In the current article, we consider a class of bounded turning functions associated with the cosine hyperbolic function and give some results containing coefficient functionals using the familiar Carathéodory functions. An improvement on the bound of the third-order Hankel determinant for functions in this class is provided. Furthermore, we obtain sharp estimates of the Fekete-Szegö, Krushkal, and Zalcman functionals with logarithmic coefficients as entries. All the findings are proved to be sharp.
Citation: Zhen Peng, Muhammad Arif, Muhammad Abbas, Nak Eun Cho, Reem K. Alhefthi. Sharp coefficient problems of functions with bounded turning subordinated to the domain of cosine hyperbolic function[J]. AIMS Mathematics, 2024, 9(6): 15761-15781. doi: 10.3934/math.2024761
In the current article, we consider a class of bounded turning functions associated with the cosine hyperbolic function and give some results containing coefficient functionals using the familiar Carathéodory functions. An improvement on the bound of the third-order Hankel determinant for functions in this class is provided. Furthermore, we obtain sharp estimates of the Fekete-Szegö, Krushkal, and Zalcman functionals with logarithmic coefficients as entries. All the findings are proved to be sharp.
[1] | L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Eintheitskreises vermiteln, Sitzungsberichte Preussische Akademie der Wissenschaften, 138 (1916), 940–955. |
[2] | K. Löwner, Untersuchungen iiber schlichte konforme Abbildungen des Einheitskreises, Math. Ann., 89 (1923), 103–121. |
[3] | P. R. Garabedian, M. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient, J. Ration. Mech. Anal., 4 (1955), 427–465. |
[4] | R. N. Pederson, M. Schiffer, A proof of the Bieberbach conjecture for the fifth coefficient, Arch. Ration. Mech. Anal., 45 (1972), 161–193. |
[5] | R. N. Pederson, A proof of the Bieberbach conjecture for the sixth coefficient, Arch. Ration. Mech. Anal. 31 (1968), 331–351. |
[6] | L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152. |
[7] | J. E. Brown, A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191 (1986), 467–474. |
[8] | L. Li, S. Ponnusamy, J. Qiao, Generalized Zalcman conjecture for convex functions of order $\alpha $, Acta Math. Hung., 150 (2016), 234–246. |
[9] | W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104 (1988), 741–744. |
[10] | S. L. Krushkal, Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., 17 (2010), 663–681. |
[11] | S. L. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, 2014. https://doi.org/10.48550/arXiv.1408.1948 |
[12] | W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234 (1999), 328–339. |
[13] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. |
[14] | R. K. Raina, P. Sharma, J. Sokół, Certain classes of analytic functions related to the crescent-shaped regions, J. Contemp. Math. Anal., 53 (2018), 355–362. |
[15] | L. A. Wani, A. Swaminathan, Radius problems for functions associated with a nephroid domain, RACSAM, 114 (2020), 178. https://doi.org/10.1007/s13398-020-00913-4 doi: 10.1007/s13398-020-00913-4 |
[16] | P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43 (2020), 957–991. |
[17] | K. Ullah, H. M. Srivastava, A. Rafiq, M. Darus, M. Shutaywi, Radius problems for starlike functions associated with the tan hyperbolic function, J. Funct. Space., 2021 (2021), 9967640. |
[18] | S. Gandhi, P. Gupta, S. Nagpal, V. Ravichandran, Starlike functions associated with an Epicycloid, Hacet. J. Math. Stat., 51 (2022), 1637–1660. |
[19] | C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 1 (1966), 111–122. |
[20] | C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112. |
[21] | P. Dienes, The Taylor series: An introduction to the theory of functions of a complex variable, New York: Dover, 1957. |
[22] | D. G. Cantor, Power series with integral coefficients, Bull. Am. Math. Soc., 69 (1963), 362–366. |
[23] | M. A. Hasan, A. A. Hasan, Hankel matrices of finite rank with applications to signal processing and polynomials, J. Math. Anal. Appl., 208 (1997), 218–242. |
[24] | R. Wilson, Determinantal criteria for meromorphic functions, Proc. Lond. Math. Soc., 4 (1954), 357–374. |
[25] | W. K. Hayman, On second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 3 (1968), 77–94. |
