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Abstract: In this paper we expressed the eigenvalues of a sort of heptadiagonal symmetric matrices as
the zeros of explicit rational functions establishing upper and lower bounds for each of them. From the
prescribed eigenvalues, we computed eigenvectors for these types of matrices, giving also a formula
not dependent on any unknown parameter for its determinant and inverse. Potential applications of the
results are still provided.
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1. Introduction

The spectral properties of tridiagonal matrices is a well-studied topic for which a vast literature can
be found (e.g. [1,5,16,17,19, 25,27, 35], among others), and even formulae for the corresponding
inverse of these matrices has also been discussed over the last decades of twentieth century (see [15]
and references therein). Recently, taking advantage of basic properties of the Chebyshev polynomials,
some authors have established localization theorems for the eigenvalues of real pentadiagonal and
heptadiagonal symmetric Toeplitz matrices by expressing them as the zeros of explicit rational
functions [12, 32]. The eigenvalues of a special kind of heptadiagonal matrices were still derived
in [26] by employing other methods, namely, determinant properties and recurrence relations.

In fact, the above-mentioned matrices are typical examples of a much more wider class called band
matrices (see [30], page 13), and the idea of having explicit formulas to compute its eigenvalues,
eigenvectors or establishing some other properties is both appealing and challenging by reason of their
usefulness in many areas of science and engineering (see, for instance, [4, 10, 11, 14,20, 24, 33]).

In order to give a contribution on this matter, we shall obtain the eigenvalues of the following n X n
heptadiagonal matrix
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[ & n ¢ d O 0 ]
n a b ¢ d
c b a b c
d c a b
0 d c a :
H,=|: 0 o0 el el e el e e e (1.1)
a b ¢ d 0
b a b c
b a b c
: .d c a n
0 ... ... ... ... ... 0 d ¢ n €]

as the zeros of explicit rational functions, also providing upper/lower bounds non-depending of any
unknown parameter to each of them. Further, we shall compute eigenvectors for these sort of matrices
at the expense of the prescribed eigenvalues. To accomplish these purposes, we will obtain an
orthogonal block diagonalization for matrix (1.1) where each block is a sum of a diagonal matrix plus
dyads, i.e.

diag(dy,ds,...,d) +wv] +uv, + ...+ u,Vv,, (1.2)

where u;,v;, j = 1,...,m are k X 1 matrices, by exploiting the modification technique introduced by
Fasino in [13] for matrices of the type (1.1). This key ingredient allows us to get formulas for the
characteristic polynomial of H,, on one hand, and for the inverse of H,, on the other (assuming, of
course, its nonsingularity). With the aim of getting expressions as explicit as possible, we will use not
only results concerning the secular equation of diagonal matrices perturbed by the addition of rank-
one matrices developed by Anderson in the nineties [2], but also a Miller’s formula of the eighties for
the inverse of the sum of matrices [29]. In section four of the paper, applications are given for the
established results, showing its potential usage.

Since the class of matrices H,, includes the ones considered in [12] and [32], our statements will
extend necessarily the results of these papers. Moreover, the current approach also points a way to
achieve localization formulas for the eigenvalues of general symmetric guasi-Toeplitz matrices. In
detail, the eigenvalues of any symmetric quasi-Toeplitz matrix enjoying a block diagonalization with
diagonal elements of the form (1.2) are precisely the eigenvalues of each one of these diagonal blocks,
which in turn can be located/computed by rational functions via Anderson’s secular equation.

2. Auxiliary tools

In this paper, n is generally assumed to be an integer greater or equal to four and a, b, c,d,&,n
in (1.1) will be taken as real numbers; in fact, this last restriction can be discarded because the majority
of forthcoming statements remain valid when a, b, ¢, d, €, 7 are complex numbers. Moreover, S, will
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be the n X n symmetric, involutory and orthogonal matrix defined by

2 . [ ktr
[Splie = m— sm(n " 1). 2.1

Our first auxiliary result is an orthogonal diagonalization for the following n X n heptadiagonal
symmetric matrix

[ a—c b-d ¢ d O 0
b-d a b ¢ d
c b a b
b
0 d c a . . . ) :
Hyo=| & e 2.2)
a b ¢ d 0
b a b c
c b a b c
: d ¢ b a b-d
0 0 d ¢ b-d a-c
Lemma 1. Let a, b, c,d be real numbers and
/lk:a+2bcos(n’%)+2ccos(%)+2dcos(%), k=1,...,n. (2.3)
If ﬁn is the n X n matrix (2.2), then .
H, = S,A,S,,
where A, = diag (4, ..., 4,), and S, is the matrix (2.1).
Proof. Supposing the n X n matrix
[0 1 O 0
1 0
0O 1 O
Q, = ,
0 1 O
: .1 0
[0 ... ... ... 0 1 O]

it is a simple matter of routine to verify that
H, = (a-20)L, +(b-3d)Q, +c Q2 +d Q.
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Using the spectral decomposition

where

S¢

(i.e. the {th column of S,), it follows

H, = Z [(a —2¢) + 2(b — 3d) cos (nézrl

=1

= Z /lgS[ S—gr = SnAnSn,
=1

where A, = diag (44,...,4,), and S,, is the matrix (2.1). The proof is complete. |

The next statement is an orthogonal block diagonalization for matrices H, of the form (1.1) and it
extends Proposition 3.1 in [7], which is valid only for heptadiagonal symmetric Toeplitz matrices.

Lemma 2. Let a,b,c,d,&,n be real numbers, A, k = 1,...,n be given by (2.3) and H,, be the n X n
matrix (1.1).
(a) If n is even,

j+1 Sin (nz_l) j+1 Sin (anr_”l)
| ) || ) »
_ \/% si [(nn—Jrll)ﬂ] _ \/%Sin[azj)ﬂ]
and
= sin (35) = sin (3£5)
| ) || ) | -
7 sin () | i sin (3)
then
Hn:snpn[q())'i \I(,)n ]P,IS,,,
2
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where S, is the n X n matrix (2.1), P, is the n X n permutation matrix defined by

l ifk=20-1ork=2(—-n
[Pn]k,f:

0, otherwise

and
®; = diag (A, A3,..., A1) + (¢ +E—a@)xx" + (d+1—Db)Xy" +(d+n—Db)yx'
Y. =diag (A, Ay, ..., ) +(c+E—a)VW' +(d+n—Db)VW' +(d+n-Db)wv'.
(b) If n is odd,
2 . b ) [ 2 . 2
= sin ;%) 7= sin (%)
2 : 3 2 : 6
Vel Sm(m) Vnrl Sm(m)
X = . S A )
2 : nm 2 : 2nm
| «/msm(m) ] [ \/msm(n?) ]
and
2 : 21 [ 2 . 47
2 sin (%) = sin (%)
2 o 4n 2 o 81
Vo1 ol (T) Vo1 ol (T)
V= . 5 w = . s
2 . (n—-Dr 2 . 2(n—Dr
| sin| 42| | | sin| 2557
then
H-sp| T2 O |prs
n — n*tn O ‘I’% n™n»

where S,, is the n X n matrix (2.1), P, is the n X n permutation matrix defined by
1 ifk=20-1ork=2-n-1
[Polie = .
0, otherwise
and

@, = diag (41, 43,...,4,) + (c+&—axx" +(d+n-b)xy' +(d+n->b)yx'
"P% = dlag (/lz,/14, ..

i)+ (e +E—a)wW +(d+n—-Db)VW' +(d+n—-b)wv'.

