The present article deals with the evaluation of the Hankel transforms involving Bessel matrix functions in the kernel. Moreover, these transforms are associated with products of certain elementary functions and generalized Bessel matrix polynomials. As applications, many useful special cases are discussed. Further, the current results are more general to the previous one. In addition to, these results are yielded to more results in the modern integral transforms with special matrix functions.
Citation: Mohamed Abdalla. On Hankel transforms of generalized Bessel matrix polynomials[J]. AIMS Mathematics, 2021, 6(6): 6122-6139. doi: 10.3934/math.2021359
[1] | Ruma Qamar, Tabinda Nahid, Mumtaz Riyasat, Naresh Kumar, Anish Khan . Gould-Hopper matrix-Bessel and Gould-Hopper matrix-Tricomi functions and related integral representations. AIMS Mathematics, 2020, 5(5): 4613-4623. doi: 10.3934/math.2020296 |
[2] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[3] | Rupak Datta, Ramasamy Saravanakumar, Rajeeb Dey, Baby Bhattacharya . Further results on stability analysis of Takagi–Sugeno fuzzy time-delay systems via improved Lyapunov–Krasovskii functional. AIMS Mathematics, 2022, 7(9): 16464-16481. doi: 10.3934/math.2022901 |
[4] | D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096 |
[5] | Won-Kwang Park . On the application of subspace migration from scattering matrix with constant-valued diagonal elements in microwave imaging. AIMS Mathematics, 2024, 9(8): 21356-21382. doi: 10.3934/math.20241037 |
[6] | Yongjian Hu, Huifeng Hao, Xuzhou Zhan . On the solvability of the indefinite Hamburger moment problem. AIMS Mathematics, 2023, 8(12): 30023-30037. doi: 10.3934/math.20231535 |
[7] | Fethi Bouzeffour . Inversion formulas for space-fractional Bessel heat diffusion through Tikhonov regularization. AIMS Mathematics, 2024, 9(8): 20826-20842. doi: 10.3934/math.20241013 |
[8] | Hasan Gökbaş . Some properties of the generalized max Frank matrices. AIMS Mathematics, 2024, 9(10): 26826-26835. doi: 10.3934/math.20241305 |
[9] | Mohamed Obeid, Mohamed A. Abd El Salam, Mohamed S. Mohamed . A novel generalized symmetric spectral Galerkin numerical approach for solving fractional differential equations with singular kernel. AIMS Mathematics, 2023, 8(7): 16724-16747. doi: 10.3934/math.2023855 |
[10] | Yunbo Tian, Sheng Chen . Prime decomposition of quadratic matrix polynomials. AIMS Mathematics, 2021, 6(9): 9911-9918. doi: 10.3934/math.2021576 |
The present article deals with the evaluation of the Hankel transforms involving Bessel matrix functions in the kernel. Moreover, these transforms are associated with products of certain elementary functions and generalized Bessel matrix polynomials. As applications, many useful special cases are discussed. Further, the current results are more general to the previous one. In addition to, these results are yielded to more results in the modern integral transforms with special matrix functions.
Recently, many researchers have introduced and discussed the several integral transforms (See, e.g., Fourier transform, Laplace transform, Mellin transform, Hankel transform, etc.) with various special functions (also with the new generalized special matrix functions) as kernels. These transforms play important roles not only in mathematics but also in physics, dynamical systems and engineering disciplines (See, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13] and the references therein).
Hankel transforms (also designated as Fourier-Bessel transforms) are type of integral transforms that involving Bessel functions as the kernel arises naturally in radial problems formulated in cylindrical polar coordinates (See [14,15,16]). The classical Hankel transformation defined by
G{f(ξ);x}=∫∞0√ξxJn(ξx)f(ξ)dξ, | (1.1) |
where x>0. and Jn(x) is the Bessel function of order n (See [6]).
Later on, Hankel transforms are useful tools for solving various sorts of problems in electromagnetic fields, for one-dimensional layered earth model, in the dipole antenna radiation in conductive medium and in solving boundary value problems formulated in cylindrical coordinates (See, for instance, [14,15,16,17,18,19,20,21,22,23,24]).
In the current study, we define the Hankel transforms and its inverse involving Bessel matrix functions [25,26,27] in the kernel. Moreover, we evaluate some new integrals of matrix functions involving generalized Bessel matrix polynomials [25,28]. Interesting special cases of the main results are also deduced. The present work is a very useful in the study of boundary value problems, electromechanical problems, statistic theory, numerical calculations and computer science.
In this section, we have enclosed some basic definitions and lemmas which are useful in our main results.
Let Cd denote the d-dimensional complex vector space and Cd×d denote the set of all square matrices with d rows and d columns with entries are complex numbers. I and 0 stand for the identity matrix and the null matrix in Cd×d, respectively.
Definition 2.1. (See [29]) For a matrix N in Cd×d, σ(N) is the spectrum of N, the set of all eigenvalues of N and
ϑ(N)=max{Re(ξ):ξ∈σ(N)},˜ϑ(N)=min{Re(ξ):ξ∈σ(N)}, | (2.1) |
where ϑ(N) is referred to as the spectral abscissa of N and ˜ϑ(N)=−β(−N). A matrix N is said to be a positive stable if and only if ˜ϑ(N)>0.
