In this paper, we study the existence of solutions for the general $ q $-Lidstone problem:
$ \begin{equation*} (D_{q^{-1}}^{r_n}f)(1) = a_n, \quad (D_{q^{-1}}^{s_n}f)(0) = b_n, \quad (n\in \mathbb{N}) \end{equation*} $
where $ (r_n)_n $ and $ (s_n)_n $ are two sequences of non-negative integers and $ (a_n)_n $ and $ (b_n)_n $ are two sequences of complex numbers. We define a $ q^{-1} $-standard set of polynomials and then we introduce a generalization of the $ q $-Lidstone expansion theorem.
Citation: Maryam AL-Towailb. A generalization of the $ q $-Lidstone series[J]. AIMS Mathematics, 2022, 7(5): 9339-9352. doi: 10.3934/math.2022518
In this paper, we study the existence of solutions for the general $ q $-Lidstone problem:
$ \begin{equation*} (D_{q^{-1}}^{r_n}f)(1) = a_n, \quad (D_{q^{-1}}^{s_n}f)(0) = b_n, \quad (n\in \mathbb{N}) \end{equation*} $
where $ (r_n)_n $ and $ (s_n)_n $ are two sequences of non-negative integers and $ (a_n)_n $ and $ (b_n)_n $ are two sequences of complex numbers. We define a $ q^{-1} $-standard set of polynomials and then we introduce a generalization of the $ q $-Lidstone expansion theorem.
[1] | M. H. Annaby, Z. S. Mansour, $q$-Taylor and interpolation series for Jackson $q$-difference operators, J. Math. Anal. Appl., 344 (2008), 472–483. https://doi.org/10.1016/j.jmaa.2008.02.033 doi: 10.1016/j.jmaa.2008.02.033 |
[2] | R. P. Agarwal, S. Pinelas, P. J. Y. Wong, Complementary Lidstone interpolation and boundary value problems, J. Inequal. Appl., 2009 (2009), 624631. http://doi.org/10.1155/2009/624631 doi: 10.1155/2009/624631 |
[3] | R. P. Boas, R. C. Buck, Polynomial expansions of analytic functions, Berlin: Springer-Verlag, 1964. https: //doi.org/10.1007/978-3-662-25170-6 |
[4] | F. A. Costabile, F. Dell'Accio, Lidstone approximation on the triangle, Appl. Numer. Math., 52 (2005), 339–361. https://doi.org/10.1016/j.apnum.2004.08.003 doi: 10.1016/j.apnum.2004.08.003 |
[5] | F. A. Costabile, F. Dell'Accio, L. Guzzardi, New bivariate polynomial expansion with boundary data on the simplex, Calcolo, 45 (2008), 177–192. https://doi.org/10.1007/s10092-008-0149-0 doi: 10.1007/s10092-008-0149-0 |
[6] | R. Caira, F. Dell'Accio, F. Di Tommaso, On the bivariate Shepard–Lidstone operators, J. Comput. Appl. Math., 236 (2012), 1691–1707. https://doi.org/10.1016/j.cam.2011.10.001 doi: 10.1016/j.cam.2011.10.001 |
[7] | F. A. Costabile, F. Dell'Accio, F. Di Tommaso, Complementary Lidstone interpolation on scattered data sets, Numer. Algor., 64 (2013), 157–180. https://doi.org/10.1007/s11075-012-9659-6 doi: 10.1007/s11075-012-9659-6 |
[8] | G. Gasper, M. Rahman, Basic hypergeometric series, Cambrdge: Cambridge university Press, 2004. https://doi.org/10.1017/CBO9780511526251 |
[9] | M. E. H. Ismail, Z. S. I. Mansour, $q$-analogs of Lidstone expansion theorem, two point Taylor expansion theorem, and Bernoulli polynomials, Anal. Appl., 17 (2019), 835–895. https://doi.org/10.1142/S0219530518500264 doi: 10.1142/S0219530518500264 |
[10] | F. H. Jackson, A basic-sine and cosine with symbolical solutions of certain differential equations, Proc. Edin. Math. Soc., 22 (1904), 28–39. http://doi.org/10.1017/S0013091500001930 doi: 10.1017/S0013091500001930 |
[11] | F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Roy. Soc. Edin., 46 (1909), 253–281. http://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[12] | G. J. Lidstone, Notes on the extension of Aitken's theorem (for polynomial interpolation) to the Everett types, Proc. Edinb. Math. Soc., 2 (1930), 16–19. http://doi.org/10.1017/S0013091500007501 doi: 10.1017/S0013091500007501 |
[13] | Z. Mansour, M. AL-Towailb, $q$-Lidstone polynomials and existence results for $q$-boundary value problems, Bound. Value Probl., 2017 (2017), 178. https://doi.org/10.1186/s13661-017-0908-4 doi: 10.1186/s13661-017-0908-4 |
[14] | Z. Mansour, M. AL-Towailb, The complementary $q$-lidstone interpolating polynomials and applications, Math. Comput. Appl., 25 (2020), 34. https://doi.org/10.3390/mca25020034 doi: 10.3390/mca25020034 |
[15] | L. Nachbin, An extension of the notion of integral functions of finite exponential type, Anais Acad. Brasil. Ciencias, 16 (1944), 143–147. Zbl 0060.22404 |
[16] | J. P. Ramis, About the growth of entire functions solutions of linear algebraic $q$-difference equations, Annales de la faculté des sciences de Toulouse, 1 (1992), 53–94. http://www.numdam.org/item/AFST-1992-6-1-1-53-0 |
[17] | J.M. Whittaker, On Lidstone's series and two-point expansion of analytic function, Proc. London. Math. Soc., s2-36 (1934), 451–469. https://doi.org/10.1112/plms/s2-36.1.451 doi: 10.1112/plms/s2-36.1.451 |
[18] | Zia-Uddin, Note on an "alternant" with fractional elements, Proc. Edinb. Math. Soc., 3 (1933), 296–299. https://doi.org/10.1017/S0013091500027383 doi: 10.1017/S0013091500027383 |