Citation: A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman. Integral transforms involving the product of Humbert and Bessel functions and its application[J]. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086
[1] | G. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999. |
[2] | P. Appell, Sur les séries hypergeométriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles, CR Acad. Sci., 90 (1880), 296-298. |
[3] | A. Belafhal, F. Saad, Conversion of circular beams by a spiral phase plate: Generation of Generalized Humbert beams, Optik, 138 (2017), 516-528. doi: 10.1016/j.ijleo.2017.03.097 |
[4] | R. Chen, C. An, On the evaluation of infinite integrals involving Bessel functions, Appl. Math. Comput., 235 (2014), 212-220. |
[5] | S. A. Collins, Lens-system diffraction integral written in terms of matrix optics, J. Opt. Soc. Am., 60 (1970), 1168-1177. doi: 10.1364/JOSA.60.001168 |
[6] | I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 5 Eds., Academic Press, New York, 1994. |
[7] | P. Humbert, The Confluent hypergeometric functions of two variables, P. Roy. Soc. Edinb. A, 41 (1992), 73-96. |
[8] | N. U. Khan, T. Kashmin, On infinite series if three variables involving Whittaker and Bessel functions, Palestine J. Math., 5 (2016), 185-190. |
[9] | N. U. Khan, T. Usman, M. Ghayasuddin, A note on integral transforms associated with H umbert's confluent hypergeometric function, Electron. J. Math. Anal. Appl., 4 (2016), 259-265. |
[10] | A. P. Prudnikov, Y. A. Brychkov, O. I. Marychev, Integrals and Series: Special Functions, Nauka, 1983. |
[11] | R. B. Paris, A Kummer-type transformation for a 2F2 hypergeometric function, J. Comput. Appl. Math., 173 (2005), 379-382. doi: 10.1016/j.cam.2004.05.005 |
[12] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, John Wiley and Sons, New York, 1985. |
[13] | H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Wiley, Bristone, London, New York, 1984. |
[14] | A. Erdélyi, Tables of Integral Transforms Volume I, McGraw-Hill Book Compagny, New York, 1954. |