(2.4¢)

(2.4d)
(2.4e)

(2.5a3)

(2.5b)

(2.5¢)

(2.5d)
(2.5e)

Proof. Consider a, b, c,d,&,n as real numbers, A, k = 1,...,n given by (2.3) and H,, as the n X n

matrix (1.1). Setting 6 :=c+&é—-a, V¥ :=d+n->b,

[ c+&—-a 0 ... ... 0
0 0 '
E=|
: .0 0
0 vie ve.. 0 c+é-a |
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and
0 d+n-b 0 ... .. 0
d+n-b 0 0
= 0 0
Fn = 5
0 0

: 0 0 d+n-b
0 e ... 0 d+n-b 0

we have from Lemma 1

S,H,S, =S, (H, +E, +F,)S, = A, + G, +K,,

where S, is the n X n matrix (2.1), ﬁ,, is the n X n matrix (2.2),

L 20 | kn . {m ",
A, =diag(Ay,...,4,) . [Guli, = n+lsm(n+1)sm(n+l)[l+( 1) ]

) kr \ . [ 2¢rn o 2kn . {n il
s1n(n+1)sm(n+1)+sm(n+l)s1n(n+l)][l+(—l) ]

Since [G,li, = [K,]i, = 0 whenever k + £ is odd, we can permute rows and columns of A, + G, + K,
according to the permutation matrices (2.4c) and (2.5¢), yielding: for n even,

29
n+1

[Kn]k,f =

Yo +60xx" +Ixy’ +Jyx' (0]

H, =S,P, [ (0] Ar +6v" +9vw' +dwvT

s,
where P, is the matrix (2.4¢), Yg = diag(Ay, A3, ..., A1), Ag = diag(4y, Ay, ..., 4,) and X, y are given
by (2.4a); for n odd,

Yo + OXXT +OXy" + Jyx’ (0]

H, =S,P, l (0] A% + 0V’ + 9vw' + 9wy’

s,

with P, defined in (2.5¢), T% = diag(4;, 43, ..., 4,), A% = diag(4,, A4, ..., 4,-1) and v, w defined
by (2.5a). The proof is complete. O

Remark 1. Let us point out that the decomposition for real heptadiagonal symmetric Toeplitz
matrices established in Proposition 3.1 of [7] at the expense of the bordering technique is no more
useful for matrices having the shape (1.1). As consequence, some results stated by these authors will
be necessarily extended, particularly, the referred decomposition and a formula to compute the
determinant of real heptadiagonal symmetric Toeplitz matrices (Corollary 3.1 of [7]).

3. Main results

3.1. Determinant of H,

The orthogonal block diagonalization established in Lemma 2 will lead us to an explicit formula for
the determinant of the matrix H,,.

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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Theorem 1. Let a,b,c,d,&,n be real numbers, A, k = 1,...,n be given by (2.3), x;, = sm(nkfl)
k=1,...,2nand H, the n x n matrix (1.1). If 0 :=c+ & —a, ¢ :=d+n— b and
(a) n is even, then

%
49x2k+8ﬂx2kx4k 1692 (xpg xae—Xoexa)*
det(H,) = []_[ Aoj + Z il ]_[ - s 1_[ by
=1
j#k

I<k<t<5
J;tk 4

n n n n
2 2 2 2
463, | +89x3-1 Xak—2 1692 (xok1 Xag—2 —X20— 1 Xak—2)*
[l |/12j—1+§ ) | |/12j—1— E sy | |/lzj—1-
j=1 =1 j=1 =1
Jj*k

k.t

(b) n is odd, then

n=1 n=1 n-1

2 2 2

40,2 +8U X0 X4y 1672( )

_ ) 2k L 10U\ Xop X4 —X20 X4k )~
det(H,) = [ Ayj+ (n+1) | | Ay Z T2 | | Ao
j=1 k=1 Jj=1 I<k<t< 5t
j¢k ]#k £
il el il el
: N 4002, +89 : 1692( ) :

) Xok-1 X2k—1X4k—2 o 0 (Xok—1 X402 —X2¢—1 Xak—2 )
| |/121—1 + E i (n+1) | |/121—1 Z (n+1)2 | | Ayj-1|-
=1 k=1 j=1 I<k<t< L =1

itk J#kL

Proof. Since both assertions can be proven in the same way, we only prove (a). Consider a, b, c,d, &,
are real numbers, x; = sin (—) k=1,...,2n, 4, k = 1,...,n as given by (2.3),0 := c+ ¢ — a,
¥ = d + n — b and the notations used in Lemma 2. The determinant formula for block-triangular
matrices (see [21], page 185) and Lemma 2 ensure det(H,,) = det (q)%) det (‘I’j) We shall first assume

Ay #0forallk=1,...,n

— # -1 3.1a
n+1 = Arp—q ( )
460 : x2 4 : —1 X4~
2k-1 X2k—1X4k-2 £ 1 (3.1b)
n+1 = /7.2/{_1 n+1 = ).2](_1
zzl 49x§k—1 + 8091 Xap—2 B 160 (Xoko1 Xag—2 — Xop—1Xap-2)" 41 (3.1c)
— (n + 1Ay (n+1)? ket Age—1 201 '
and
40 &
— # -1 32
n+1 /7.2/{ * ( a)
k=1
40 o 4D <
2%y DT -1 (3.2b)
n+1 = /12k n+1 - /12/(
2 40x§k + ?ﬂszMk _ 161912 . (szxM - X25X4k)2 4 1 (32C)
e~ (n+ DAy (n+ 1) 4=, Aoy Ao

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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Putting Tg := diag (4, 43,...,4,-1) and A% := diag (A, A4, ..., 4,), we have
det (d)%) = det (T% +6xx" +Ixy' + ﬂyxT)
=[14+6x"0'x +20x" 0,y + 9° (XTT_ly)2 — 9’ (XTT_IX) (yTT_ly) det (T)
; ; : :

n n n n
2 2 2 2
46)x2 +819)C2k_1 X4k—-2 16 92 — 2
— . k-1 R 0 (Xok—1Xap—0 = X2¢—1 Xa4k—2) .
= [ | | Ayjr + E i (n+1) | | Aj1 E i (n+1)? | | Agj1
j=1 k=1 j=1 j

I<k<t<}
ik kL

and

det (‘I’i) =det(As +OvV' +dvw' + ﬂva)

= |1 0vTA Y 4 20vTA w0 (VAT W) - 0 (vVALY) (wTAglw) | det (a4)

n

— 49xgk+8ﬂx2kx4k 1692 (xpp xae—Xoex4)*
[ 3y i [ 3, s [,
j¢k

[ TR

j=1 k=1 1<k<t<t
jik 4

(see [29], pages 69 and 70), i.e.

49x2k+819)€2kx4k 1692 169~ (xopXar—Xo0X4k)” x2fx4k)
w@whmﬁz 2 H@—Z oyt H@
=1

I<k<t<t
J?tk j;tk £

n n n n
2 2 2 2
46x3, _ +80%2k_1 Xar—2 169%( - 2
) 21 o Xok_1X4£-2 X201 Xdk—2) )
[l |/12]—1 + E D) | |/121—1 E, i)y | |/121—1 :
=1 =1 =1 2 =1
Jj*k

kit

(3.3)

Since both sides of (3.3) are polynomials in the variables a, b, ¢, d, &, n, conditions (3.1a)—(3.2c) as well
as A # 0 can be dropped, and (3.3) is valid more generally. O

Example 1. Suppose the following symmetric quasi-Toeplitz matrix

[ & b ¢ 0 ... ... ... ... 0]
b b ’ :
c a b

(e)
o
Q

T, =
a b ¢ 0
b b
c b a b
0 0 ¢ b €&

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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(when & = a, we have a pentadiagonal symmetric Toeplitz matrix). Let us notice that Theorem 3 of [12]
cannot be employed to compute det(T,). However, according to our Theorem I we get (with d = 0,
n=band ¥ =0)

A(c+é-a)x) A(c+é—a)x?
[l_[/lz, + Z o l—[/lzj][l—[/lzj 1+ Z —m l_lxlzj_l], n even
Jj=1
Jik J#k
det(T),) =
n—1 n—1 n+1 )Hl n+l
2 2 2
d(c+é—a)x? A(c+é—a)x?
[m ; Z e, naz,][ T+ Z oo [ T, oad
J=1
J¢k Jj#k
where

/lk—a+2bcos( )+2ccos(2"”) k=1,...,n

and x; = sm( ko ) k=1,...,2n. Moreover, if¢é = a—cin'T,, then det(T,) simply turns into 1,4, ... 4,

n+l
(let us stress that this includes the particular case ¢ = 0, i.e. the determinant of tridiagonal symmetric

Toeplitz matrices).
3.2. Eigenvalue localization for H,

The following lemma will allows us to express the eigenvalues of key matrices in this paper as the
zeros of explicit rational functions providing, additionally, explicit upper and lower bounds for each
one. We will denote the Euclidean norm by || - ||.

Lemma 3. Let a, b, c,d, &, n be real numbers and A, k = 1,...,n be given by (2.3).
(a) If n is even,

1. X,y are given by (2.4a) and the eigenvalues of

diag (A1, A3,...,4,) +(c+E—a)xx" +(d+n—-b)xy' +(d+n-Db)yx" (3.4a)

are not of the form a + 2b cos [Qk ])”] + 2c cos [2(2;‘%] + 2d cos [M] k=1,...,35, then the
eigenvalues of (3.4a) are precisely the zeros of the rational function
(c + & —a)sin’ [Qk 1)”] +2(d +n—b)sin [(2k+})”] sin [—%;?”]
) =1+~ Z
+1 Agp—y — t
(3.4b)

B e R G G
(n+1)? (et = Do = 1) .

I<k<t<t

Moreover, if iy < o < ... < ug are the eigenvalues of (3.4a) and A1) < Ar) < ... < Aeu-y are

arranged in a nondecreasing order by some bijection T defined in {1,3,...,n — 1}, then
(c+é—a)— \/(c+E—a)?+4(d+n—b)? (c+é-a)+ \ (c+é—a)*+4(d+n-b)?
Arr-1) + 3 < e < A1) + 3 (3.4¢)

foreachk =1,.

NI=

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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ii. v, w are given by (2.4b) and the eigenvalues of
diag (A, A4,..., ) +(c+E—a)ww' +(d+n—b)vw' +(d+n—-b)wv' (3.52)

are not of the form a + 2b cos (2"”) +2c cos (4"”) + 2d cos (6"”) k=1,...,5, then the eigenvalues

of (3.5a) are precisely the zeros of the rational function

92)

(c+&- a) sin’ (2k”)+2(d+17 b)51n(2k”)51n(4"”)

n+1 n+1

H=1
g(0) + 12 "

16(d + 1 — b [sin (22 ) sin (42) - sin (%) sin (22)]"
(12 2, (Aox — )(Aor — 1) ‘

(3.5b)

I<k<t<s

Furthermore, if vi < v, < ... < vy are the eigenvalues of (3.5a) and Ay0) < Aoy < ... < Ao

are arranged in a nondecreasing order by some bijection o defined in {2, 4, ...,n}, then
(c+é—a)— \/(c+&€-a)?+4(d+n—b)? (c+é-a)+ \(c+é—a)*+4(d+n-b)?
Arr) + 5 <V < Ay + > (3.5¢)
foreveryk=1,...,3.
(b) If n is odd,

1. X,y are given by (2.5a) and the eigenvalues of

diag (A1, 23,..., )+ (c+E—a)xx' +(d+n-Db)xy' +(d+n->b)yx" (3.6a)
are not of the form a + 2b cos [(Zk 1)"] +2ccos [2(2k+ 1)”] + 2d cos [3(2’1";11)”], k=1,..., %1, then the

eigenvalues of (3.6a) are precisely the zeros of the rational function

n+1

4 & (c+é—aysin [(Zk 1)”] +2(d+n-Db) s1n[(2k ])”]Sln[(4k—2)7r]
n+

H=1+
f l = Aoy — t

(3.6b)

sy g bl ] [ )
(n+1)? ISV .