Definition 2.2. [25,27,29] The logarithmic norm of a matrix N in Cd×d is defined as
β(N)=limς→0‖I+ςN‖−1ς=max{ξ:ξ∈σ(N+N∗2)}, | (2.2) |
where
‖N‖=supy≠0{‖Ny‖‖y‖}=sup{‖Ny‖,‖y‖=1}. |
Suppose that the number ˜β(N) is such that
˜β(N)=−β(−N)=min{ξ:ξ∈σ(N+N∗2)}. | (2.3) |
where N∗ is the transposed conjugate of N.
The reciprocal gamma function denoted by Γ−1(ξ)=1Γ(ξ) is an entire function of the complex variable ξ. Then the image of Γ−1(ξ) acting on N denoted by Γ−1(N) is a well-defined matrix and invertible as well as
N+nIisinvertibleforallintegersn∈N0:=N∪{0}. | (2.4) |
By applying the matrix functional calculus, for a matrix N is positive stable in Cd×d, then from [18,26], the Pochhammer symbol of a matrix argument defined by
(N)n={N(N+I)…(N+(n−1)I)=Γ−1(N)Γ(N+nI),n≥1,I,n=0. | (2.5) |
where Γ(N) is the gamma matrix function [26,27]
Γ(N)=∫∞0e−uuN−Idu;uN−I=exp((N−I)lnu). | (2.6) |
Remark 2.1. Note that (−N)n=(−1)nΓ(N+I)Γ−1(N+(1−n)I), and if N=−mI, where m is a positive integer, then (N)n=0 whenever n>m.
Definition 2.3. [25,26] Let h and k be finite positive integers, the generalized hypergeometric matrix function is defined by the matrix power series
hFk[M;N;ξ]=∞∑m=0h∏i=1(Mi)mk∏j=1[(Nj)m]−1ξmm!, | (2.7) |
where M=Mi,1≤i≤h and N=Nj,1≤j≤k are commuting matrices in Cd×d with Nj+mI are invertible for all integers m∈N0 and 1≤i≤h. More details, Abdalla discussed regions of convergence and properties of (2.7) in [25,26].
Note that for h=2,k=1, we get the Gauss hypergeometric matrix function 2F1 (See [25,26]).
Lemma 2.1. [30] The following formula holds:
2F1[−nI,M;N;1]=(N−M)n[(N)n]−1, |
where M,N and N−M are positive stable and commuting matrices in Cd×d and N satisfies the condition (2.4).
Definition 2.4. [25,26,27] The Bessel matrix function JS(u) of the first kind associate to S is defined in the form
JS(u)=∞∑m=0(−1)m(m)!Γ−1(S+(m+1)I)(u2)S+2mI=(u2)SΓ−1(S+I)0F1(−;S+I,−u24), | (2.8) |
where S is a matrix in Cd×d satisfying the condition
υisnotanegativeintegerforeveryυ∈σ(S). | (2.9) |
Definition 2.5. [25,28,31] Let M and N be commuting matrices in Cd×d such that N is an invertible matrix. For any natural number n∈N0, the n-th generalized Bessel matrix polynomial Bn(u;M,N) is defined by
Bn(u;M,N)=n∑m=0(−1)mm!(−nI)m(M+(n−1)I)m(uN−1)m=2F0[−nI,M+(n−1)I−;−uN−1]. | (2.10) |
The following lemmas are needed to find certain integral representations of the Bessel matrix function and generalized Bessel matrix polynomials
Lemma 2.2. For u,v,λ,δ∈C,v>0,Re(δ)>0,Re(λ)>0 and S is a positive stable matrix in Cd×d such that S+I is an invertible matrix in Cd×d and ˜β(S+λI)>−1, the following formula holds:
∫∞0uλ−12e−δu2JS(uv)√uvdu=2−(S+I)vS+12Iδ−12(S+(λ+1)I)Γ−1(S+I)Γ(12(S+(λ+1)I))×1F1[12(S+(λ+1)I),S+I;−v24δ], | (2.11) |
where JS(u) is Bessel matrix function given in (2.8).
Proof. To prove (2.11), let the left hand side equal to:
LHS=∫∞0uλ−12e−δu2JS(uv)√uvdu=∞∑m=0(−1)mm!Γ−1(S+(m+1)I)(v2)S+2mIv12×∫∞0e−δu2uS+(λ+2m)Idu. |
Setting w=δu2 we have
LHS=∞∑m=0(−1)m2m!Γ−1(S+(m+1)I)(v2)S+2mIv12δ−mI−12(S+(λ+1)I)×∫∞0e−wwmI+12(S+(λ−1)I)dw=vS+12I2−(S+I)δ−12(S+(λ+1)I)×∞∑m=0(−1)mm!Γ(12(S+(λ+1)I+mI)Γ−1(S+(m+1)I)(v2/4δ)m. |
This completes the proof of Eq (2.11) asserted by Lemma 2.2.
Lemma 2.3. Let S,M and P be positive stable and commuting matrices in Cd×d such that (1+n)I−S and (2−n)I−(S+M), be invertible matrices. Then, we have the integral representation of generalized Bessel matrix polynomials as follows:
∫∞0uS−IBn(1;M,μu)Bm(1;P,νu)e−μudu=(−1)nμ−SΓ(S)(S+M−I)n[(I−S)n]−1×3F2[−mI,P+(m−1)I,2I−S−M(1+n)I−S,(2−n)I−(S+M);μ/ν], | (2.12) |
where μ,ν∈C, Re(μ)>0,Re(ν)>0, ˜β(S+M−(1−n)I)>0 and ˜β((1+n)I−S)>0.
Proof. Expanding the two Bessel matrix polynomials in (2.12) by the series (2.10) and interchanging the order of integration and summation, we observe that
LHS=n∑k=0(−nI)k(M+(n−1)I)k(−1/μ)kk!×m∑h=0(−mI)h(P+(m−1)I)h(−1/ν)hh!×∫∞0uS−(h+k+1)Ie−μudu. |
Putting τ=μu, we have
LHS=n∑k=0m∑h=0(−nI)k(M+(n−1)I)k(−mI)h(P+(m−1)I)h(−1/ν)h(−1/μ)kh!k!×μ−(S−(k+h)I)∫∞0τS−(k+h+1)Ie−τdτ=n∑k=0m∑h=0(−nI)k(M+(n−1)I)k(−mI)h(P+(m−1)I)h×(−1)h(−1/μ)kh!k!μ−(S−kI)Γ(S−(h+k)I)=μ−Sm∑h=0(−mI)h(P+(m−1)I)h(−μ/ν)hh!×n∑k=0(−nI)k(M+(n−1)I)kΓ(S−hI)[((1+h)I−S)k]−1k!=μ−SΓ(S)Γ(I−S)Γ(2I−(S+M))Γ−1((1+n)I−S)Γ−1((2−n)I−(S+M))×m∑h=0(−mI)h(P+(m−1)I)h(2I−(S+M))h×[((1+n)I−S)h]−1[((2−n)I−(S+M))h]−1(μ/ν)hh!. |
We thus arrive at the desired result (2.12).
We begin this section with defining a matrix analogue of Hankel transform and its inverse as follows.
Let us consider the generalization of the Hankel integral transform and its inverse by help of the Bessel matrix function JS(w) of the first kind associate to the matrix S∈Cd×d in the following definition:
Definition 3.1. (Matrix Hankel Transforms) Let S be a matrix in Cd×d satisfying (2.9) and let Φ(u) be a function defined for u≥0. The Hankel transform involving Bessel matrix function as kernel of Φ(u) is defined as
ΞS(v)≡HS{Φ(u);v}≡∫∞0Φ(u)√uvJS(uv)du, | (3.1) |
where v>0 and JS(uv) is Bessel matrix function of the first kind defined in (2.8).
If ˜β(S)>1/2, Hankel's repeated integral immediately gives the inversion formula
Φ(u)=H−1S{ΞS(v);u}≡∫∞0ΞS(v)√uvJS(uv)dv. | (3.2) |
Remark 3.1. If the matrix S∈C1×1=C, then the Hankel transform and the inverse Hankel transform in Definition 3.1 reduce to Hankel transforms in scalar setting (See [6,16,23]).
Remark 3.2. The most important special cases of the Hankel transform correspond to S=0 and S=I are often useful for the solution of problems involving Laplace's equation in an axisymmetric cylindrical geometry (See [6,20]).
Remark 3.3. The Hankel transform (3.1) and the inverse Hankel transforms (3.2) are useful in diverse engineering and physical problems and their relevant connections with other integral transforms and also with special matrix functions (For instance, see [6,24,25,32,33,34]).
Now we give our main theorem, which encompass the matrix analogue of Hankel transforms of functions involving the generalized Bessel matrix polynomials.
Theorem 3.1. Let S and N be commuting matrices in Cd×d. If
Φ(u)=uS+(2n+12)Ie−σu2Bn(N;(1−2n)I−S,u2), | (3.3) |
then, we have
ΞS(v)=(2σ)−(S+(2n+1)I)vS+(2n+12)Ie−v24σBn(4σ(I−σN);(1−2n)I−S,−v2), | (3.4) |
where S is a positive stable matrix in Cd×d, ˜β(S+nI)>−1, v>0 and σ∈C such that Re(σ)>0.
