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Abstract: The two-mode Nizhnik-Novikov-Veselov (TMNNV) equation finds wide-ranging utility 

across engineering and scientific fields. It stands as a notable nonlinear physical model for explaining 

nonlinear soliton propagation. This study explores bifurcation analysis for the (2+1)-dimensional 

conformable time-fractional TMNNV model for the first time. Also, we have derived the explicit 

solutions of this model, and these solutions exhibit some unique dynamical patterns: combo bright-

dark bell wave, periodic wave, bright soliton, and dark soliton, which are used in several optical 

applications. 2-D plots and combined 3-D with density plots are presented with the impacts of different 
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parameters. Later, phase portraits and the multistability of this dynamical model are analyzed via 

intersecting figures with the help of the planner dynamical system. We also examine the quasi-periodic 

and chaotic behaviors of the governing model under different conditions. Finally, conclusions are 

drawn based on the results. 

Keywords: chaotic nature; bifurcation; phase portraits; multistability; equilibrium point 

Mathematics Subject Classification: 35C08, 74J35 

 

1. Introduction 

Recent research has been focused more on the nonlinear time-dependent models that have been seen 

in different branches of science and engineering, namely, plasma physics [1], nano-fiber optics [2], 

magnetohydrodynamics [3], etc. There are different kinds of nonlinear fields such as the (3+1)-D 

Burger model [4], the Phi-four model [5], the Zoomeron system [6], the Chen-Lee-Liu equation [7], 

the iterated function system using interpolative Kannan operators [8], the generalized KP model [9], 

the KdV-burgers-Fisher equation [10], the Benjamin-Ono system [11], the Sawada-Kotera system [12], 

the generalized CBS-BK model [13], etc. 

To solve these models, researchers use diverse analytical methods such as the Darboux transformation 

technique [14], the enhanced Kudryashov scheme [15], the generalized KP equation [16], the new 

Kudryashov’s scheme [17], the fuzzy control approach [18], the Cauchy problem for matrix 

factorizations [19], the physics-informed neural networks approach [20], the modified alternative (
G′

G
)-

expansion algorithm [21], (
G′

G2) expansion method [22], the stochastic logical networks method [23], 

the first integral technique [24], METF technique [25], the modified extended direct algebraic 

method [26], Takagi-Sugeno fuzzy model approach to the nonlinear lateral dynamics [27], and many 

other methods [28–30]. 

Marwan and Jaradat obtained an innovative model named the next (2+1)-dimensional two-mode 

Nizhnik-Novikov-Veselov (TMNNV) equation, which represents a variety of physical processes 

occurring in diverse mediums, including biological membranes, optical fibers, modern strings, 

magnetoelectric dynamics, and inelastic fluids [31]. The nonlinear problems play a crucial role in the 

study of nonlinear wave propagation. The nonlinearity is prevalent across various fields of applied 

science, nonlinear dynamics, mathematical physics, and engineering, including biosciences, plasma 

physics, geochemistry, and fluid mechanics [32–34]. Nonlinear problems (NLPs) are significant 

equations because they are implemented for the mathematical modeling of numerous real-world 

applications [35,36]. In recent years, the calculus of NLPs has emerged as a prominent area of focus 

within nonlinear dynamics [37,38]. NLPs, which encompass more comprehensive forms of differential 

equations (DEs), significantly contribute to the qualitative analysis of many nonlinear wave propagation 

phenomena [39,40]. This work identifies bifurcation, multistability, quasi-periodic, and chaotic behavior 

in the fractional form of the stated model. Additionally, explicit solutions to this model are obtained. 

These solutions can be used to understand the system's dynamic properties better. 

Outline of this work: Conversion to the ordinary differential form of the fractional TMNNV 

equation is presented in Section 2. Section 3 explains conformable fractional derivatives. In Section 4, 

the bifurcation analysis of the mentioned model is discussed. Section 5 determines the explicit solution 

https://www.sciencedirect.com/topics/physics-and-astronomy/approach-control
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by bifurcation analysis and plotting the 3-D and 2-D graph solutions. In Section 6, some specific figures 

illustrate quasi-periodic and chaotic behavior with multistability. Finally, conclusions are drawn in 

Section 7. 

The novelty of this paper is that the bifurcation, finding the outcome, phase portraits, and 

multistability of the suggested model are not described by any other investigator before. 