I<k<t< L

Moreover, if ; < tp < ... < Must are the eigenvalues of (3.6a) and A1y < A3y < ... < Ay are

arranged in a nondecreasing order by some bijection T defined in {1, 3, ... ,n}, then
(c+é—a)— \/(c+é—a)? +4(d+n-b)? (c+é—a)+ (c+é—a)>+4(d+n-b)
Ari-1) + 5 < i < Ari-ny + 5 (3.6¢)

forany k = 1,...,%.

ii. v, w are given by (2.5b) and the eigenvalues of
diag (A2, A4, ..., Aps)) +(c+E—a)W +(d+n—-b)VW' +(d+n—b)wv' (3.7a)

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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are not of the form a+2b cos (2"”)+20 cos (4k”)+2d cos ( ) k=1,..., %, then the eigenvalues
of (3.7a) are precisely the zeros of the rational function
4 T (c+§—a)sin (2"”)+2(d+17 b)s1n(2k”)sm(4k”)

n+1
+1 po Ay —t

ghy=1+
n
(3.7b)

16(d + 7 - b [sin (22) sin (442 - sin (%) sin (22)]
(41 2. (Ao — D(Aoe — 1) '

I<k<t<5t

Furthermore, if vi < v, < ... < Vil are the eigenvalues of (3.7a) and Ay) < Adgay < ... < Adg(u-1)
are arranged in a nondecreasing order by some bijection o defined in {2,4,...,n — 1}, then

(c+é—a)+ \/(c+é—a)? +4(d+n—b)? (37C)

(c+é—a)— \/(c+é—a)?+4(d+n—b)?
< 2

A + 5 < Vi < Agopy +

forall k = 1,...,%.

Proof. Suppose real numbers a,b,c,d,é,n, 4, k = 1,...,n given by (2.3) and put § := ¢ + & — a,
¥ := d+n—b. We shall denote by 8(k, m) the collection of all k-element subsets of {1,2, ..., m} written
in increasing order; additionally, for any rectangular matrix M, we shall indicate by det (M[/, J]) the
minor determined by the subsets I = {i; < i <...<i§}and J ={j; < jo» <... < ji}. Supposing 8 # 0,

2.5 sin(n%) 2 s1n(n+l) 2 51n(n+1)
X= 2\/%sin(nf—l) 2 %sin(ﬂ%) e 2 51n(n+1)
\/6% sin (nzTﬂ) \/9?%1) sin (n%) . \/9?57“) sin [(425)”]
and
2 Fglsin(ﬁ) 2\/gsin n% 2\/7s1n n+1
Y = \/9%%1) sin( 2+”1) \/9?;% sin(m) ... \/gf’%) sin [(4’;5)”]
2 sm(nH) 2 31n(n+1) . 2 51n(n+1)

Theorem 1 of [2] ensures that [ is an e1genvalue of (3.4a) if, and only if,

- Z Z Z det (X[, J]) det (Y[£,J]) _ 0.

k=1 Jes(k.2) 1€8(k3) [Tje/(A2j-1 =)

provided that £ is not an eigenvalue of diag (4, 43, ..., 4,-1). Since

2 det (X[7, J]) det (Y[Z, J])
1 =
+Z Z Z [Tje,(A2j-1 = &)

k=1 ‘]es(k’%) 1e8(k,3)

6 sin [Qk 1)”] + 2% sin [—(2k_1)”] sin [—(4k_2)”]

n+l1

" 4 2 n+l n+1
n+1 — Ap-1 =&

T o ) i |
(Aok-1 = (21 = &) ’

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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we obtain (3.4b). Considering now 6 = 0 and setting

X = 2 %sin(#) 2 %sin(ﬁ) ) 31n(n+1) }
2Lsin(2) 24Lsin(2) 2L sm[(“z;?”]

E 2osin () 2 n%sin(n%) L2 isin[%f]}
2 %sin(ﬁ) 2 sm(ffl) ) 51n(n+1)

we still have that { is an eigenvalue of (3.4a) if, and only if,

- 2 Z Z det (X[, J]) det (Y[L,J]) _ 0

k=1 Jes(k,2) 1€8(k.2) HJEJ (/121'—1 -0

assuming that £ is not an eigenvalue of diag (4;, 43, ..., 4,-1). Hence,

1+2 Oy det (XIZ, J]) det (Y[Z,J]) _

k=1 Jes(k.2) 1€8(k2) [Tje/(A2j-1 =)

89 1 Sin[(Zk—l)n]sin[(4k—2)n]

n+1 n+l1
1+
n+1 = A1 = ¢
oy finf e[ 55 s o)
(n+1)? 1<k<t<t (Aok-1 = D21 = ) ’

and (3.4b) is established. Let yu; < up < ... < pz be the eigenvalues of (3.4a) and Ay < A;3) < ... <
Arn-1y be arranged in a nondecreasing order by some bijection 7 defined in {1, 3,...,n — 1}. Thus,

Arr-1y + Amin (OXXT + 9Xy" + 9YX") < ptp < Ari—1) + Amax (0xX " + IXy" + dyx") (3.8)
foreachk =1,..., 5 (see [23], page 242). Since the characteristic polynomial of fxx" +dJxy " +Jyx" is
det [tl% —Oxx" —Uxy' —Oyx" ] =2 [ —(OxX"x+ 9y x+9x"y)t + 9 (x"y) (y'x) — 9 (X' X) (yTy)]

= (272 — (0IKIP + 20 xTy) 1 + 97 | (xTy)" — I Iyl |},
we have that its spectrum is

Spec (Oxx" + Ixy' + dyx') ={0,a ,a*}, (3.9)

2
Ollx|?+20x T y+ \/(e||x||2+2ﬂxTy) —492[(xTy)* - |IxIPllyl* ]

> . From the identities

where a* =

n n

2, [@k-Dnr
ZSID

= n+1

2

:nzl :Zsin2

k=1

4k — 2)m
n+1
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2k - Drn
n+1

4k — )
n+1

Sin

NS

sin =0,

k=1

it follows |[x]| = [ly|l = 1 and x"y = 0. Hence, (3.8) and (3.9) yields (3.4c). The proofs of the remaining
assertions are performed in the same way and so will be omitted. O

The next statement allows us to locate the eigenvalues of H,,, providing also explicit bounds for
each of them.

Theorem 2. Let a, b, c,d,&,n be real numbers, A, k = 1,...,n be given by (2.3) and H,, be the n X n
matrix (1.1).

(@) If n is even, the eigenvalues of ®: in (2.4d) are not of the form Ay, k = 1,...,5 and the
eigenvalues of Wu in (2.4e) are not of the form Ay, k = 1,...,5, then the eigenvalues of H, are
precisely the zeros of the rational functions f(t) and g(t) given by (3.4b) and (3.5b), respectively.
Moreover, if iy < pp < ... < pz are the zeros of f(t) and vi < vo < ... < vz are the zeros of g(1)
(counting multiplicities in both cases), then w, k = 1,...,5 and v, k = 1,...,7 satisfy (3.4c)
and (3.5¢), respectively.