Proof. To prove (3.4) substitute for Bn(N;(1−2n)I−S,u2) by its series expansion in (2.10) into (3.1), we consider
ΞS(v)=n∑m=0((−N)mm!)(−nI)m(−(S+nI))m×∫∞0uS+(2n−2m+12)Ie−σu2JS(uv)√uvdu. |
Applying Lemma 2.2, we get
ΞS(v)=2−(S+I)vS+12IΓ−1(S+I)×n∑m=0(σ(m−n−1)I−S(−N)mm!)(−nI)m(−(S+nI))mΓ(S+(n+1−m)I)×1F1[S+(n+1−m)I,S+I;−v24σ]=2−(S+I)vS+12Iσ−(S+(n+1)I)e−v24σ×n∑m=0(−Nσ)mm!(−nI)m(−(S+nI))m(S+I)n−m×1F1[(−n+m)I,S+I;−v24σ]. |
Applying the matrix analogue of Kummer's transformations in [32], we obtain
ΞS(v)=2−(S+I)vS+12I(−Nσ)nσ−(S+(n+1)I)e−v24σ×∞∑m=0(Nσ)−m(S+I)m(n−m)!(−nI)n−m(−(S+nI))n−m×1F1[−mI,S+I;v24σ]=2−(S+I)vS+12I(−Nσ)nσ−(S+(n+1)I)e−v24σ×∞∑m=0(Nσ)−m(S+I)nm!(−nI)m×1F1[−mI,S+I;v24σ]=2−(S+I)vS+12I(−Nσ)nσ−(S+(n+1)I)(S+I)ne−v24σ×n∑m=0(−nI)m(Nσ)−mm!m∑t=0(−mI)t[(S+I)t]−1t!(v24σ)t |
Setting m=t+s in the above expression to get
ΞS(v)=2−(S+I)vS+12I(−Nσ)nσ−(S+(n+1)I)(S+I)ne−v24σ×n−t∑s=0(−nI)s+t(Nσ)−(s+t)(s+t)!n∑t=0(−(s+t)I)t[(S+I)t]−1t!(v24σ)t=2−(S+I)vS+12I(−Nσ)nσ−(S+(n+1)I)(S+I)ne−v24σ×n−t∑s=0(−nI)t((−n+t)I)s(Nσ)−(s+t)s!n∑t=0[(S+I)t]−1t!(−v24σ)t=2−(S+I)vS+12I(−Nσ)nσ−(S+(n+1)I)(S+I)ne−v24σ×n∑t=0(−nI)t[(S+I)t]−1t!(−Nσ)−t(v24σ)t×n−t∑s=0((−n+t)I)s(Nσ)−ss!. |
After changing the order of summation and simplifying yield
ΞS(v)=2−(S+I)vS+12I(−Nσ)nσ−(S+(n+1)I)(S+I)ne−v24σ×n∑t=0(−nI)n−t[(S+I)n−t]−1(n−t)!(−v2N−14σ2)n−t{I−(Nσ)−1}t=2−(S+2n+1)v(S+(2n+12)I)σ−(S+(2n+1)I)e−u24σ×n∑t=0(−nI)t(−(S+nI))tt!{−v24σ(I−(Nσ)−1)}t. |
This finalizes the proof of the Theorem 3.1.
Theorem 3.2. Let S,P and M be positive stable and commuting matrices in Cd×d, satisfying the condition (2.4). When
Φ(u)=uP+12Ie−σu2Bn(1;M,σu2), | (3.5) |
then, we have
ΞS(v)=(−1)nσ−(12(P+S)+I)(2)−(S+I)vS+12I×Γ(12(P+S))(M+12(P+S))nΓ−1(S+I)[(−(12(P+S)))n]−1×2F2[(1−n)I+12(P+S),nI+M+12(P+S),S+I,M+12(P+S);−v24σ], | (3.6) |
where ˜β(P)>−32, v>0 and σ∈C such that Re(σ)>0.
Proof. By Definition 2.6 and applying (3.1) into (3.5), we obtain
ΞS(v)=∫∞0uP+(2n+12)Ie−σu2Bn(1;M,σu2)JS(uv)√uvdu=n∑m=0(−1/σ)m(−nI)m(M+(n−1)I)mm!×∫∞0uP+(−2m+12)Ie−σu2JS(uv)√uvdu. |
Then, by virtue of Lemma 2.2 applied to the above equation we attain
ΞS(v)=n∑m=0(−1/σ)m(−nI)m(M+(n−1)I)mm!×2−(S+12I)(σ)−12(P+S−(2m−2)I)vS+12I×Γ−1(S+I)Γ(12(P+S−(2m−2)I))×1F1[12(P+S)+(1−m)I,S+I;−v24σ]=2−(S+I)(σ)−12(P+S+I)vS+12IΓ−1(S+I)Γ(12(P+S+I))×n∑m=0(−nI)m(M+(n−1)I)m[(−12(P+S))m]−1m!×∞∑s=0Γ(12(P+S)+(1−m+s)I)Γ(S+I)×Γ−1(12(P+S)+(1−m)I)Γ−1(S+(s+1)I)(−v24σ)ss!. |
Applying Lemma 2.1 and after simplification, we thus obtain the desired result as follows
ΞS(v)=2−(S+I)(σ)−(12(P+S)+I)vS+12IΓ−1(S+I)Γ(12(P+S)+I)×∞∑s=0(12(P+S)+I)s[(S+I)s]−1(−v24σ)ss!×n∑m=0(−nI)m(M+(n−1)I)m[(−12(P+S)−sI)m]−1m!=2−(S+I)(σ)−(12(P+S)+I)vS+12IΓ−1(S+I)Γ(12(P+S)+I)(−1)n×(12(P+S+)+M)n[(−12(P+S))n]−1×∞∑s=0(12(P+S)+(1−n)I)s(12(P+S)+M+nI)s×[(S+I)s]−1[(12(P+S)+M)s]−1(−v24σ)ss!. |
Next, we consider some interesting special cases of the Theorem 3.2 in the following corollary:
Corollary 3.1. ● If S=P, (3.6) gives:
ΞS(v)=(−1)n2−12(σ)−(S+I)(12v)S+12I(S+M)n[(−S)n]−1×2F2[S+I(1−n),S+M+nIS+M,S+I;−v24σ], |
where ˜β(S)>−32, and Re(σ)>0.