2. Construction of the ordinary differential form of the TMNNV model 

The (2+1)-dimensional TMNNV equation can be written in the next form [41]: 

𝑤𝑡𝑡 − 𝑝2𝑤𝑥𝑥 − 𝑝2𝑤𝑦𝑦 +𝜈 (
∂

∂𝑡
− 𝛾1𝑝

∂

∂𝑥
− 𝛾2𝑝

∂

∂𝑦
) (𝑤 ∫ 𝑤 𝑑𝑦)𝑥 + 𝜌 (

∂

∂𝑡
− 𝛼1𝑝

∂

∂𝑥
− 𝛼2𝑝

∂

∂𝑦
)𝑤𝑥𝑥𝑥 = 0, (1) 

where 𝑤 = 𝑤(𝑥, 𝑦, 𝑡) is the vector field with spatial variable 𝑥, 𝑦, and temporal variable 𝑡. Here, 

𝛾1 and 𝛾2 refer to the nonlinearity parameters, 𝛼1 and 𝛼2 denote the dispersion parameters, 𝜈 is 

the nonlinear interaction coefficient, 𝜌 corresponds to the higher-order interaction coefficient, and 𝑝 

signifies the phase-velocity. Additionally, |𝛼1| ≤ 1, |𝛼2| ≤ 1, |𝛾1| ≤ 1, and |𝛾2| ≤ 1. 

The time-fractional TMNNV equation Eq (1) can be written in the following way: 

𝜕2𝛽𝑤

𝜕𝑡2𝛽 − 𝑝2𝑤𝑥𝑥 − 𝑝2𝑤𝑦𝑦 +𝜈 (
∂β

∂𝑡𝛽 − 𝛾1𝑝
∂

∂𝑥
− 𝛾2𝑝

∂

∂𝑦
) (𝑤 ∫ 𝑤 𝑑𝑦)𝑥 + 𝜌 (

∂β

∂𝑡𝛽 − 𝛼1𝑝
∂

∂𝑥
− 𝛼2𝑝

∂

∂𝑦
) 𝑤𝑥𝑥𝑥 =0, (2) 

where 𝛽 ∈ (0, 1]. Consider a variable 𝜙 = 𝜙(𝑥, 𝑦, 𝑡), which follows the next equation: 

𝑤 = 𝜙𝑦.           (3) 

Using Eq (3), the time fractional TMNNV equation (2) converts into 

𝜕2𝛽+1

𝜕𝑡2𝛽𝜕𝑦
(𝜙) − 𝑝2𝜙𝑥𝑥𝑦 − 𝑝2𝜙𝑦𝑦𝑦  +𝜈 (

∂β

∂𝑡𝛽
− 𝛾1𝑝

∂

∂𝑥
− 𝛾2𝑝

∂

∂𝑦
) (𝜙𝑦𝜙)

𝑥
 

+𝜌 (
∂β

∂𝑡𝛽 − 𝛼1𝑝
∂

∂𝑥
− 𝛼2𝑝

∂

∂𝑦
) 𝜙𝑥𝑥𝑥𝑦 = 0.          (4) 

Now, Eq (4) needs to be convert into an ordinary differential equation with the relation as 

𝜙 = 𝑅(𝜇), 𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
,        (5) 

where 𝑎, 𝑏,  and 𝑐  are arbitrary parameters. We assume that 𝛾1 = 𝛾2 = 𝛾  and 𝛼1 = 𝛼2 = 𝛼 , then 

using Eqs (4) and (5), we obtain the resulting shortened ordinary differential form: 

(𝑎2 − (𝑏2 + 𝑐2)𝑝2)𝑅(𝜇) −
1

2
𝜈𝑏(𝑎 + (𝑏 + 𝑐)𝛾)𝑅2(𝜇) − 𝜌𝑏3(a + (𝑏 + 𝑐)𝛼)𝑅′′(𝜇) = 0. (6) 

where 𝑎, 𝑏, 𝑐, 𝑝, 𝜈, 𝜌, 𝛾,  and 𝛼  are arbitrary parameters and “ ′    represents the derivative over the 

independent variable 𝜇. 

3. Characteristics of fractional derivative 

Let 𝑓: [0, ∞] → ℝ  be a real function where 0 < 𝛽 ≤ 1 ; with the conformable fractional 
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derivative of this function 𝑓(q) at a point 𝑞 > 0 takes the following form [41]: 

∂β

∂𝑞𝛽
𝑓(q) = lim

𝜖→0
 
𝑓(𝑞 + 𝜖𝑞1−𝛽) − 𝑓(q)

𝜖
. 

Assume that 𝑓(𝑞)  and 𝑔(𝑞)  are 𝛽 -conformable differentiable functions while 𝑞 > 0  and 

0 < 𝛽 ≤ 1. Some important characteristics of fractional derivatives are listed below where 𝑟 is any 

constant and 𝑠 and 𝑚 are real constants. 

