Research article

Integral transforms involving the product of Humbert and Bessel functions and its application

  • Received: 10 October 2019 Accepted: 06 January 2020 Published: 19 January 2020
  • MSC : 33B15, 33C10, 33C15

  • In this paper, we develop some integral transforms involving a product of Humbert and Bessel functions with a weight e-γx2. These integral transforms will be evaluated in terms of hypergeometric functions. Various transformation formulae are also evaluated in terms of Appell functions to complete this study. Some special cases of the evaluated integrals yield some infinite series of generalized hypergeometric and Appell functions. As application, one of our main results is investigated to give an expression of the Generalized Humbert-Gaussian beams (GHGBs) propagating through a paraxial ABCD optical system.

    Citation: A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman. Integral transforms involving the product of Humbert and Bessel functions and its application[J]. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086

    Related Papers:

  • In this paper, we develop some integral transforms involving a product of Humbert and Bessel functions with a weight e-γx2. These integral transforms will be evaluated in terms of hypergeometric functions. Various transformation formulae are also evaluated in terms of Appell functions to complete this study. Some special cases of the evaluated integrals yield some infinite series of generalized hypergeometric and Appell functions. As application, one of our main results is investigated to give an expression of the Generalized Humbert-Gaussian beams (GHGBs) propagating through a paraxial ABCD optical system.


    加载中


    [1] G. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.
    [2] P. Appell, Sur les séries hypergeométriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles, CR Acad. Sci., 90 (1880), 296-298.
    [3] A. Belafhal, F. Saad, Conversion of circular beams by a spiral phase plate: Generation of Generalized Humbert beams, Optik, 138 (2017), 516-528. doi: 10.1016/j.ijleo.2017.03.097
    [4] R. Chen, C. An, On the evaluation of infinite integrals involving Bessel functions, Appl. Math. Comput., 235 (2014), 212-220.
    [5] S. A. Collins, Lens-system diffraction integral written in terms of matrix optics, J. Opt. Soc. Am., 60 (1970), 1168-1177. doi: 10.1364/JOSA.60.001168
    [6] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 5 Eds., Academic Press, New York, 1994.
    [7] P. Humbert, The Confluent hypergeometric functions of two variables, P. Roy. Soc. Edinb. A, 41 (1992), 73-96.
    [8] N. U. Khan, T. Kashmin, On infinite series if three variables involving Whittaker and Bessel functions, Palestine J. Math., 5 (2016), 185-190.
    [9] N. U. Khan, T. Usman, M. Ghayasuddin, A note on integral transforms associated with H umbert's confluent hypergeometric function, Electron. J. Math. Anal. Appl., 4 (2016), 259-265.
    [10] A. P. Prudnikov, Y. A. Brychkov, O. I. Marychev, Integrals and Series: Special Functions, Nauka, 1983.
    [11] R. B. Paris, A Kummer-type transformation for a 2F2 hypergeometric function, J. Comput. Appl. Math., 173 (2005), 379-382. doi: 10.1016/j.cam.2004.05.005
    [12] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, John Wiley and Sons, New York, 1985.
    [13] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Wiley, Bristone, London, New York, 1984.
    [14] A. Erdélyi, Tables of Integral Transforms Volume I, McGraw-Hill Book Compagny, New York, 1954.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3664) PDF downloads(482) Cited by(4)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog