In this paper, we present a new approach for the solvability of the indefinite Hamburger moment problem in the class of generalized Nevanlinna functions with a given negative index, which is more algebraic and completely different from the existing method [
Citation: Yongjian Hu, Huifeng Hao, Xuzhou Zhan. On the solvability of the indefinite Hamburger moment problem[J]. AIMS Mathematics, 2023, 8(12): 30023-30037. doi: 10.3934/math.20231535
In this paper, we present a new approach for the solvability of the indefinite Hamburger moment problem in the class of generalized Nevanlinna functions with a given negative index, which is more algebraic and completely different from the existing method [
[1] | N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, London: Oliver and Boyd, 1965. |
[2] | S. Barnett, Polynomials and Linear Control Systems, New York: Marcel Dekker, 1983. |
[3] | S. Barnett, C. Storey, Matrix Methods in Stability Theory, London: Nelson, 1970. |
[4] | G. N. Chen, The general rational interpolation problem and its connection with the Nevanlinna-Pick interpolation and power moment problem, Linear Algebra Appl., 273 (1998), 83–117. https://doi.org/10.1016/S0024-3795(97)00346-7 doi: 10.1016/S0024-3795(97)00346-7 |
[5] | G. N. Chen, B. Zhao, H. P. Zhang, The general rational interpolationproblem in the scalar case and its Hankel vector, Linear Algebra Appl., 244 (1996), 165–201. https://doi.org/10.1016/0024-3795(94)00223-1 doi: 10.1016/0024-3795(94)00223-1 |
[6] | G. N. Chen, H. P. Zhang, Note on products of Bezoutians and Hankel matrices, Linear Algebra Appl., 225 (1995), 23–35. https://doi.org/10.1016/0024-3795(93)00305-J doi: 10.1016/0024-3795(93)00305-J |
[7] | M. Dereyagin, On the Schur algorithm for indefinite moment problem, Meth. Funct. Anal. Topol., 9 (2003), 133–145. |
[8] | V. Derkach, S. Hassi, H. de Snoo, Truncated moment problems in the class of generalized Nevanlinna functions, Math. Nachr., 285 (2012), 1741–1769. https://doi.org/10.1002/mana.201100268 doi: 10.1002/mana.201100268 |
[9] | M. Fiedler, Quasidirect decomposition of Hankel and Toeplitz matrices, Linear Algebra Appl., 61 (1984), 155–174. https://doi.org/10.1016/0024-3795(84)90028-4 doi: 10.1016/0024-3795(84)90028-4 |
[10] | M. Fiedler, V. Pták, Bezoutians and intertwining matrices, Linear Algebra Appl., 86 (1987), 43–51. https://doi.org/10.1016/0024-3795(87)90286-2 doi: 10.1016/0024-3795(87)90286-2 |
[11] | M. Fiedler, V. Pták, Loewner and Bezout matrices, Linear Algebra Appl., 101 (1988), 187–220. https://doi.org/10.1016/0024-3795(88)90151-6 |
[12] | P. A. Fuhrmann, Polynomial models and algebraic stability criteria, In: Feedback Control of Linear and Nonlinear Systems: Proceedings of the Joint Workshop on Feedback and Synthesis of Linear and Nonlinear Systems, 1982, 78–90. |
[13] | G. Heinig, U. Jungnickel, Hankel matrices generated by the Markov parameters of rational functions, Linear Algebra Appl., 76 (1986), 121–135. https://doi.org/10.1016/0024-3795(86)90217-X doi: 10.1016/0024-3795(86)90217-X |
[14] | R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge: Cambridge University Press, 1985. |
[15] | M. G. Krein, A. A. Nudelman, The Markov Moment and Extremal Problems, New York: American Mathematical Society, 1977. |
[16] | P. Lancaster, M. Tismenetsky, The Theory of Matrices with Applications, $2^nd$ edition, New York: Academic Press, 1985. |
[17] | Y. P. Song, H. F. Hao, Y. J. Hu, G. N. Chen, Some propositions on generalized Nevanlinna functions of the class $\mathcal N_{\kappa}$, Adv. Math. Phys., 2014 (2014), 605492. https://doi.org/10.1155/2014/605492 doi: 10.1155/2014/605492 |