(i) 
∂β

∂𝑞𝛽 𝑞𝑛 = 𝑛𝑞𝑛−𝛽,  𝑛 ∈ ℝ. 

(ii) 
∂β

∂𝑞𝛽 (r) = 0. 

(iii) 
∂β

∂𝑞𝛽 𝑠𝑓(q) = 𝑠
∂β

∂𝑞𝛽 𝑓(𝑞). 

(iv) 
∂β

∂𝑞𝛽 (𝑠𝑓(𝑞) + 𝑚𝑔(𝑞)) = 𝑠
∂β

∂𝑞𝛽 𝑓(𝑞) + m
∂β

∂𝑞𝛽 𝑔(𝑞). 

(v) 
∂β

∂𝑞𝛽 (𝑔(𝑞)𝑓(𝑞)) = 𝑔(𝑞)
∂β

∂𝑞𝛽 𝑓(𝑞) + 𝑓(𝑞)
∂β

∂𝑞𝛽 𝑔(q). 

(vi) 
∂β

∂𝑞𝛽 (
𝑓(𝑞)

𝑔(𝑞)
) =

𝑔(𝑞)
∂β

∂𝑞𝛽𝑓(𝑞)−𝑓(𝑞)
∂β

∂𝑞𝛽𝑔(𝑞)

𝑔2(𝑞)
, 𝑔(𝑞) ≠ 0. 

4. Bifurcation analysis of the fractional TMNNV model 

The bifurcation and phase representations [42,43] of the subsequent dynamical equation are 

discussed here. Let us assume that the differentiation of 𝑅 over the variable 𝜇 is equal to 𝑄; then a 

prototype differential system can be written from Eq (6) as follows: 

{

𝑑𝑅

𝑑𝜇
= Q,

𝑑𝑄

𝑑𝜇
= 𝑘𝑅 − 𝑙𝑅2,

           (7) 

which has the first integral 

𝐻(𝑅, 𝑄) =
𝑄2

2
−

𝑘

2
𝑅2 +

𝑙

3
𝑅3 = ℎ,        (8) 

where 𝑘 =
𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
, and 𝐻(𝑅, 𝑄) and ℎ are the Hamiltonian function and 

constant, respectively. 

Now, the bifurcation of the system (7) is discussed here with the arbitrary constants 

𝑎, 𝑏, 𝑐, 𝑝, 𝜈, 𝜌, 𝛾 , and 𝛼 . A smooth homoclinic orbit of Eq (7) is seen which rises from the smooth 

solitary waves in Eq (2) [44,45]. Consider that lim𝜇→−∞  𝑅(𝜇) = 𝑑  and lim𝜇→∞  𝑅(𝜇) = 𝑒  of the 

outcome 𝑅 (𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
) = 𝑅(𝜇), (−∞ < 𝜇 < ∞), then: 
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(i) When 𝑑 = 𝑒, 𝑅(𝜇) is represented as a homoclinic orbit of Eq (7), which connects with a 

solitary wave outcome of Eq (2). 

(ii) When 𝑑 ≠ e, 𝑅(𝜇) is presumed to be a heteroclinic orbit of Eq (7), which connects with an 

antikink or a kink wave outcome of Eq (2). 

Otherwise, a periodic orbit of Eq (7) connects with a periodic wave outcome of Eq (2).  

Therefore, we can easily analyze the probable phase portraits of Eq (7) with different constants 

𝑎, 𝑏, 𝑐, 𝑝, 𝜈, 𝜌, 𝛾, and 𝛼. 

By inserting 𝑅′ = 0  and 𝑄′ = 0  into Eq (7), then for 𝑘 ≠ 0 , this system will deliver two 

equilibrium points 𝑀0(0,0)  and M1 (
𝑘

𝑙
, 0) . Moreover, at 𝑘 = 0 , the system (7) provides one 

equilibrium point 𝑀(0,0). Assume that 𝐵(𝑅𝑀, 𝑄M) be the matrix of coefficients of the system (7) at 

equilibrium points M𝑗(𝑗 = 0, 1)  and assume that 𝐽(M𝑗) = |𝐵(𝑅𝑀, 𝑄𝑀)| . Therefore, we have 

𝐽(𝑀0) = −𝑘, 𝐽(𝑀1) = 𝑘, Trace(𝐵(𝑀0)) = 0, Trace(𝐵(𝑀1)) = 0. 