(b) If n is odd, the eigenvalues of (1)% in (2.5d) are not of the form Ay, k = 1,..., % and the
eigenvalues of ‘I’% in (2.5e) are not of the form Ay, k = 1,..., %, then the eigenvalues of H, are
precisely the zeros of the rational functions f(t) and g(t) given by (3.6b) and (3.7b), respectively.
Furthermore, if uy < p < ... < Must are the zeros of f(t) and vi < v, < ... < Vi1 are the zeros of
g(t) (counting multiplicities in both cases), then i, k = 1,..., % andvi, k=1,..., % satisfy (3.6¢)
and (3.7¢c), respectively.

Proof. Suppose a, b, c,d, &, n are real numbers and Ay, k = 1,...,n as given by (2.3).
(a) According to Lemma 2 and the determinant formula for block-triangular matrices (see [21],
page 185), the characteristic polynomial of H, for n even is

det (i1, — H,) = det Iy — ® ) det (A - ¥y),
where @ and ¥ are given by (2.4d) and (2.4e), respectively, so that the thesis is a direct consequence
of Lemma 2.

(b) For n odd, we obtain

2 2

det (11, — H,) = det (tIm - q@) det (tl% - \PTI)

where (I)Lzl and ¥..1 are given by (2.5d) and (2.5e), respectively. The conclusion follows from

Lemma 2. O

n=1
2

From GerSgorin theorem (see [23], Theorem 6.1.1), it can also be stated that all eigenvalues of H,,
(n > 7) belong to [Amin, Aimax ], Where

hmin 2= min{& — || = |d| = Inl, a = b| = || = |d| = Inl, a = 2|b] - 2|c| = 2d]}
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and

hmax = max{& + [c| + |d| + |nl, a + |b| + |c| + |d| + |nl, a + 2|b| + 2|c| + 2|d]}.

Further, all eigenvalues of the n X n heptadiagonal symmetric Toeplitz matrix

a b ¢ d 0 0 ]
b a b ¢ d
b b ¢
d a b
0 d c a
hepta,(d,c,b,a,b,c,d) =

a b ¢ d 0
b a b ¢ d
c b a b c
d c a b

0 0 d ¢ b

are contained in the interval

min ¢(t), max ¢(1)|,
—ﬂ<t<7r(p( ) —7r<t<7r(p( )

where ¢(f) = a+ 2b cos(t) + 2c cos(2t) + 2d cos(3t), —m < t < « (see [18], Theorem 6.1). As illustrated,
eigenvalues of H, and those of hepta,(d,c,b,a,b,c,d) witha = 0,b = -2, ¢c = -1,d =2, =09,
n = —7 are depicted in complex plane for increasing values of n.

Im

0.51

10 -5 0 5 10 15 Re

Figure 1. Eigenvalues of Hy.
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-0.51
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10

15 Re

Figure 2. Eigenvalues of hepta,,(2,-1,-2,1,-2,-1,2).

Im

0.5

-4

5 10

15 Re

Figure 3. Eigenvalues of Hsy.

Im

0.51

-1

Figure 4. Eigenvalues of heptas,(2, -1,-2,1,-2,-1,2).
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Figure 5. Eigenvalues of Hj.
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0.5
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15 Re

Figure 6. Eigenvalues of hepta,,(2,-1,-2,1, -2,

Im

0.51

-1

5 10

15 Re

Figure 7. Eigenvalues of Hj.
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Im

0.5+

-10 -5 0 5 10 15 Re

-0.51

-1-

Figure 8. Eigenvalues of heptas,,(2,-1,-2,1,-2,-1,2).

A distinctive feature of the blue graphics is the existence of two outliers for H,, i.e. eigenvalues
that do not belong to the interval [—%, 7], which seems to become just one as n — oo. This numerical
experiment also reveals that as the matrix size increases, the spectrum of quasi-Toeplitz matrix H,,
approaches the spectrum of Toeplitz matrix hepta, (2, -1, -2, 1, -2, -1, 2) plus the outliers; this is the

scenario that is consistent with the study presented in [6].

Remark 2. In [12] and [32], similar localization results were established for the eigenvalues of
symmetric Toeplitz matrices (pentadiagonal and heptadiagonal, respectively). The referred papers
make use of Chebyshev polynomials and their properties to earn rational functions with a more
concise form. However, its statements do not cover the broader class of matrices (1.1).

3.3. Eigenvectors of H,

The decomposition presented in Lemma 2 allows us also to compute eigenvectors for H,, in (1.1).

Theorem 3. Let a, b, c,d,&,n be real numbers, A, k = 1,...,n be given by (2.3) and H,, be the n X n
matrix (1.1).

(a) If nis even, S, is the nXn matrix (2.1), P, is the n X n permutation matrix (2.4¢c), the zeros u,, . . . s Mz
of (3.4b) are not of the form Ay, k = 1,..., 3, the zeros vy, ..., vz of (3.5b) are not of the form Ay,
k=1,...,3

(ST

(c+£ - a)sin’ [(2.,-_1)71] +(d+n-b)sin [(2/—1)n] sin [(41—2)7r] .

n+1 n+1 n+1
= Mk — Aaj1 4
2 (c+§—a)sin(%)sin(%)+(d+77—b)sin2(%) ¢n+1
Vi — /12]' 4

=1

and b # d + n, then

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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g % (H&C,)sm[%] sin [<4/ z>zr]+( dne b)smz[mﬁ)ﬂ] .
2sm(

< H=A2j-1 in( 2~
n+l Jj=1 /- Sln()Hl)

Vn+ (/Jk—/ll) 1 Zg:{(ﬁfa)sinzl(zj_l)”J+(d+n b)slnl(zj 1)”J sin [(47 Z)HJ} Vn+ (ﬂk /ll)
n+

M= j—1

8.