● If S=P=M, (3.6) gives:
ΞS(v)=(−1)n(2σ)−12(12σv)S+12I(2S)n[(−S)n]−1×2F2[S+I(1−n),2S+nI2S,S+I;−v24σ], |
where ˜β(S)>−32 and Re(σ)>0.
● If S=P=M and σ=12, (3.6) gives:
ΞS(v)=(−1)nvS+12I(2S)n[(−S)n]−1×2F2[S+I(1−n),2S+nI2S,S+I;−v22], |
where ˜β(S)>−32.
● If P=S+2nI, (3.6) gives:
ΞS(v)=(v2σ)S+(2n+1)I1√v(S+I)n[−(S+nI)n]−1[(S+M+nI)n]−1×e−v24σ2F0[−nI,I(1−2n)−S−M−;−4σv2], |
where ˜β(S)>−1 and v>0.
● Taking S=12 in (3.6) to get:
ΞS(v)=∫∞0uP+12Ie−σu2Bn(1;M,σu2)sin(uv)du=1π(σ)−P2−I4v√2[(−P2−I4)n]−1(M+P2+I4)nΓ(P2+54I)×2F2[P2+(54−n)I,M+P2+(14+n)I32I,M+12P+14I;−v24σ], |
where ˜β(P)>−3/2 and Re(σ)>0.
● Taking S=−12 in (3.6) to get:
ΞS(v)=∫∞0uP+12Ie−σu2Bn(1;M,σu2)cos(uv)du=2−12(σ)−P2−34I[(−P2+I4)n]−1(M+P2−I4)nΓ(P2+34I)×2F2[P2+(34−n)I,M+P2−(14−n)I12I,M+12P−14I;−v24σ], |
where ˜β(P)>−3/2 and Re(σ)>0.
Remark 3.4. The last two special cases in Corollary 3.1, present the formulae of the Fourier sine and cosine transforms when S=±12 in (3.1).
Theorem 3.3. Let Bn(u;M,N) be given in (2.10). If
Φ(u)=Bn(σu2;M,N), | (3.7) |
then, we have
ΞS(v)=212v−1Γ(12S+34I)Γ−1(12S+14I)×4F0[−nI,M+(n−1)I,12S+34I,−12S+34I,−;4σ(v2N)−1], | (3.8) |
where ˜β(S)>−1/2 and v>0.
Proof. To establish Theorem 3.3, from (3.7) into (3.1), we consider the following integral
ΞS(v)=∫∞0Bn(σu2;M,N)JS(uv)√uvdu=n∑m=0(−nI)m(M+(n−1)I)m(−σN−1)mm!∫∞0u2mJS(uv)√uvdu=n∑m=0(−nI)m(M+(n−1)I)m(−σN−1)mm!×22m+12v−2m−1Γ(12(S+(2m+3/2)I))Γ−1(12(S−(2m−1/2)I))=√2v−1Γ(12S+3/4I)Γ−1(12S+1/4I)n∑m=0(−nI)m(M+(n−1)I)m×(12S+3/4I)m[(12S+1/4I)−m]−1(−4σN−1v−2)mm!=√2v−1Γ(12S+3/4I)Γ−1(12S+1/4I)n∑m=0(−nI)m(M+(n−1)I)m×(12S+3/4I)m(−12S+3/4I)m(−4σN−1v−2)mm!, |
which, in terms of (2.7), yields our desired result (3.8).
Theorem 3.4. Let Bn(u;M,N) be given in (2.10) and S,P,M and N be positive stable and commuting matrices in Cd×d. When
Φ(u)=uP+12Ie−σu2Bn(λu2;M,N), | (3.9) |
then, we have
ΞS(v)=2−(S+I)vP+12Iσ−(12(P+S)+I)×∞∑k=0Γ(12(P+S)+(1+k)I)Γ−1(S+(1+k)I)(−v24σ)kk!×3F0[−nI,M+(n−1)I,12(P+S)+(1+k)I−;−λ(σN)−1], | (3.10) |
where ˜β(P+S)>−2,v>0 and λ>0.
Proof. Inserting (2.10) in (3.9) and from the relation (3.1), we find that
ΞS(v)=∫∞0uP+12Ie−σu2Bn(λu2;M,N)JS(uv)√uvdu=∞∑k=02−SvS+12IΓ−1(S+(k+1)I)(−v2/4)kk!×∫∞0uP+S+(2k+1)Ie−σu2Bn(λu2;M,N)du. |
Taking z=u2 and making necessary calculations, we see that
ΞS(v)=∞∑k=02−(S+I)vS+12IΓ−1(S+(k+1)I)(−v2/4)kk!×∫∞0z12(P+S)+kIe−σzBn(λz;M,N)dz=2−(S+I)vS+12I∞∑k=0(σ)−(12(P+S)+(k+1)I)×Γ(12(P+S)+(k+1)I)Γ−1(S+(k+1)I)(−v2/4)kk!×3F0[−nI,M+(n−1)I,12(P+S)+(1+k)I−;−λ(σN)−1]=2−(S+I)vS+12I(σ)−(12(P+S)+I)Γ(12(P+S)+I)Γ−1(S+I)×∞∑k=0(12(P+S)+I)k[(S+I)k]−1(−v2/4σ)kk!×3F0[−nI,M+(n−1)I,12(P+S)+(1+k)I−;−λ(σN)−1]. |
This completes the proof of (3.10).