By exploring the bifurcations and the above outcomes, we can write the following categories: 

Category-1: For 𝑘 > 0,  a saddle point and a center point can be seen of the nature at the points 

𝑀0(0, 0) and 𝑀1 (
𝑘

𝑙
, 0), respectively, while the equivalent phase portraits bifurcations of Eq (7) are 

imagined in Figure 1(a) and 1(b), respectively. 

  

(a) (b) 

Figure 1. The phase plot of the system (7) for (a) 𝑘 > 0, 𝑙 > 0, 𝛼 = 𝑏 = 𝑐 =

𝛾 = 𝜌 = 𝑝 = 𝜈 = 1, 𝑎 = 3  and (b) 𝑘 > 0, 𝑙 < 0, 𝜈 = −1, 𝛼 = 𝑏 = 𝑐 =

𝛾 = 𝜌 = 𝑝 = 1, 𝑎 = 3. 

Category-2: For 𝑘 < 0,  a center point and a saddle point can be seen of the nature at the 

points M0(0, 0)  and 𝑀1 (
𝑘

𝑙
, 0) , respectively, while the equivalent phase portraits 

bifurcations of Eq (7) are drawn in Figure 2(a) and 2(b), respectively. 
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(a) (b) 

Figure 2. The phase plot of the system (7) for (a) 𝑘 < 0, 𝑙 > 0, 𝜌 = 𝜈 = −1,

𝛼 = 𝑏 = 𝑐 = 𝛾 = 𝑝 = 1, 𝑎 = 3  and (b) 𝑘 < 0, 𝑙 < 0, 𝜌 = −1, 𝛼 = 𝑏 =

𝑐 = 𝛾 = 𝑝 = 𝜈 = 1, 𝑎 = 3. 

Category-3: For 𝑘 = 0,   a cusp point can be seen of the nature at the points 𝑀0(0, 0) , 

while the equivalent phase portraits bifurcations of Eq (7) are drawn in Figure 3(a) and 3(b), 

respectively. 

  

(a) (b) 

Figure 3. The phase plot of system (7) for (a) 𝑘 = 0, 𝑙 > 0, 𝛼 = 𝛾 = 𝜌 = 𝑝 =

𝜈 = 1, 𝑐 = 3, 𝑏 = 4, 𝑎 = 5  and (b) 𝑘 = 0, 𝑙 < 0, 𝜌 = −1, 𝛼 = 𝛾 = 𝑝 =

𝜈 = 1, 𝑐 = 3, 𝑏 = 4, 𝑎 = 5. 
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A complete classification of equilibrium points is shown in Table 1. 

Table 1. The Bifurcations Categories Summary. 

Figure State points 

 (0, 0) (2.8, 0) (−2.8, 0) 

1(a) Unstable and saddle Stable and center - 

1(b) Unstable and saddle - Stable and center 

2(a) Stable and center - Unstable and saddle 

2(b) Stable and center Unstable and saddle - 

3(a) cusp point - - 

3(b) cusp point - - 
 

5. Explicit solution for the proposed model 

We aim to delve into the various explicit wave outcomes for the time fractional TMNNV model. 

For simplicity, the energy stage of the Hamiltonian is stated by taking ℎ0 = 𝐻(0,0) = 0 and ℎ1 =

𝐻 (
𝑘

𝑙
, 0) = −

𝑘3

6𝑙2. 

5.1. Investigating category-1 in Section 4 

5.1.1. Case-I 

For 𝑘 > 0, 𝑙 > 0, 𝑅(𝜇) is expected to be a homoclinic orbit of Eq (7) at 𝑀0(0,0) defined by 

𝐻(𝑅, 𝑄) = ℎ0, where Eq (2) provides a valley-type smooth solitary wave [42,43] outcome shown in 

Figure 1(a). By employing 𝐻(𝑅, 𝑄) = ℎ0 = 0 into Eq (8), we have 

𝑄 = ±√
2𝑙

3
𝑅√

3𝑘

2𝑙
− 𝑅.          (9) 

From the initial equation of the system (7) with Eqs (3), (5), and (9), we obtain 

𝑤 = −
3k

3
2𝑐

2𝑙
sech2 (

√𝑘

2
 (𝜇 − 𝜇0)) tanh (

√𝑘

2
 (𝜇 − 𝜇0)),     (10) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑘 =

𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0,  and 𝜇0  is an 

integrating constant. 