H Mo

ZSln(
‘/r?(/lk A3) (c+&— a)sm
n+1—4
1

Hie= 42, 1
n+l

{ (c+é-a) Sll’ll @j=br 1)" J sm[ @j=2n 2)" J+(d+77 b) smzl Mi;?”J }
SIH( ntl

]+(d+r]—b) sin[ % ] sin[ %] } \/}’?(}lk*/h)

Hg=Aj-1
S, P, (3.10a)
g % (c+€-a) sin ]sin[ml 2)”]+(a’+1] b)smz[mi:rzl)ﬂ]
2 sin (2::;?"] + ,E‘l Hp=A2j-1 sin —("r:l])”]
Va+1(pg=An-1) % (c+¢—a)sin? (2,/;11)"]+(d+71 b) sin Q- l)ﬂ]si [(4/ 2)”] V+1(ug—An-1)
n+1-43% =
j=1 Hig=42j-1
0
| 0 ]
is an eigenvector of H, associated to yy, k =1, ..., 3, and
0
8% (c+&E— a)sm(i{l)sm<4 )+(d+q b) sin (Ll)
2 sln( ) ) =1 k2 sln( et )
Vi+1(vie—A2) n+1_4% (c+é- a)sm(sﬂ)sm(:ﬂ )+(d+r]—b)sin2(:j%) Vn+1(vi—A2)
j=1 Yk~ 12/
n 2j 4jm\ ]
SnPn 822: (c+&-a) sm( n-{—,; )sm( | )+(d+r] b) sin (n+] ) (3 10b)
Zsln( n+l) =1 k2 | bm( n+l)
Vn+1(vg—Aa) peld % (c+é—a) sm( gﬂ )sm( :ﬂ )+(d+n b) sin ( 44{1 ) Va+1(vg—A4)
A V=2
8 Z%: (c+é-a) sm( 2+1 )sm( 4jn )+(d+n b) sin2
2sin(2%) = VA2 sin(2%)
Vn+l(vk—/ln) n+1_42 (c+.$—zz)sm(§+l)sm(:ﬂ )+(d+r7 b) sin (%) Vn+1 (Vk /Lz
I =] k2 ]
is an eigenvector of H, associated to vy, k =1,..., %
(b) Ifnisodd, S, is the nXn matrix (2.1), P, is the nXn permutation matrix (2.4c), the zeros u, . . ., Mgt

of (3.6b) are not of the form Ay_1, k = 1,... ”“ , the zeros vy, . ..

Vil of (3.7b) are not of the form
A k=1,..., 51

b 2 )
n+l . .
| (e +€&—a)sin [(ZJ 1)”] +(d+1n—b)sin [( /- 1)”] sin [(4,’“21)”] n+1
=1 Mk — Azj1 4
AIMS Mathematics
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% 2jm 4jm d b
(c+&—a)sin(=7)sin(—=5 ) +(d+n— ) sin® n+l n+1
=) Vi — /12j 4
and b # d + n, then
[ Snz%l (c+&— a)sm[ @j- 1)’r]si [(4J 2)”]+(d+7] b)sm2[(4£jj)"] ]
Zsm(ml) + j=1 M= j-1 sin(ﬁ)
Vn+1(pe—2A1) 1 4il (r+£—a)sin2[%]+(d+q—b)sinl%]sin[%] Vr+1(ug=21)
n Z‘ Hg=A2j—1
8? (c+€—a) sin| (2]‘1})”]5' [(41 2)”]+(d+r] h)sm2[(4] 2)"]
251n(n+l =1 Mgl 51[1( n+1)
Vn+ (/lk /13) (c+é— a)smzl(zj 1)”]+(d+:7—[7)sinli(z}{;%)”Jsin[7(4’]1‘1%>nJ Vn+ (ﬂk_/l3)
n+1-4 Z ey
S.P, (3.11a)
Snzl%l (c+é-a) sm[ Q- l)n]si [(4J z)n]+(d+77 b)st[M;;:?”]
Zsin(%) j=1 He= A j-1 sm(’Hl
Vn+l(/‘lk_/ln*1) I 4% (c+§fa)sm 2 Q= ])”:I+(d+1‘] b)sm[(zj_])’r] i [%] Vn+ (/lk— nfl)
nl- =) Hg=A2 -1
0
[ 0 ]
is an eigenvector of H,, associated to yu, k =1,..., ”erl, and
- 0 .
0
8? (c+é-a) sm( 211 )sm( ijﬁ )+(d+r]—b) sinz(%)
2§11’1( n+l + Jj=1 K {2] 911’1( n+l
Vn+1(vi—42) % (c+&— a)sm(’%frl)sm(nH)Jr(dJrq b) sin (3{;) Vnt+1(vi—42)
n+l1-4 3 S 1
j=1 k=*2j
n—1 4jr 4jm\1
SnPn 8 22: (c+&— a)sm(il)sm( )+(d+r] b) sin (n-{—]) (3.1 1b)
251n(n+1 N =) k=2 ] s1n(n+1)
Vn+1(vi—A44) 1 >(r+§—a) sin(%)sm( e )+(d+77 b) sin (4-{7:) n+1(vg—A4)
n+l1-4 3 oy
j=1 | k=2j
8’%71 (c+é-a) sm( 211 )sm( :+1 )+(d+:7 b) sin (Ll)
2 sin 2(21)”] =1 ] sin| ("’:1)"]
Vn+1(vi—A4n) n L (z?+§—a)sin(%)sm(ﬂ+l)+(d+,] b) sin (LI;) Vi+1(vi=4,)
n+1-4 Z =
L j=1 k=72j |

is an eigenvector of H,, associated to vy, k ol

:1,...,7.

AIMS Mathematics
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Proof. Since both assertions can be proven in the same way, we only prove (a). Let n be even. We can
rewrite the matricial equation (w1, — H,)q = 0 as

,ukI% - (I)% (0
O [uly -,

S.P, P'S,q =0, (3.12)

where S, is the matrix (2.1), P, is the permutation matrix (2.4c) and U and ¥, are given by (2.4d)
and (2.4e), respectively. Thus,

|ty — diag (11, 43, ..., Au1) = (¢ + E— @xx" = (d+ = b)Xy" - (d +n-Dbyx"|q =0,
|ty — diag (A2, Aa ..., ) = (c+ €= @)W =(d+7-b)vw' = (d+n-b)wv"|qu =0,

q: T
=P S,q.
3] =ersa

That is,
) -1
q = a[,uklg —diag (A1, 43,...,4,_1) —(c+&E—a)xx' —(d +n— b)xyT] y
@©=0
for @ # 0 (see [8], page 41), and

@ iy - diag (Ui, As, ., dy) = (c + €~ axx” —(d + - byxy"| |y

= SnPn
q 0

is a nontrivial solution of (3.12). Thus, choosing @ = 1, we conclude that (3.10a) is an eigenvector of
H,, associated to the eigenvalue y;. Similarly, from (vI, — H,)q = 0, we have

Vklﬂ —®: (0] T
SnPn 2 2 Pn an =0
(0] ‘ Vklg - ‘P%
and
S.P 0
= Iuly . -1
1 a [vklg —diag (A3, A4, ..., ) —(c+E—a)vww' —(d+n— b)VWT] w

for @ # 0, which is an eigenvector of H,, associated to the eigenvalue v;. m|

3.4. Expression of H;'

The orthogonal block diagonalization presented in Lemma 2 and Miller’s formula for the inverse of
the sum of nonsingular matrices lead us to an explicit expression for the inverse of H,,.