Theorem 3.5. Let S,P,M and M1 be positive stable and commuting matrices in Cd×d, such that S,P and M satisfy the condition (2.4). If
Φ(u)=uP+12Ie−σu2Bn(1;M,σu2)Bm(1;M1,u2), | (3.11) |
then, we have
ΞS(v)=(−1)n2−(S+I)vP+12Iσ−(12(P+S)+I)×Γ(12(P+S)+I)Γ−1(S+I)(M+(12(P+S)))n[(I−(12(P+S)))n]−1×∞∑k=0(M+(1−n)I)k((12(P+S)+M+nI))k×[((12(P+S)+M))k]−1[(S+I)k]−1(−v2/4)kk!×3F2[−mI,M1+(m−1)I,(1−k)I−12(P+S)−M(n−k)I−12(P+S),(1−k−n)I−12(P+S)−M;σ], | (3.12) |
where v>0,Re(σ)>0 and ˜β(P)>−1/2.
Proof. From (3.11) into (3.1) and using (2.10), we have
ΞS(v)=∫∞0uP+12Ie−σu2Bn(1;M,σu2)Bm(1;M1,u2)JS(uv)√uvdu=∞∑k=0(−1)k√vΓ−1(S+(k+1)I)(12v)S+2kIk!×∫∞0uP+S+(2k+1)Ie−σu2Bn(1;M,σu2)Bm(1;M1,u2)du. |
Putting u2=z, we get
ΞS(v)=2−(S+I)v(S+12I)∞∑k=0Γ−1(S+(k+1)I)(−14v2)kk!×∫∞0z12(S+P)+kIe−σzBn(1;M,σz)Bm(1;M1,z)dz. |
Applying Lemma 2.3 and after simplification, we see that
ΞS(v)=(−1)n2−(S+I)v(S+12I)(σ)−(12(S+P)+I)×Γ(12(S+P)+I)Γ−1(S+I)(M+12(S+P))n[(I−12(S+P))n]−1×∞∑k=0(M+(1−n)I)k(M+(12(S+P))+nI)k×[(S+I)k]−1[(M+(12(S+P)))k]−1(−v2/4)kk!×3F2[−mI,M1+(m−1)I,(1−k)I−12(P+S)−M(n−k)I−12(P+S),(1−k−n)I−12(P+S)−M;σ], |
which is the claimed result in (3.12).
Theorem 3.6. Let Bn(u;M,N) be given in (2.10). When
Φ(u)=loguBn(λu2;M,N), | (3.13) |
then, we have
ΞS(v)=1v√2Γ(12S+3/4I)Γ−1(12S+1/4I)×n∑m=0(−nI)m(M+(n−1)I)m×(12S+3/4I)m(−12S+3/4I)m(4λ(Nv2)−1)mm!×{ψ(12S+(3/4+m)I)+ψ(12S+(1/4−m)I)−log(v2/4)} | (3.14) |
where M,N and S are commuting matrices in Cd×d such that ˜β(S)>−3/2, ψ(S) is the digamma matrix function defined in [25] by
ψ(S)=Γ−1(S)Γ′(S), |
where Γ−1(S) and Γ′(S) are reciprocal and derivative of the gamma matrix function, respectively and v>0,λ>0.
Proof. Inserting (3.13) into (3.1) and using (2.10), we observe that
ΞS(v)=∫∞0loguBn(λu2;M,N)JS(uv)√uvdu=n∑m=0(−nI)m(M+(n−1)I)m(−λN−1)mm!×∫∞0u2mloguJS(uv)√uvdu=1v√2n∑m=0(−nI)m(M+(n−1)I)m(−4MN−1v−2)mm!×Γ(12S+(m+3/4)I)Γ−1(12S−(m−1/4)I)×{ψ(12S+(m+3/4)I)+ψ(12S−(m−1/4)I)−log(v2/4)}. |
Thus, using the above expression, we immediately reach in (3.13).
Corollary 3.2. ● If S=12, (3.14) gives:
ΞS(v)=∫∞0loguBn(λu2;M,N)sin(uv)du={√12πv√2π}n∑m=0(−nI)m(M+(n−1)I)m(12)m(4λ(Nv2)−1)mm!×{ψ(1+m)+ψ(1−m)−log(v22)}=(12v)n∑m=0(−nI)m(M+(n−1)I)m(12)m(4λ(Nv2)−1)mm!×{m∑k=0(k+1)−1+ψ(1)+{−(m∑k=1(1−k)−1−ψ(1))}−log(v24)}=(12v)n∑m=0(−nI)m(M+(n−1)I)m(12)m(4λ(Nv2)−1)mm!×{m∑k=1(−2k(1−k2))−2γ−log(v24)}, |
where −γ=0.5777215665.
● If S=−12, (3.14) gives:
ΞS(v)=∫∞0loguBn(λu2;M,N)cos(uv)du=0. |
The theory of integral transforms are played a very crucial role in the area of mathematical analysis, mathematical physics and engineering sciences.