A combo dark-bright bell wave [46,47] can be found in Figure 4 for the valley-type smooth 

solitary wave outcome Eq (10) with 𝛽 = 0.1, 0.4, 0.9;  𝑏 = −1,  𝜇0 = 0, 𝑎 = 𝑐 = 𝑝 = 𝜈 = 𝜌 = 1,

𝛾 = 𝛼 = 0.5. 
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(a) 3D curve for 𝛽 = 0.1 (b) 3D curve for 𝛽 = 0.5 (c) 3D curve for 𝛽 = 0.9 

 

(d) 2D curve for 𝑡 = 2 with 𝛽 = 0.1, 0.25, and 0.9. 

Figure 4. Visualization of Eq (10) for 𝑏 = −1,  𝜇0 = 0, 𝑎 = 𝑐 = 𝑝 = 𝜈 = 𝜌 = 1, 𝛾 = 𝛼 = 0.5. 

5.1.2. Case-II 

For 𝑘 > 0, 𝑙 < 0, 𝑅(𝜇) is a homoclinic orbit of Eq (7) at M0(0,0) defined by 𝐻(𝑅, 𝑄) = ℎ0, 

where Eq (2) provides a valley-type smooth solitary wave [42,43] outcome shown in Figure 1(b). By 

inserting 𝐻(𝑅, 𝑄) = ℎ0 = 0 into Eq (8), we obtain 

𝑄 = ±√
2𝑙

3
𝑅√

3𝑘

2𝑙
− 𝑅.          (11) 

From the initial equation of the system (7) with Eqs (3), (5), and (11), we obtain 

𝑤 = −
3k

3
2𝑐

2𝑙
sech2 (

√𝑘

2
 (𝜇 − 𝜇0)) tanh (

√𝑘

2
 (𝜇 − 𝜇0)),     (12) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑘 =

𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
< 0 , and 𝜇0  is an 

integrating constant. 

A combo bright-dark bell wave [42,43] can be found in Figure 5 for the valley-type smooth 
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solitary wave outcome equation (12) with 𝛽 = 0.1, 0.4, 0.9;  𝑏 = 𝜈 = −1,  𝜇0 = 0, 𝑎 = 𝑐 = 𝑝 = 𝜌 =

𝛾 = 1, 𝛼 = 0.5 . 

   

(a) 3D curve for 𝛽 = 0.1 (b) 3D curve for 𝛽 = 0.4 (c) 3D curve for 𝛽 = 0.9 

   

 

(d) 2D curve for 𝑡 = 2 with 𝛽 = 0.1, 0.25, and 0.9. 

Figure 5. Visualization of Eq (12) for 𝑏 = 𝑣 = −1, 𝜇0 = 0, 𝑎 = 𝑐 = 𝑝 = 𝜌 =  𝛾 = 1, 𝛼 = 0.5. 

5.1.3. Case-III 

For 𝑘 > 0, 𝑙 > 0 or 𝑘 > 0, 𝑙 < 0, Eq (2) provides a family of smooth periodic wave outcomes 

defined by 𝐻(𝑅, 𝑄) = ℎ, ℎ ∈ (ℎ1, 0) (shown in Figure 1(a) and 1(b)). 

For 𝑘 > 0, 𝑙 > 0, the expression of the closed domain of the system (7) is written below and 

displayed in Figure 1(a): 

𝑄 = ±√
2𝑙

3
 √(𝑅 − 𝑅1)(𝑅2 − 𝑅)(𝑅3 − 𝑅),      (13) 

where (𝑅1, 0), (𝑅2, 0), and (𝑅3, 0) are the intersecting points of the graph defined by 𝐻(𝑅, 𝑄) = ℎ,

ℎ ∈ (ℎ1, 0) on the 𝑅-axis and holds the condition 𝑅1 < 𝑅 < 𝑅2 < R3. From the initial equation of the 

system (7) with Eqs (3), (5), and (13), we obtain the formula of the periodic outcome as follows [48]: 
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𝑤 =
c

3
(𝑅2 − 𝑅1) √6𝑙((𝑅3 − 𝑅1)𝑠𝑛 (√

𝑙(𝑅3 − 𝑅1)

6
(𝜇 − 𝜇0), √

𝑅2 − 𝑅1

𝑅3 − 𝑅1
) 

𝑐𝑛 (√
𝑙(𝑅3−𝑅1)

6
(𝜇 − 𝜇0), √

𝑅2−𝑅1

𝑅3−𝑅1
) 𝑑𝑛 (√

𝑙(𝑅3−𝑅1)

6
(𝜇 − 𝜇0), √

𝑅2−𝑅1

𝑅3−𝑅1
),    (14) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑘 =

𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0 , and 𝜇0  is an 

integrating constant. 