Theorem 4. Let a,b, c,d,&,n be real numbers, A, k = 1,...,n be given by (2.3) and H,, be the n X n
matrix (1.1). If 4 # 0 for every k = 1,...,n, H, is nonsingular and:

(a) n is even, then

Q: O

-1 _
H, _SnPn[ .

s,

n
2

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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where S, is the n X n matrix (2.1), P, is the n X n permutation matrix (2.4c),

(d+n-b)+(d+n-b)*y ;' x

Q% — T’—ll _ > 2 TZI (yxT + XyT) T_l
: : 3 (3.13a)
(d+n-b)%y TTn y—(c+é—a) . - (d+n-b)*x TY
+ p ' xx ! + T1(',1 yy 0y

with T% :=diag (41,43, ...,4,-1), X,y given by (2.4a),

p = 1+(c+E—ax 0y x+2d+n-b)y (3 'x+(d+n-b) [(ﬂrgly)2 - (xTT;x)(yT'r;y)] (3.13b)

and
(d+n=b)+(d+n-by*wT A,V
R: = A;!' - 2 A (W +vw') A‘l
2 2 P 2
2 -1 2 (3130)
(d+n-b>WT AL W—(c+é—a) . . (d+n—-b) TA v 1
+ p2 An VVTAZ + fA ww' A,
2

with Ag = diag (A3, A4, ..., 4,), v, W given by (2.5a) and
0= 1+(c+g—a)vTA;v+2(d+n—b)wTA;v+(d+n—b)2 [(vTA;w)2 -~ (vTA,—%‘v)(wTA;w)] . (3.13d)

(b) n is odd, then
Q)H—l O

O Rnl

where S,, is the n X n matrix (2.1), P, is the n X n permutation matrix (2.5¢),

=S,P,

s,

(d+n-b)+(d+n—-b)*y ("]

n+l

Qui =7, — Gl T L (yxT +xyT)Y,M
7 g (3.14a)
(d+n-b)*y TYMy (c+&-a) (d+n-by*xT 0} x ’
+ P Yl xxTry) + %TLnyT;ﬁ,
2 2 2 2
with YTI = diag (44, 43, ..., 4,), X,y given by (2.5a),
p=1+ (c+§—a)xTT;;x+2(d+ n—b)yTY;;x
(3.14b)
+(d+n- b) (XTTM Y) (XTT;H X)(yTT,,+1 y)
and
(d+n=b)+(d+n-bywT AL v
Roi = AL - > =z n L(wvT +VWT)A,1 :
2
(d+n-Dy*WT AL w—(c+é-a) (d+n-b)*v TAH LV (3.14¢)
+ pz AL wvT Ai + fAn | WW Ai
2 2 2
with A%l :=diag (A2, A4, ..., Ay_1), V, W in (2.5b),
o=1+ (c+§—a)vTA;,;V+ 2(d + n—b)wTA;;iv
(3.144d)

+(d+1-b) (VAL W) = (VTALL V) (WTALL w)|.
2 2 2

AIMS Mathematics Volume 8, Issue 12, 29995-30022.
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Proof. Consider a, b, c,d, &, n as real numbers, A, # 0,k = 1,...,n are given by (2.3) and H,, in (1.1)
is nonsingular. Recall that if H,, is nonsingular, then p and o in (3.13b) and (3.13d), respectively, are
both nonzero. Setting 6 := ¢ + & — a, ¥ := d + n — b and assuming that conditions (3.1a) and (3.1b) are
satisfied (note that (3.1c) corresponds to p # 0), we have from the main result of [29] (see pages 69
and 70),

TV1 _ a1 Ty
(fz +6xx") " = T, 1+9xw X'I' XX Tn ,
-1 -1 -1 -1
(Yo +60xx" +9xy" )" = (A2 +6xx') — s (Cr+0xx") xy (U2 +6Oxx")
2 2 2 2
1+9yT (T 2 +0xxT ) x
_ el 0 1 Tyl Tog—
- T% 1+0XTT’ﬂ1x+ﬁyTT’ﬂle% XX T% L+6xTry X+19yTT’ T” Xy T
2 2

and

(s +6xx" +Ixy’ + Jyx")"!
= (Y2 +6xx" + Ixy") " - 2 (Y2 +6xx" +9xy") XyT(Yn +0xx" + Oxy")”!

1+9xT ('Y' n +OXxT +z9xy7) y

. 2y T, x ' - - - 9y, 'y 9x T'I‘ X
=, —————, (yx'+xy' )Y, + TT" XX 'I‘ +
2 2 2

'I“ ny'I'Z ,
(3.15)

with 'I'% = diag (4, 43,...,4,-1), X,y given by (2.4a) and p in (3.13b). In the same way,
supposing (3.2a) and (3.2b) (observe that (3.2¢) is o # 0), we obtain

TV A-1 6 1o T AL
Az +6vv') = A% —1+9vTA;,'vA% \A% A% ,
2
-1 -1 1
(A + 6w +9vyw')" = (As +6v') — g —(As +6vv')” VWT(A +Ovw')”
1+0wT (g +6wT) v
Al 0 TA-l _ ) T
- A% 1+9vTAjl'v+ﬁwTA’ﬂlvA% v A% 1+9vTA’ﬂ1v+ﬂwTA’ﬂ‘vA% vw A%
2 2 2 2

and

(A + 0V +9vw' + dwvT)™!

= (Az + OV +9vw") " — i Az + OV + VW) W (Az + vy + dvwT) !
2 1+19VT(An +9va+0va) wo 2
2

I+9PwT Ay PwTAL w—6 PVTALY

1——A (WV +VWT)A +TA \A AZ] +&—A WwW AZ ,

=A

o

wIs |

(3.16)

where Az := diag (12, A4, . .., 4,) and v, w are given by (2.5a) and o in (3.13d). Since the nonsingularity
of H, and A, # O, for all kK = 1,...,n are sufficient for both sides of (3.15) and (3.16) to be well-
defined, conditions (3.1a), (3.1b), (3.2a) and (3.2b) previously assumed can be dropped. Hence, the
block diagonalization provided in (a) of Lemma 2 together with 8.5b of [21] (see page 88) establish
the thesis in (a). The proof of (b) is analogous, so we will omit the details. O
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4. Applications

4.1. Matrix derivative operator

It is well known that the fourth derivative can be computed through the following centered finite-
formula

—f(a=3) + 12f(2) = 39f (xx-1) + 56/ (xi) — 39f (xas1) + 12 (xir2) — f(Xps3)

