In this paper we expressed the eigenvalues of a sort of heptadiagonal symmetric matrices as the zeros of explicit rational functions establishing upper and lower bounds for each of them. From the prescribed eigenvalues, we computed eigenvectors for these types of matrices, giving also a formula not dependent on any unknown parameter for its determinant and inverse. Potential applications of the results are still provided.
Citation: João Lita da Silva. Spectral properties for a type of heptadiagonal symmetric matrices[J]. AIMS Mathematics, 2023, 8(12): 29995-30022. doi: 10.3934/math.20231534
In this paper we expressed the eigenvalues of a sort of heptadiagonal symmetric matrices as the zeros of explicit rational functions establishing upper and lower bounds for each of them. From the prescribed eigenvalues, we computed eigenvectors for these types of matrices, giving also a formula not dependent on any unknown parameter for its determinant and inverse. Potential applications of the results are still provided.
[1] | R. Álvarez-Nodarse, J. Petronilho, N. R. Quintero, On some tridiagonal $k$-Toeplitz matrices: Algebraic and analytical aspects. Applications, J. Comput. Appl. Math., 184 (2005), 518–537. https://doi.org/10.1016/j.cam.2005.01.025 doi: 10.1016/j.cam.2005.01.025 |
[2] | J. Anderson, A secular equation for the eigenvalues of a diagonal matrix perturbation, Linear Algebra Appl., 246 (1996), 49–70. https://doi.org/10.1016/0024-3795(94)00314-9 doi: 10.1016/0024-3795(94)00314-9 |
[3] | H. Aref, S. Balachandar, A First Course in Computational Fluid Dynamics, Cambridge: Cambridge University Press, 2018. https://doi.org/10.1017/9781316823736 |
[4] | S. O. Asplund, Finite boundary value problems solved by Green's matrix, Math. Scand., 7 (1959), 49–56. https://doi.org/10.7146/math.scand.a-10560 doi: 10.7146/math.scand.a-10560 |
[5] | I. Bar-On, Interlacing properties of tridiagonal symmetric matrices with applications to parallel computing, SIAM J. Matrix Anal. Appl., 17 (1996), 548–562. https://doi.org/10.1137/S0895479893252003 doi: 10.1137/S0895479893252003 |
[6] | R. M. Beam, R. F. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput., 14 (1993), 971–1006. https://doi.org/10.1137/0914059 doi: 10.1137/0914059 |
[7] | D. Bini, M. Capovani, Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl., 52/53 (1983), 99–126. https://doi.org/10.1016/0024-3795(83)80009-3 doi: 10.1016/0024-3795(83)80009-3 |
[8] | J. R. Bunch, C. P. Nielsen, D. C. Sorensen, Rank-one modification of the symmetric eigenproblem, Numer. Math., 31 (1978), 31–48. https://doi.org/10.1007/BF01396012 doi: 10.1007/BF01396012 |
[9] | S. C. Chapra, Applied Numerical Methods with MATLABⓇ for Engineers and Scientists, $4^{th}$ edition, New York: McGraw-Hill, 2018. |
[10] | S. Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal., 14 (1977), 616–619. https://doi.org/10.1137/0714041 doi: 10.1137/0714041 |
[11] | S. E. Ekström, C. Garoni, A. Jozefiak, J. Perla, Eigenvalues and eigenvectors of tau matrices with applications to Markov processes and economics, Linear Algebra Appl., 627 (2021), 41–71. https://doi.org/10.1016/j.laa.2021.06.005 doi: 10.1016/j.laa.2021.06.005 |
[12] | M. Elouafi, An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices, Linear Algebra Appl., 435 (2011), 2986–2998. https://doi.org/10.1016/j.laa.2011.05.025 doi: 10.1016/j.laa.2011.05.025 |
[13] | D. Fasino, Spectral and structural properties of some pentadiagonal symmetric matrices, Calcolo, 25 (1988), 301–310. https://doi.org/10.1007/BF02575838 doi: 10.1007/BF02575838 |
[14] | C. F. Fischer, R. A. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal., 6 (1969), 127–142. https://doi.org/10.1137/0706014 doi: 10.1137/0706014 |
[15] | C. M. da Fonseca, J. Petronilho, Explicit inverses of some tridiagonal matrices, Linear Algebra Appl., 325 (2001), 7–21. https://doi.org/10.1016/S0024-3795(00)00289-5 doi: 10.1016/S0024-3795(00)00289-5 |