One of these transforms is the Hankel transform that is more suitable for the problems that are defined in terms of polar coordinate variables. It should be noted that, the kernel of the Hankel transform is the Bessel function, perhaps, for this reason, in some literature, this transform is called Bessel transformation or Fourier−Bessel transform. In addition to, the Hankel transforms are natural generalizations of Fourier transforms.
In this work, Hankel transforms containing Bessel matrix functions as kernels are proposed. Then we provided some matrix Hankel integrals of generalized Bessel matrix polynomials together with ceratin elementary matrix functions, exponential function, and logarithmic function. Further, we gave the matrix versions of those results for Hankel transforms (or formulas) involving a variety of functions and polynomials (See, e.g., [35,Chapter Ⅷ], also see [6,Chapter 7]).
The author extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant (R.G.P.1/3/42).
This work does not have any conflicts of interest.
[1] |
N. Khan, T. Usman, M. Aman, S. Al-Omari, S. Araci, Computation of certain integral formulas involving generalized Wright function, Adv. Differ Equ., 2020 (2020), 491. doi: 10.1186/s13662-020-02948-8
![]() |
[2] |
S. Mubeen, R. S. Ali, I. Nayab, G. Rahman, T. Abdeljawad, K. S. Nisar, Integral transforms of an extended generalized multi-index Bessel function, AIMS Mathematics, 5 (2020), 7531–7547. doi: 10.3934/math.2020482
![]() |
[3] |
J. Choi, K. B. Kachhia, J. C. Prajapati, S. D. Purohit, Some integral transforms involving extened generalized Gauss hypergeomtric functions, Commun. Korean Math. Soc., 31 (2016), 779–790. doi: 10.4134/CKMS.c150242
![]() |
[4] |
Y. Luchko, Some schemata for applications of the integral transforms of mathematical physics, Mathematics, 7 (2019), 254. doi: 10.3390/math7030254
![]() |
[5] |
H. M. Srivastava, R. Agarwal, S. Jain, Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions, Math. Method. Appl. Sci., 40 (2017), 255–273. doi: 10.1002/mma.3986
![]() |
[6] | L. Debnath, D. Bhatta, Integral transforms and their applications, 3 Eds., London and New York: Chapman and Hall (CRC Press), Taylor and Francis Group, 2015. |
[7] | D. Ouchenane, A. Choucha, M. Abdalla, S. Boulaaras, B. Cherif, On the porous-elastic system with thermoelasticity of type Ⅲ and distributed delay: well-posedness and stability, J. Funct. Spaces, 2021 (2021), 9948143. |
[8] |
D. Albayrak, A. Dernek, N. Dernek, F. Ucar, New intregral transform with Generalized Bessel-Maitland function kernel and its applications, Math. Method. Appl. Sci., 44 (2021), 1394–1408. doi: 10.1002/mma.6837
![]() |
[9] |
S. Boulaaras, A. Choucha, B. Cherif, A. Alharbi, M. Abdalla, Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions, AIMS Mathematics, 6 (2021), 4664–4676. doi: 10.3934/math.2021274
![]() |
[10] | A. Choucha, S. Boulaaras, D. Ouchenane, S. Alkhalaf, I. Mekawy, M. Abdalla, On the system of Coupled nondegenerate Kirchhoff equations with distributed delay: global existence and exponential decay, J. Funct. Spaces, 2021 (2021), 5577277. |
[11] | M. Hidan, S. Boulaaras, B. Cherif, M. Abdalla, Further results on the (p,k)−analogue of hypergeometric functions associated with fractional calculus operators, Math. Probl. Eng., 2021 (2021), 5535962. |
[12] | R. Guefaifia, S. M. Boulaaras, A. A. E. El-Sayed, M. Abdalla, B. Cherif, On existence of sequences of weak solutions of fractional systems with Lipschitz nonlinearity, J. Funct. Spaces, 2021 (2021), 5510387. |
[13] | A. Menaceur, S. M. Boulaaras, A. Makhlouf, K. Rajagobal, M. Abdalla, Limit cycles of a class of perturbed differential systems via the first-order averaging method, Complexity, 2021 (2021), 5581423. |
[14] |
A. J. Durán, On Hankel transform, Proc. Amer. Math. Soc., 110 (1990), 417–424. doi: 10.1090/S0002-9939-1990-1019749-9
![]() |
[15] |
E. L. Koh, A. H. Zemanian, The complex Hankel and I-Transformations of generalized functions, SIAM J. Appl. Math., 16 (1968), 945–957. doi: 10.1137/0116076
![]() |
[16] |
I. N. Sneddon, On finite Hankel transforms, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 37 (1946), 17–25. doi: 10.1080/14786444608521150
![]() |
[17] |
J. M. R. Méndez Perez, M. M. Socas Robayna, A pair of generalized Hankel-Clifford transformations and their applications, J. Math. Anal. Appl., 154 (1991), 543–557. doi: 10.1016/0022-247X(91)90057-7
![]() |
[18] |
M. Abdalla, Fractional operators for the Wright hypergeometric matrix functions, Adv. Differ. Equ., 2020 (2020), 246. doi: 10.1186/s13662-020-02704-y