(4) ~
S o

4.1)

(see [9], page 556). Consider an interval [a, b] (a < b), a mesh of points x, = a + kh, k =0,1,...,N
where & = (b — a)/N and a function f: [a,b] — R, such that f(a) = 0 = f(b). By setting

f(x22) = af(x),
f(xop) = af(x),
Sfxn+1) = af(xn-1),
fxna2) 1= af(xy-2)

for some a € R, the matrix operator corresponding to (4.1) for the fourth derivative is

[ 12a+56 —(@+39) 12 -1 O ... ... ... ... 0
—(a +39) 56 -39 12 -1 :
12 -39 56 -39 12
-1 12 -39 56 -39
0 -1 12 -39 56
. . . . . (4.2)
56 -39 12 -1 0
-39 56 -39 12 -1
12 -39 56 -39 12
: . -1 12 =39 56 —(a +39)
0 e e e o 00 -1 12 —~(@+39) 12a+ 56 |

A remarkable example that involves the fourth derivative is the ordinary differential equation that
governs the deflection of a laterally loaded symmetrical beam of length L,

EI(x)y*®(x) = g(x), x€]0,L], (4.3)

where E is the modulus of elasticity of the beam material, I(x) is the moment of inertia of the beam
cross section and ¢g(x) is the distributed load. The ordinary differential equation (4.3) can be equipped
with the boundary conditions y(0) = 0 = y(L) (see, for instance, [22]).

The eigenvalues of derivative matrices are very useful. In fact, they can be compared with those of
the exact (continuous) derivative operator to gauge the accuracy of the finite difference approximation.
On the other hand, in the context of partial differential equations, the eigenvalues of the spatial operator
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is considered along with the stability diagram of the time-integration scheme to evaluate the stability
of the numerical solution for the partial differential equation [3]. The statements of subsection 3.2 can
be employed to locate (bound) the eigenvalues of (4.2).

Another example of a derivative matrix is

| O

W

, 4.4)

which appears in the discretization of the second-derivative operator via three-point centered finite-
difference formula with Neumann boundary conditions f’(xy) = a and f’(xy) = b (see [3], pages 133
and 134). Our results can also be used to locate (bound) its eigenvalues by noticing that the eigenvalues

of (4.4) and
2 2 1
-5 5 0 0
1 -2 1
o 1 =2
diag|1 V6 V6 1 diag|1 V6 V6 1
ag|l, == 5 ag|l—=..o =
-2 1 0
: 1 -2 1
| 0 0 2 -2
) Ve .
-3 5 0 0
V6
5 2 1
o 1 -2
-2 1 0
. 1 2 ¥
V6 2
| 0 0 3 -5
are exactly the same.
4.2. Beveridge-Nelson smoother in ARIMA(1,1,0) process
Consider n pairs of observations (xi, y;), (x2,¥2), . . ., (X, ¥,) such that
i =r(xy) +& and E(g) =0 k=1,2,...,n),
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where r is the regression function to be estimated. The estimator of r(x) is usually denoted by 7(x)
and called smoother. An estimator 7 of r is a linear smoother if, for each x, there exists a vector

¢(x) = (¢1(x),...,6,(x))T" such that

) = > .
k=1
Defining the vector of fitted valuesy = (7,,(x1), ..., 7.(x,))7, it follows

y=2Xy,

where X is an n X n matrix whose k™ row is ¢(x;)7, called the smoothing matrix and y = (y,...,y,)"
(see [34], page 60).

The eigendecomposition of the smoothing matrix X provides a useful characterization of the
properties of a smoother. In fact, if ¥ = }7_, 4,00/ is the spectral decomposition of the smoothing
matrix, where A; are the ordered eigenvalues and o the corresponding eigenvectors, we can
meaningfully decompose the fit as'y = Yj_, &0, where the eigenvectors o7 illustrate what
sequences are preserved or compressed via a scalar multiplication and «; are the specific coefficients
of the projection of y onto the space spanned by the eigenvectors oy, y = >;_; 0. Moreover,
tr(X) = X ;- A& provides the number of degrees of freedom of a smoother, which is a measure of the
equivalent number of parameters used to obtain the fity that allows us to compare alternative filters
according to their degree of smoothing (see [28] and the references therein).

The smoothing matrix associated to the Beveridge-Nelson smoother (see [31] for details) when the
observed series is generated by an ARIMAC(1, 1, 0) model with —1 < ¢ < 0 and (half) bandwidth filter
m = 1 is the following tridiagonal matrix:

1 ¢
= 1 0 0
__ ¢ I+¢> ¢
(1-¢?  (1-97 (1-¢)?
0 __¢ 1+
=92  (1-97
E — . . ) ) :
> __ ¢
(1-¢)7 (1-¢)? 0
__ ¢ l+¢> ¢
(=g -gp (-¢7
0 O e S
(see [28]). Since the matrices X and
diag(1, {1 ¢..... \1-¢,1) Ediag|1, ! - ! J1
1-¢ 1-¢
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1 __ ¢ 0 0
T T
9 1+4° ¢
(1_¢)3 (1_¢)2 (1_¢)2
¢ e
0 (1-¢) (1-¢)?
1+¢° )
(1-¢) (1-¢)? 0
¢ 1+¢° ¢
(1-¢)? (1—Z>2 (-0
0 0 - L
V(-¢) 1-¢

share the same eigenvalues, we are able to locate (bound) the eigenvalues of X by using results of
subsection 3.2. Moreover, at the expense of the prescribed eigenvalues, an eigendecomposition for X
can also be obtained at the expense of statements in subsection 3.3.

5. Conclusions

In this paper, a procedure to express the eigenvalues and associated eigenvectors of a symmetric
heptadiagonal guasi-Toeplitz matrix was presented, as well as an explicit formula for its inverse. The
proposed method allowed us to get rational functions to locate the eigenvalues and closed-form
formulas to the corresponding eigenvectors for the class of matrices under analysis, which cannot be
considered in recent works on this subject, but most of all leave an open door for additional
statements on symmetric guasi-Toeplitz matrices in general. The numerical example provided to
highlight the differences between the quasi-Toeplitz and Toeplitz cases also raised some open
questions. Indeed, despite GerSgorin theorem leading us to an interval containing all eigenvalues of
generic quasi-Toeplitz matrices, it would be interesting to have a more precise tool, as in the “pure”
Toeplitz case. A method that could predict the number of outliers and its asymptotic behavior when n
tends to infinity would be also very welcome. Of course, another open problem closely related to the
content of this paper would be the obtention of a block diagonalization for nonsymmetric
quasi-Toeplitz matrices in the same spirit of Lemma 2.
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