Periodic wave can be found in Figure 6 for the periodic wave outcome equation (14) with 𝛽 =

0.1, 0.6, 0.9;  𝑏 = 𝑅1 = −1,  𝜇0 = 0, 𝑎 = 𝑐 = 𝑝 = 𝜈 = 𝜌 = 1, 𝛾 = 𝛼 = 1,  𝑅2 = 2,  𝑅3 = 3. 

   

(a) 3D curve for 𝛽 = 0.1 (b) 3D curve for 𝛽 = 0.6 (c) 3D curve for 𝛽 = 0.9 

 

(d) 2D curve for 𝑡 = 2 with 𝛽 = 0.1, 0.25, and 0.9. 
 

Figure 6. Visualization of Eq (14) for 𝑏 = 𝑅1 = −1, 𝜇0 = 0, 𝑎 = 𝑐 = 𝑝 = 𝜈 = 𝜌 =

 𝛾 = 𝛼 = 1,  𝑅2 = 2,  𝑅3 = 3. 

For 𝑘 > 0, 𝑙 < 0, a similar study can be found in Figure 1(b). Assume that (𝑅4, 0), (𝑅5, 0), and 

(𝑅6, 0) are the touching points of the graph defined by 𝐻(𝑅, 𝑄) = ℎ, ℎ ∈ (ℎ1, 0) on the 𝑅-axis and 

holds the condition 𝑅4 < 𝑅 < 𝑅5 < 𝑅6. We obtain the formula of the periodic outcome as follows [49]: 
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𝑤 =
−1

3((𝑅6 −𝑅5) 𝑠𝑛2 (
1
6 √6 (√𝑙(𝑅4 − 𝑅6) (𝑐𝑦 + 𝑏𝑥 −

𝑎𝑡𝛽

𝛽
)) , √

𝑅6 − 𝑅5
𝑅6 − 𝑅4

) + 𝑅4 − 𝑅6)

2 

((𝑅4(𝑅6 − 𝑅4) − 𝑅5(𝑅6 − 𝑅4))(𝑅6 − 𝑅5) 𝑐 √6𝑙(𝑅4 − 𝑅6)  𝑠𝑛 (√
𝑙(𝑅4−𝑅6)

6
(𝜇 −

𝜇0), √
𝑅6−𝑅5

𝑅6−𝑅4
) 𝑐𝑛 (√

𝑙(𝑅4−𝑅6)

6
(𝜇 − 𝜇0), √

𝑅6−𝑅5

𝑅6−𝑅4
) 𝑑𝑛 (√

𝑙(𝑅4−𝑅6)

6
(𝜇 − 𝜇0), √

𝑅6−𝑅5

𝑅6−𝑅4
)), (15) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑘 =

𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
< 0 , and 𝜇0  is an 

integrating constant. 

A periodic wave pattern can be found for the outcome equation (15), which is almost like the 

periodic wave of the outcome equation (14). 

5.2. Investigating category-2 in Section 4 

5.2.1. Case-I 

For 𝑘 < 0, 𝑙 > 0 , 𝑅(𝜇)  is expected to be a homoclinic orbit of Eq (7) at the stable point 

𝑀1 (
𝑘

𝑙
, 0) defined by 𝐻(𝑅, 𝑄) = ℎ1, and Eq (2) provides a valley-type smooth solitary wave [44,45] 

outcome shown in Figure 2(a). By substituting 𝐻(𝑅, 𝑄) = ℎ1 into Eq (8), we have 

𝑄2 =
2𝑙

3
(𝑅 −

𝑘

𝑙
)

2
(−𝑅 −

𝑘

2𝑙
).         (16) 

From the initial equation of the system (7), with Eqs (3), (5), and (16), we obtain the following 

solution, which is like that shown in Figure 4. 

𝑤 =
3𝑘𝑐

𝑙
√

−𝑘

4
 sech2 (√

−𝑘

4
(𝜇 − 𝜇0)) tanh (√

−𝑘

4
(𝜇 − 𝜇0)),     (17) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑘 =

𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
< 0, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0 , and 𝜇0  is an 

integrating constant. 

5.2.2. Case-II 

For 𝑘 < 0, 𝑙 < 0 , 𝑅(𝜇)  is supposed to be a homoclinic orbit of Eq (7) at the stable point 

𝑀1 (
𝑘

𝑙
, 0)  is defined by 𝐻(𝑅, 𝑄) = ℎ1 , and Eq (2) provides a valley-type smooth solitary wave 

outcome shown in Figure 2(b). By taking 𝐻(𝑅, 𝑄) = ℎ1 into Eq (8), we have 
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𝑄2 =
2𝑙

3
(𝑅 −

𝑘

𝑙
)

2
(−𝑅 −

𝑘

2𝑙
).        (18) 

From the initial equation of the system (7) with Eqs (3), (5), and (18), we obtain the following 

solution which is like that shown in Figure 4. 

