Understanding the eigenvalue distribution of sequence Toeplitz matrices has advanced significantly in recent years. Notable contributors include Bogoya, Grudsky, Böttcher, and Maximenko, who have derived precise asymptotic expansions for these eigenvalues under certain conditions related to the generating function as the matrix size increases. Building on this foundation, the Stefano Serra-Capizzano conjectured that, under certain assumptions about $ \Omega $ and $ \Phi $, a similar expansion may hold for the eigenvalues of a sequence of preconditioned Toeplitz matrices $ T_{n}^{-1}(\Phi) T_n(\Omega) $, given a monotonic ratio $ r = \Omega/\Phi $. In contrast to current eigenvalue solvers, this work presents a novel method for efficiently calculating the eigenvalues of a sequence of large preconditioned banded symmetric Toeplitz matrices (PBST). Our algorithm uses a higher-order spline fitting extrapolation technique to gather spectral data from a smaller sequence of PBST matrices in order to forecast the spectrum of bigger matrices.
Citation: Salima Kouser, Shafiq Ur Rehman, Mabkhoot Alsaiari, Fayyaz Ahmad, Mohammed Jalalah, Farid A. Harraz, Muhammad Akram. A smoothing spline algorithm to interpolate and predict the eigenvalues of matrices extracted from the sequence of preconditioned banded symmetric Toeplitz matrices[J]. AIMS Mathematics, 2024, 9(6): 15782-15795. doi: 10.3934/math.2024762
Understanding the eigenvalue distribution of sequence Toeplitz matrices has advanced significantly in recent years. Notable contributors include Bogoya, Grudsky, Böttcher, and Maximenko, who have derived precise asymptotic expansions for these eigenvalues under certain conditions related to the generating function as the matrix size increases. Building on this foundation, the Stefano Serra-Capizzano conjectured that, under certain assumptions about $ \Omega $ and $ \Phi $, a similar expansion may hold for the eigenvalues of a sequence of preconditioned Toeplitz matrices $ T_{n}^{-1}(\Phi) T_n(\Omega) $, given a monotonic ratio $ r = \Omega/\Phi $. In contrast to current eigenvalue solvers, this work presents a novel method for efficiently calculating the eigenvalues of a sequence of large preconditioned banded symmetric Toeplitz matrices (PBST). Our algorithm uses a higher-order spline fitting extrapolation technique to gather spectral data from a smaller sequence of PBST matrices in order to forecast the spectrum of bigger matrices.
[1] | J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, C. Witzgall, Introduction to numerical analysis, Springer-Verlag, New York, 2 (1980). |
[2] | P. Tilli, A note on the spectral distribution of Toeplitz matrices, Linear Multilinear A., 45 (1998), 147–159. https://doi.org/10.1080/03081089808818584 doi: 10.1080/03081089808818584 |
[3] | O. Toeplitz, Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veriinderlichen, Theorie der L-Formen, 70 (1911), 351–376. https://doi.org/10.1007/BF01564502 |
[4] | U. Grenander, G. Szego, Toeplitz forms and their applications, 2Eds., Chelsea, New York, 1984. |
[5] | F. Ahmad, E. S. Al-Aidarous, D. A. Alrehaili, S. E. Ekström, I. Furci, S. Serra-Capizzano, Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? Numer. Algorithms, 78 (2018), 867–893. https://doi.org/10.1007/s11075-017-0404-z doi: 10.1007/s11075-017-0404-z |
[6] | M. Bogoya, S. Serra-Capizzano, P. Vassalos, Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory: The preconditioned setting, Appl. Math. Comput., 466 (2024), 128483. https://doi.org/10.1016/j.amc.2023.128483 doi: 10.1016/j.amc.2023.128483 |
