doi.org/10.1063/5.0213090 doi: 10.1063/5.0213090
![]() |
[29] |
T. Y. Zhou, B. Tian, Y. Shen, X. T. Gao, Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid, Nonlinear Dyn., 111 (2023), 8647–8658. https://doi.org/10.1007/s11071-023-08260-w doi: 10.1007/s11071-023-08260-w
![]() |
[30] |
K. K. Ahmed, H. M. Ahmed, N. M. Badra, M. Mirzazadeh, W. B. Rabie, M. Eslami, Diverse exact solutions to Davey-Stewartson model using modified extended mapping method, Nonlinear Anal. Model. Control, 29 (2024), 983–1002. https://doi.org/10.15388/namc.2024.29.36103 doi: 10.15388/namc.2024.29.36103
![]() |
[31] |
M. Alquran, I. Jaradat, Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2+1)-dimensional Nizhnik-Novikov-Veselov equation, Mathematics, 11 (2023), 1–9. https://doi.org/10.3390/MATH11040861 doi: 10.3390/MATH11040861
![]() |
[32] |
H. Jiang, S. M. Li, W. G. Wang, Moderate deviations for parameter estimation in the fractional Ornstein-Uhlenbeck processes with periodic mean, Acta Math. Sin. English Ser., 40 (2024), 1308–1324. https://doi.org/10.1007/s10114-023-2157-z doi: 10.1007/s10114-023-2157-z
![]() |
[33] |
F. Meng, A. Pang, X. Dong, C. Han, X. Sha, H∞ optimal performance design of an unstable plant under bode integral constraint, Complexity, 2018 (2018), 4942906. https://doi.org/10.1155/2018/4942906 doi: 10.1155/2018/4942906
![]() |
[34] |
G. Y. Jia, J. X. Luo, C. Y. Cui, R. J. Kou, Y. L. Tian, M. Schubert, Valley quantum interference modulated by hyperbolic shear polaritons, Phys. Rev. B, 109 (2024), 155417. https://doi.org/10.1103/PhysRevB.109.155417 doi: 10.1103/PhysRevB.109.155417
![]() |
[35] |
W. Xu, E. Aponte, P. Vasanthakumar, The property (ωπ) as a generalization of the a-Weyl theorem, AIMS Math., 9 (2024), 25646–25658. https://doi.org/10.3934/math.20241253 doi: 10.3934/math.20241253
![]() |
[36] |
L. P. Wan, D. Raveh, T. B. Yu, D. M. Zhao, O. Korotkova, Optical resonance with subwavelength spectral coherence switch in open-end cavity, Sci. China Phys. Mech. Astron., 66 (2023), 274213. https://doi.org/10.1007/s11433-023-2097-9 doi: 10.1007/s11433-023-2097-9
![]() |
[37] |
Y. Kai, Z. X. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity, Mod. Phys. Lett. B, 36 (2022), 2150543. https://doi.org/10.1142/S0217984921505436 doi: 10.1142/S0217984921505436
![]() |
[38] |
Y. Kai, S. Q. Chen, K. Zhang, Z. X. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex Media, 2022, 1–12. https://doi.org/10.1080/17455030.2022.2044541 doi: 10.1080/17455030.2022.2044541
![]() |
[39] |
C. Y. Zhu, S. A. Idris, M. E. M. Abdalla, S. Rezapour, S. Shateyi, B. Gunay, Analytical study of nonlinear models using a modified Schrödinger's equation and logarithmic transformation, Res. Phys., 55 (2023), 107183. https://doi.org/10.1016/j.rinp.2023.107183 doi: 10.1016/j.rinp.2023.107183
![]() |
[40] |
S. J. Guo, A. Das, Cohomology and deformations of generalized Reynolds operators on Leibniz algebras, Rocky Mountain J. Math., 54 (2024), 161–178. https://doi.org/10.1216/rmj.2024.54.161 doi: 10.1216/rmj.2024.54.161
![]() |
[41] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/J.CAM.2014.01.002 doi: 10.1016/J.CAM.2014.01.002
![]() |
[42] |
S. Uddin, S. Karim, F. S. Alshammari, H. O. Roshid, N. F. M. Noor, F. Hoque, et al., Bifurcation analysis of travelling waves and multi-rogue wave solutions for a nonlinear pseudo-parabolic model of visco-elastic Kelvin-Voigt fluid, Math. Probl. Eng., 2022 (2022), 8227124. https://doi.org/10.1155/2022/8227124 doi: 10.1155/2022/8227124
![]() |
[43] |
Z. G. Liu, K. L. Zhang, M. Y. Li, Exact traveling wave solutions and bifurcation of a generalized (3+1)-dimensional time-fractional Camassa-Holm-Kadomtsev-Petviashvili equation, J. Funct. Spaces, 2020 (2020), 4532824. https://doi.org/10.1155/2020/4532824 doi: 10.1155/2020/4532824
![]() |
[44] |
D. H. Feng, J. B. Li, J. J. Jiao, Dynamical behavior of singular traveling waves of (n+1)-dimensional nonlinear Klein-Gordon equation, Qual. Theory Dyn. Syst., 18 (2019), 265–287. https://doi.org/10.1007/s12346-018-0285-0 doi: 10.1007/s12346-018-0285-0
![]() |
[45] | P. F. Byrd, M. D. Friedman, Reduction of algebraic integrands to Jacobian elliptic functions, In: Handbook of elliptic integrals for engineers and scientists, Berlin, Heidelberg: Springer, 1971, 42–161. https://doi.org/10.1007/978-3-642-65138-0_3 |
[46] |
B. He, J. B. Li, Y. Long, W. G. Rui, Bifurcations of travelling wave solutions for a variant of Camassa-Holm equation, Nonlinear Anal. Real World Appl., 9 (2008), 222–232. https://doi.org/10.1016/J.NONRWA.2006.10.001 doi: 10.1016/J.NONRWA.2006.10.001
![]() |
[47] |
Y. Q. Zhou, Q. Liu, Kink waves and their evolution of the RLW-Burgers equation, Abst. Appl. Anal., 2012 (2012), 109235. https://doi.org/10.1155/2012/109235 doi: 10.1155/2012/109235
![]() |
[48] |
I. Samir, K. K. Ahmed, H. M. Ahmed, H. Emadifar, W. B. Rabie, Extraction of newly soliton wave structure of generalized stochastic NLSE with standard Brownian motion, quintuple power law of nonlinearity and nonlinear chromatic dispersion, Phys. Open, 21 (2024), 100232. https://doi.org/10.1016/j.physo.2024.100232 doi: 10.1016/j.physo.2024.100232
![]() |
[49] |
M. S. Ullah, M. Z. Ali, H. O. Roshid, Bifurcation, chaos, and stability analysis to the second fractional WBBM model, PLoS One, 19 (2024), e0307565. https://doi.org/10.1371/journal.pone.0307565 doi: 10.1371/journal.pone.0307565
![]() |
[50] |
M. S. Ullah, M. Z. Ali, H. O. Roshid, Bifurcation analysis and new waveforms to the first fractional WBBM equation, Sci. Rep., 14 (2024), 11907. https://doi.org/10.1038/s41598-024-62754-0 doi: 10.1038/s41598-024-62754-0
![]() |