𝑤 =
3𝑘𝑐

𝑙
√

−𝑘

4
 sech2 (√

−𝑘

4
(𝜇 − 𝜇0)) tanh (√

−𝑘

4
(𝜇 − 𝜇0)),    (19) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑘 =

𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
< 0, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
< 0 , and 𝜇0  is an 

integrating constant. 

5.2.3. Case-III 

For 𝑘 < 0, 𝑙 > 0 or 𝑘 < 0, 𝑙 < 0, Eq (2) provides a family of smooth periodic wave outcomes 

defined by 𝐻(𝑅, 𝑄) = ℎ, ℎ ∈ (0, ℎ1), drawn in Figure 2(a) and 2(b), respectively. In addition, this 

periodic outcome is identical to the outcomes in Eqs (14) and (15). 

5.3. Investigating category-3 in Section 4 

5.3.1. Case-I 

For 𝑘 = 0, 𝑙 > 0, 𝑅(𝜇) is assumed to be an unrestricted orbit of Eq (7) at M0(0,0) defined by 

𝐻(𝑅, 𝑄) = ℎ0, and Eq (2) provides a soliton solution shown in Figure 3(a). By inserting 𝐻(𝑅, 𝑄) =

ℎ0 = 0 into Eq (8), we have 

𝑄2 =
−2𝑙

3
𝑅3.           (20) 

From the initial equation of the system (7) with Eqs (3), (5), and (20), we obtain the following soliton 

outcome: 

𝑤 =
12𝑐

𝑙(𝜇−𝜇0)3,          (21) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
> 0, and 𝜇0 is an integrating constant. 

A combo bright-dark bell wave with singularity can be found in Figure 7 for the soliton solution 

equation (21) with 𝛽 = 0.1, 0.25, 0.9; 𝜇0 = 0, 𝑎 = 𝑏 = 𝑐 = 𝜈 = 𝜌 = 1, 𝑝 =
1

√2
, 𝛾 = 1, 𝛼 = 0.5. 
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(a) 3D curve for 𝛽 = 0.2 (b) 3D curve for 𝛽 = 0.3 (c) 3D curve for 𝛽 = 0.6 

 

(d) 2D curve for 𝑡 = 2 with 𝛽 = 0.2, 0.3, and 0.6. 

Figure 7. Visualization of Eq (21) for 𝜇0 = 0, 𝑎 = 𝑏 = 𝑐 = 𝜈 = 𝜌 = 1, 𝑝 =
1

√2
, 𝛾 = 1, 𝛼 = 0.5. 

5.3.2. Case-II 

For 𝑘 = 0, 𝑙 < 0, 𝑅(𝜇) is an unrestricted orbit of Eq (7) at M0(0,0) defined by 𝐻(𝑅, 𝑄) =

ℎ0, and Eq (2) provides a similar soliton solution shown in Figure 3(b). By substituting 𝐻(𝑅, 𝑄) =

ℎ0 = 0 into Eq (8), we have 

𝑄2 =
−2𝑙

3
𝑅3.           (22) 

From the initial equation of the system (7) with Eqs (3), (5), and (22), we obtain the following soliton 

outcome which has a similar nature as shown in Figure 7: 

𝑤 =
12𝑐

𝑙(𝜇−𝜇0)3,          (23) 

where  𝜇 = 𝑐𝑦 + 𝑏𝑥 −
𝑎𝑡𝛽

𝛽
, 𝑙 =

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
< 0, and 𝜇0 is an integrating constant. 
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6. Quasi-periodic and chaotic behaviors 

Nonlinear models can exhibit chaotic behavior [50] when they experience bifurcations, leading to 

various dynamic properties. We saw in the previous section that the planar dynamical structure 

equation (7) does not exhibit chaotic properties, but it does when an external disturbance is added. 