[16] | C. M. da Fonseca, On the location of the eigenvalues of Jacobi matrices, Appl. Math. Lett., 19 (2006), 1168–1174. https://doi.org/10.1016/j.aml.2005.11.029 doi: 10.1016/j.aml.2005.11.029 |
[17] | S. Friedland, A. A. Melkman, On the eigenvalues of non-negative Jacobi matrices, Linear Algebra Appl., 25 (1979), 239–253. https://doi.org/10.1016/0024-3795(79)90021-1 doi: 10.1016/0024-3795(79)90021-1 |
[18] | C. Garoni, S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications, Cham: Springer Cham, 2017. https://doi.org/10.1007/978-3-319-53679-8 |
[19] | M. J. C. Gover, The eigenproblem of a tridiagonal $2$-Toeplitz matrix, Linear Algebra Appl., 197/198 (1994), 63–78. https://doi.org/10.1016/0024-3795(94)90481-2 doi: 10.1016/0024-3795(94)90481-2 |
[20] | S. Haley, Solution of band matrix equations by projection-recurrence, Linear Algebra Appl., 32 (1980), 33–48. https://doi.org/10.1016/0024-3795(80)90005-1 doi: 10.1016/0024-3795(80)90005-1 |
[21] | D. A. Harville, Matrix Algebra From a Statistician's Perspective, New York: Springer-Verlag, 1997. https://doi.org/10.1007/b98818 |
[22] | J. D. Hoffman, Numerical Methods for Engineers and Scientists, $2^{ed}$ edition, New York: Marcel Dekker, 2001. https://doi.org/10.1201/9781315274508 |
[23] | R. A. Horn, C. R. Johnson, Matrix Analysis, $2^{ed}$ edition, New York: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139020411 |
[24] | A. J. Keeping, Band matrices arising from finite difference approximations to a third order partial differential equation, SIAM J. Numer. Anal., 7 (1970), 142–156. https://doi.org/10.1137/0707010 doi: 10.1137/0707010 |
[25] | S. Kouachi, Eigenvalues and eigenvectors of some tridiagonal matrices with non-constant diagonal entries, Appl. Math., 35 (2008), 107–120. https://doi.org/10.4064/am35-1-7 doi: 10.4064/am35-1-7 |
[26] | S. Kouachi, Explicit eigenvalues of some perturbed heptadiagonal matrices via recurrent sequences, Lobachevskii J. Math., 36 (2015), 28–37. https://doi.org/10.1134/S1995080215010096 doi: 10.1134/S1995080215010096 |
[27] | D. Kulkarni, D. Schmidt, S. K. Tsui, Eigenvalues of tridiagonal pseudo-Toeplitz matrices, Linear Algebra Appl., 297 (1999), 63–80. https://doi.org/10.1016/S0024-3795(99)00114-7 doi: 10.1016/S0024-3795(99)00114-7 |
[28] | A. Luati, T. Proietti, On the spectral properties of matrices associated with trend filters, Econom. Theory, 26 (2010), 1247–1261. https://doi.org/10.1017/S0266466609990715 doi: 10.1017/S0266466609990715 |
[29] | K. S. Miller, On the inverse of the sum of matrices, Math. Mag., 54 (1981), 67–72. https://doi.org/10.1080/0025570X.1981.11976898 doi: 10.1080/0025570X.1981.11976898 |
[30] | S. Pissanetsky, Sparse Matrix Technology, London: Academic Press, 1984. https://doi.org/10.1016/C2013-0-11311-6 |
[31] | T. Proietti, A. Harvey, A Beveridge–Nelson smoother, Econom. Lett., 67 (2000), 139–146. https://doi.org/10.1016/S0165-1765(99)00276-1 doi: 10.1016/S0165-1765(99)00276-1 |
[32] | M. S. Solary, Finding eigenvalues for heptadiagonal symmetric Toeplitz matrices, J. Math. Anal. Appl., 402 (2013), 719–730. https://doi.org/10.1016/j.jmaa.2013.02.008 doi: 10.1016/j.jmaa.2013.02.008 |
[33] | R. A. Usmani, T. H. Andres, D. J. Walton, Error estimation in the integration of ordinary differential equations, Int. J. Comput. Math., 5 (1975), 241–256. https://doi.org/10.1080/00207167608803115 doi: 10.1080/00207167608803115 |
[34] | L. Wasserman, All of Nonparametric Statistics, New York: Springer Science+Business Media, 2006. https://doi.org/10.1007/0-387-30623-4 |
[35] | A. R. Willms, Analytic results for the eigenvalues of certain tridiagonal matrices, SIAM J. Matrix Anal. Appl., 30 (2008), 639–656. https://doi.org/10.1137/070695411 doi: 10.1137/070695411 |