With the help of a summation of basic hypergeometric series, the creative microscoping method recently introduced by Guo and Zudilin, and the Chinese remainder theorem for coprime polynomials, we prove some new $ q $-supercongruences on sums of $ q $-shifted factorials. Especially, we give a $ q $-analogue of a formula due to Liu [
Citation: Chuanan Wei, Chun Li. New $ q $-supercongruences arising from a summation of basic hypergeometric series[J]. AIMS Mathematics, 2022, 7(3): 4125-4136. doi: 10.3934/math.2022228
With the help of a summation of basic hypergeometric series, the creative microscoping method recently introduced by Guo and Zudilin, and the Chinese remainder theorem for coprime polynomials, we prove some new $ q $-supercongruences on sums of $ q $-shifted factorials. Especially, we give a $ q $-analogue of a formula due to Liu [
[1] | G. Gasper, M. Rahman, Basic hypergeometric series, 2nd edition, Cambridge: Cambridge University Press, 2004. |
[2] | V. J. W. Guo, $q$-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative microscoping, Adv. Appl. Math., 120 (2020), 102078. https://doi.org/10.1016/j.aam.2020.102078 doi: 10.1016/j.aam.2020.102078 |
[3] | V. J. W. Guo, Some variations of a "divergent" Ramanujan-type $q$-supercongruence, J. Differ. Equ. Appl., 27 (2021), 376–388. https://doi.org/10.1080/10236198.2021.1900140 doi: 10.1080/10236198.2021.1900140 |
[4] | V. J. W. Guo, A further $q$-analogue of Van Hamme's (H.2) supercongruence for primes $p\equiv 3\pmod{4}$, Int. J. Number Theory, 17 (2021), 1201–1206. https://doi.org/10.1142/S1793042121500329 doi: 10.1142/S1793042121500329 |
[5] | V. J. W. Guo, J. C. Liu, $q$-Analogues of two Ramanujan-type formulas for $1/\pi$, J. Differ. Equ. Appl., 24 (2018), 1368–1373. https://doi.org/10.1080/10236198.2018.1485669 doi: 10.1080/10236198.2018.1485669 |
[6] | V. J. W. Guo, M. J. Schlosser, A family of $q$-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial, Isr. J. Math., 240 (2020), 821–835. https://doi.org/10.1007/s11856-020-2081-1 doi: 10.1007/s11856-020-2081-1 |
[7] | V. J. W. Guo, M. J. Schlosser, Some $q$-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx., 53 (2021), 155–200. https://doi.org/10.1007/s00365-020-09524-z doi: 10.1007/s00365-020-09524-z |
[8] | V. J. W. Guo, M. J. Schlosser, A family of $q$-supercongruences modulo the cube of a cyclotomic polynomial, B. Aust. Math. Soc., 2021. https: //doi.org/10.1017/S0004972 721000630 |
[9] | V. J. W. Guo, W. Zudilin, A $q$-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. https://doi.org/10.1016/j.aim.2019.02.008 doi: 10.1016/j.aim.2019.02.008 |
[10] | V. J. W. Guo, W. Zudilin, Dwork-type supercongruences through a creative $q$-microscope, J. Comb. Theory A, 178 (2021), 105362. https://doi.org/10.1016/j.jcta.2020.105362 doi: 10.1016/j.jcta.2020.105362 |
[11] | J. C. Liu, On a congruence involving $q$-Catalan numbers, C. R. Math. Acad. Sci. Paris, 358 (2020), 211–215. https://doi.org/10.5802/crmath.35 doi: 10.5802/crmath.35 |
[12] | J. C. Liu, Z. Y. Huang, A truncated identity of Euler and related $q$-congruences, B. Aust. Math. Soc., 102 (2020), 353–359. https://doi.org/10.1017/S0004972720000301 doi: 10.1017/S0004972720000301 |
[13] | J. C. Liu, F. Petrov, Congruences on sums of $q$-binomial coefficients, Adv. Appl. Math., 116 (2020), 102003. https://doi.org/10.1016/j.aam.2020.102003 doi: 10.1016/j.aam.2020.102003 |
[14] | J. C. Liu, Supercongruences arising from transformations of hypergeoetric series, J. Math. Anal. Appl., 497 (2021), 124915. https://doi.org/10.1016/j.jmaa.2020.124915 doi: 10.1016/j.jmaa.2020.124915 |
[15] | Y. D. Liu, X. X. Wang, $q$-Analogues of two Ramanujan-type supercongruences, J. Math. Anal. Appl., 502 (2021), 125238. https://doi.org/10.1016/j.jmaa.2021.125238 doi: 10.1016/j.jmaa.2021.125238 |
[16] | L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773–808. https://doi.org/10.1016/j.aim.2015.11.043 doi: 10.1016/j.aim.2015.11.043 |
[17] | A. M. Robert, A course in $p$-adic analysis, New York: SpringerVerlag, 2000. |
[18] | R. Tauraso, $q$-Analogs of some congruences involving Catalan numbers, Adv. Appl. Math., 48 (2012), 603–614. https://doi.org/10.1016/j.aam.2011.12.002 doi: 10.1016/j.aam.2011.12.002 |
[19] | C. Wang, H. Pan, Supercongruences concerning truncated hypergeometric series, Math. Z., 2021. https://doi.org/10.1007/s00209-021-02772-0 doi: 10.1007/s00209-021-02772-0 |
[20] | C. A. Wei, Some $q$-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Comb. Theory A, 182 (2021), 105469. https://doi.org/10.1016/j.jcta.2021.105469 doi: 10.1016/j.jcta.2021.105469 |
[21] | C. A. Wei, Y. D. Liu, X. X. Wang, $q$-Supercongruences form the $q$-Saalschütz identity, Proc. Amer. Math. Soc., 149 (2021), 4853–4861. https://doi.org/10.1090/proc/15623 doi: 10.1090/proc/15623 |
[22] | W. Zudilin, Congruences for $q$-binomial coefficients, Ann. Comb., 23 (2019), 1123–1135. https://doi.org/10.1007/s00026-019-00461-8 doi: 10.1007/s00026-019-00461-8 |