![]() |
[19] | R. Agarwal, M. P. Goswami, R. P. Agarwal, Hankel transform in bicomplex space and applications, TJMM, 8 (2016), 1–14. |
[20] |
P. D. Pansare, B. B. Waphare, Pseudo-differential operator involving generalized Hankel-Clifford transformation, Asian-European J Math., 9 (2016), 1650016. doi: 10.1142/S1793557116500169
![]() |
[21] |
P. K. Gupta, S. Niwas, N. Chaudhary, Fast computation of Hankel transform using orthonormal exponential approximation of complex kernel function, J. Earth Syst. Sci., 115 (2006), 267–276. doi: 10.1007/BF02702041
![]() |
[22] |
F. N, Kong, Hankel transforms filters for dipole antenna radiation in a conductive medium, Geophys. prospect., 55 (2007), 83–89. doi: 10.1111/j.1365-2478.2006.00585.x
![]() |
[23] |
S. P. Malgonde, L. Debnath, On Hankel type integral transformation of generalized functions, Integr. Transf. Spec. F., 15 (2004), 421–430. doi: 10.1080/10652460410001686055
![]() |
[24] | E. M. Shehata, N. Faried, R. M. EL Zafarani, A general quantum Laplace transform, Adv. Diff, Equ., 613 (2020), 613. |
[25] |
M. Abdalla, Special matrix functions: characteristics, achievements and future directions, Linear Multilinear A., 68 (2020), 1–28. doi: 10.1080/03081087.2018.1497585
![]() |
[26] |
M. Abdalla, Further results on the generalised hypergeometric matrix functions, Int. J. Comput. Sci. Math., 10 (2019), 1–10. doi: 10.1504/IJCSM.2019.097642
![]() |
[27] | L. Jódar, R. Company, E. Navarro, Bessel matrix functions: explicit solution of coupled Bessel type equations, Utilitas Math., 46 (1994), 129–141. |
[28] | M. Abdalla, M. M. Hidan, Fractional orders of the generalized Bessel matrix polynomials, Eur. J. Pure Appl. Math., 10 (2017), 995–1004. |
[29] | N. J. Higham, Functions of matrices: theory and computation, USA: SIAM, 2008. |
[30] |
M. Abdalla, A. Bakhet, Extended Gauss hypergeometric matrix functions, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 1465–1470. doi: 10.1007/s40995-017-0183-3
![]() |
[31] |
M. Abdalla, Operational formula for the generalized Bessel matrix polynomials, J. Mod. Methonds. Numer. Math., 8 (2017), 156–163. doi: 10.20454/jmmnm.2017.1316
![]() |
[32] |
R. Dwivedi, V. Sahai, Lie algebras of matrix difference differential operators and special matrix functions, Adv. Appl. Math., 122 (2021), 102109. doi: 10.1016/j.aam.2020.102109
![]() |
[33] | M. Abdalla, Computation of Fourier transform representations involving the generalized Bessel matrix polynomials, 2021, DOI: 10.21203/rs.3.rs-172401/v1,Posted. |
[34] | F. Kamache, S. M. Boulaaras, R. Guefaifia, N. T. Chung, B. B. Cherif, M. Abdalla, On existence of multiplicity of weak solutions for a new class of nonlinear fractional boundary value systems via variational approach, Adv. Math. Phys., 2021 (2021), 5544740. |
[35] | A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of integral transforms, Volume Ⅱ, New York, Toronto and London: McGraw-Hill Book Company, 1954. |
1. | Mohamed Abdalla, Mohamed Akel, Junesang Choi, Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials, 2021, 13, 2073-8994, 622, 10.3390/sym13040622 | |
2. | Muajebah Hidan, Mohamed Akel, Salah Mahmoud Boulaaras, Mohamed Abdalla, Xinguang Zhang, On Behavior Laplace Integral Operators with Generalized Bessel Matrix Polynomials and Related Functions, 2021, 2021, 2314-8888, 1, 10.1155/2021/9967855 | |
3. | Mohamed Abdalla, Muajebah Hidan, Analytical properties of the two-variables Jacobi matrix polynomials with applications, 2021, 54, 2391-4661, 178, 10.1515/dema-2021-0021 | |
4. | Mohamed Abdalla, Salah Mahmoud Boulaaras, Santosh Kumar, Analytical Properties of the Generalized Heat Matrix Polynomials Associated with Fractional Calculus, 2021, 2021, 2314-8888, 1, 10.1155/2021/4065606 | |
5. | Mohamed Abdalla, Salah Boulaaras, Mohamed Akel, On Fourier–Bessel matrix transforms and applications, 2021, 44, 0170-4214, 11293, 10.1002/mma.7489 | |
6. | M. Abdalla, M. Akel, Computation of Fourier transform representations involving the generalized Bessel matrix polynomials, 2021, 2021, 1687-1847, 10.1186/s13662-021-03572-w | |
7. | Hari Mohan Srivastava, An Introductory Overview of Bessel Polynomials, the Generalized Bessel Polynomials and the q-Bessel Polynomials, 2023, 15, 2073-8994, 822, 10.3390/sym15040822 | |
8. | Zhi Yang, Jingtian Tang, Xiangyu Huang, Minsheng Yang, Yishu Sun, Xiao Xiao, High-Precision Forward Modeling of Controlled Source Electromagnetic Method Based on Weighted Average Extrapolation Method, 2024, 13, 2079-9292, 3827, 10.3390/electronics13193827 |