Accordingly, for the dynamical system (7), perturbation takes the following shape: 

{

𝑑𝑅

𝑑𝜇
= Q,

𝑑𝑄

𝑑𝜇
= (

𝑎2−(𝑏2+𝑐2)𝑝2

𝜌𝑏3(a+(𝑏+𝑐)𝛼)
) 𝑅 − (

𝜈𝑏(𝑎+(𝑏+𝑐)𝛾)

2𝜌𝑏3(a+(𝑏+𝑐)𝛼)
) 𝑅2 + 𝐹(𝜇),

     (24) 

with perturbed term 𝐹(𝜇). In the context of phase portraits and multistability [49], quasi-periodic and 

chaotic behavior can be explored by considering the following three types of perturbation terms with 

diverse parameters. It is noted that chaotic waves demonstrate irregular, non-repeating structures and 

are highly sensitive to initial values. On the other hand, quasi-periodic waves frequently occur in 

coupled oscillators or systems with several degrees of freedom and have intricate but predictable 

structures that are not exactly repeatable. Some remarkable graphical representations, such as 3D phase 

portraits, 2D phase portraits, Poincaré plots, and time series plots, will be included to reach our 

destinations. Wave structures like these can be found in many natural phenomena, such as ocean waves, 

climate models, optics, telecommunications, plasma physics, and biological rhythms. 

(i) Trigonometric function: Let 𝐹(𝜇) = 1.5cos(3.9 𝜇) , then the phase portrait and 

multistability of Eq (24) are exposed in Figures 8 and 11, respectively, for 𝛼 = 1, 𝜌 = 4,

𝛾 = 2, 𝑝 = 4, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.5 , and 𝑣 = 2 . Figure 8 shows that the system is 

chaotic, as evidenced by its irregular behavior and absence of regular patterns. Figure 11 

shows that the system follows chaotic patterns due to its sensitivity to initial values. 

(ii) Gaussian function: Let 𝐹(𝜇) = 3.5 𝑒
−(0.12𝜇)2

2 , then the phase portrait and multistability of 

Eq (24) are exposed in Figures 9 and 12, respectively, for parameters 𝛼 = 1, 𝜌 = 4, 𝛾 = 2,

𝑝 = 4, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.5,  and 𝑣 = 2 . Figures 9 and 12 represent quasi-periodic 

structures, evidenced by the periodic irregularity of the wave. 

(iii) Hyperbolic function: Let 𝐹(𝜇) = 1.4 cosh(0.04𝜇) , then the phase portrait and 

multistability of Eq (24) are exposed in Figures 10 and 13, respectively for parameters 𝛼 =

1, 𝜌 = 4, 𝛾 = 2, 𝑝 = 4, 𝑎 = 1, 𝑏 = 0.5, 𝑐 = 0.5,  and 𝑣 = 2 . Figures 10 and 13 

represent quasi-periodic structures, as evidenced by the wave's periodic irregularity. 
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(a) 3D phase portrait (b) 2D phase portrait (c) Poincaré plot 

Figure 8. Outlook of the perturbation equation (24) for 𝐹(𝜇) = 1.5 cos(3.9 𝜇) with 

initial value (𝑅(0), 𝑄(0)) = (0.1, 0.1). 

   

(a) 3D phase portrait (b) 2D phase portrait (c) Poincaré plot 

Figure 9. Outlook of the perturbation equation (24) for 𝐹(𝜇) = 3.5 𝑒
−(0.12𝜇)2

2   with 

initial value (𝑅(0), 𝑄(0)) = (0.2, 0.2). 
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(a) 3D phase portrait (b) 2D phase portrait (c) Poincaré plot 

Figure 10. Outlook of the perturbation equation (24) for 𝐹(𝜇) = 1.4 cosh(0.04𝜇) with 

initial value (𝑅(0), 𝑄(0)) = (0.2, 0.2). 

 

 

  

(a) 2D phase portrait (b) Poincaré plot (c) time series plot 

Figure 11. Multistability of the perturbation equation (24) for (𝜇) = 1.5 cos(3.9 𝜇). 

   

(a) 2D phase portrait (b) Poincaré plot (c) time series plot 

Figure 12. Multistability of the perturbation equation (24) for 𝐹(𝜇) = 3.5 𝑒
−(0.12𝜇)2

2 . 
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(a) 2D phase portrait (b) Poincaré plot (c) time series plot 

Figure 13. Multistability of the perturbation equation (24) for 𝐹(𝜇) = 1.4 cosh(0.04𝜇). 

7. Conclusions 

We apply bifurcation theory to the TMNNV model for the first time to uncover bifurcations, 

discrete solutions, phase portraits, and multistability under different parameters. 3D with density and 

2D plots are used to identify and visualize unique wave patterns, such as combined bright-dark and 

dark-bright bell waves, periodic waves, and bright solitons. Additionally, quasi-periodic and chaotic 

behaviors are studied, along with multistability, showing how they are strongly dependent on initial 

conditions and parameter settings. The findings shed light on the dynamics of these nonlinear systems, 

providing valuable insights into their behavior. Based on this analysis and graphical representation, 

future physical experiments or observations can be conducted to validate these predicted complex 

dynamics and their practical applications. 
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