[7] | S. E. Ekström, C. Garoni, A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices, Numer. Algorithms, 80 (2019), 819–848. |
[8] | M. Barrera, S. M. Grudsky, Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices, in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics: The Albrecht Böttcher Anniversary Volume, 2017, 51–77. https://doi.org/10.1007/978-3-319-49182-0_7 |
[9] | F. L. Bauer, H. Rutishauser, E. Stiefel, New aspects in numerical quadrature, Proc. Symp. Appl. Math., 15 (1963), 199–218. https://doi.org/10.1090/psapm/015/0174177 doi: 10.1090/psapm/015/0174177 |
[10] | R. Bevilacqua, D. A. Bini, M. Capovani, O. Menchi, Metodi numerici, Zanichelli, Bologna, 1992. |
[11] | D. Bini, M. Capovani, Spectral and computational properties of band symmetric Toeplitz matrices, Linear Algebra Appl., 52 (1983), 99–126. https://doi.org/10.1016/0024-3795(83)80009-3 doi: 10.1016/0024-3795(83)80009-3 |
[12] | D. A. Bini, M. Capovani, O. Menchi, Metodi numerici per l'algebra lineare, 1988. |
[13] | J. M. Bogoya, A. Böttcher, E. A. Maximenko, From convergence in distribution to uniform convergence, Bol. Soc. Mat. Mex., 22 (2016), 695–710. https://doi.org/10.1007/s40590-016-0105-y doi: 10.1007/s40590-016-0105-y |
[14] | J. M. Bogoya, A. Böttcher, S. M. Grudsky, E. A. Maximenko, Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols, J. Math. Anal. Appl., 422 (2015), 1308–1334. https://doi.org/10.1016/j.jmaa.2014.09.057 doi: 10.1016/j.jmaa.2014.09.057 |
[15] | J. M. Bogoya, A. Böttcher, S. M. Grudsky, E. A. Maximenko, Maximum norm versions of the Szegő and Avram-Parter theorems for Toeplitz matrices, J. Approx. Theory, 196 (2015), 79–100. https://doi.org/10.1016/j.jat.2015.03.003 doi: 10.1016/j.jat.2015.03.003 |
[16] | J. M. Bogoya, S. M. Grudsky, E. A. Maximenko, Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness, in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics: The Albrecht Böttcher Anniversary Volume, 2017,179–212. https://doi.org/10.1007/978-3-319-49182-0_11 |
[17] | A. Böttcher, S. M. Grudsky, E. A. Maksimenko, Inside the eigenvalues of certain Hermitian Toeplitz band matrices, J. Comput. Appl. Math., 233 (2010), 2245–2264. https://doi.org/10.1016/j.cam.2009.10.010 doi: 10.1016/j.cam.2009.10.010 |
[18] | A. Böttcher, B. Silbermann, Introduction to large truncated Toeplitz matrices, Springer, New York, 1999. https://doi.org/10.1007/978-1-4612-1426-7 |
[19] | C. Brezinski, M. R. Zaglia, Extrapolation methods: Theory and practice, Elsevier, Amsterdam, 1991. |
[20] | R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. https://doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474 |
[21] | F. Di Benedetto, G. Fiorentino, S. Serra-Capizzano, CG preconditioning for Toeplitz matrices, Comput. Math. Appl., 25 (1993), 35–45. https://doi.org/10.1016/0898-1221(93)90297-9 doi: 10.1016/0898-1221(93)90297-9 |
[22] | S. E. Ekström, C. Garoni, S. Serra-Capizzano, Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? Exp. Math., 27 (2018), 478–487. https://doi.org/10.1080/10586458.2017.1320241 doi: 10.1080/10586458.2017.1320241 |
[23] | S. Serra-Capizzano, On the extreme spectral properties of Toeplitz matrices generated by $L^1$ functions with several minima/maxima, BIT, 36 (1996), 135–142. https://doi.org/10.1007/BF01740550 doi: 10.1007/BF01740550 |
[24] | S. Serra-Capizzano, An ergodic theorem for classes of preconditioned matrices, Linear Algebra Appl., 282 (1998), 161–183. https://doi.org/10.1016/S0024-3795(98)80002-5 doi: 10.1016/S0024-3795(98)80002-5 |