[26] | M. Obradović, N. Tuneski, Hankel determinants of second and third order for the class $\mathcal{S}$ of univalent functions, Math. Slovaca, 71 (2021), 649–654. |
[27] | A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1 (2007), 619–625. |
[28] | S. K. Lee, V. Ravichandran, S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), 281. https://doi.org/10.1186/1029-242X-2013-281 doi: 10.1186/1029-242X-2013-281 |
[29] | A. Ebadian, T. Bulboacǎ, N. E. Cho, E. A. Adegani, Coefficient bounds and differential subordinations for analytic functions associated with starlike functions, RACSAM, 114 (2020), 128. https://doi.org/10.1007/s13398-020-00871-x doi: 10.1007/s13398-020-00871-x |
[30] | N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, The bound of the Hankel detrminant for strongly starlike functions of order alpha, J. Math. Ineq., 11 (2017), 429–439. |
[31] | Y. J. Sim, D. K. Thomas, P. Zaprawa, The second Hankel determinant for starlike and convex functions of order alpha, Complex Var. Elliptic Equations, 67 (2022), 2423–2443. |
[32] | K. O. Babalola, On $H_{3}\left(1\right) $ Hankel determinant for some classes of univalent functions, Inequality Theory Appl., 6 (2010), 1–7. |
[33] | B. Kowalczyk, A. Lecko, Y. J. Sim, The sharp bound for the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc., 97 (2018), 435–445. |
[34] | B. Kowalczyk, A. Lecko, D. K. Thomas, The sharp bound of the third Hankel determinant for starlike functions, Forum Math., 34 (2022), 1249–1254. |
[35] | B. Kowalczyk, A. Lecko, The sharp bound of the third Hankel determinant for functions of bounded turning, Bol. Soc. Mat. Mex., 27 (2021), 69. https://doi.org/10.1007/s40590-021-00383-7 doi: 10.1007/s40590-021-00383-7 |
[36] | K. Ullah, H. M. Srivastava, A. Rafiq, M. Arif, S. Arjika, A study of sharp coefficient bounds for a new subfamily of starlike functions, J. Inequal. Appl., 2021 (2021), 194. |
[37] | A. Lecko, Y. J. Sim, B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory, 13 (2019), 2231–2238. https://doi.org/10.1007/s11785-018-0819-0 doi: 10.1007/s11785-018-0819-0 |
[38] | M. Arif, O. M. Barukab, S. A. Khan, M. Abbas, The sharp bounds of Hankel Determinants for the families of three-leaf-type analytic functions, Fractal Fract., 6 (2022), 291. |
[39] | O. M. Barukab, M. Arif, M. Abbas, S. A. Khan, Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain, J. Funct. Space., 2021 (2021), 5535629. |
[40] | Z. G. Wang, M. Raza, M. Arif, K. Ahmad, On the third and fourth Hankel determinants for a subclass of analytic functions, Bull. Malays. Math. Sci. Soc., 45 (2022), 323–359. |
[41] | B, Kowalczyk, A. Lecko, D. K. Thomas, The sharp bound of the third Hankel determinant of convex functions of order -1/2, J. Math. Inequa., 17 (2023), 191–204. |
[42] | L. Shi, M. Arif, Sharp bounds on the third Hankel determinant for the Ozaki close-to-convex and convex functions, Lith. Math. J., 63 (2023), 487–504. |
[43] | S. Banga, S. S. Kumar, The sharp bounds of the second and third Hankel determinants for the class $\mathcal{SL}$, Math. Slovaca, 70 (2020), 849–862. |
[44] | M. Mundula, S. S. Kumar, On subfamily of starlike functions related to hyperbolic cosine function, J. Anal., 31 (2023), 2043–2062. |
[45] | M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine hyperbolic function, AIMS Mathematics, 8 (2023), 21993–22008. http://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121 |
[46] | O. S. Kwon, A. Lecko, Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory, 18 (2018), 307–314. |
[47] | I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379. |
[48] | V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 505–510. |
[49] | R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivatives in $\mathcal{P}$, Proc. Am. Math. Soc., 87 (1983), 251–257. |
[50] | I. M. Milin, Univalent Functions and Orthonormal Systems (Nauka, Moscow 1971), English Translation, Providence: American Mathematical Society, 1977. |
[51] | I. P. Kayumov, On Brennan's conjecture for a special class of functions, Math. Notes, 78 (2005), 498–502. |
[52] | P. Sunthrayuth, I. Aldawish, M. Arif, M. Abbas, S. El-Deeb, Estimation of the second-order Hankel determinant of logarithmic coefficients for two subclasses of starlike functions, Symmetry, 14 (2022), 2039. |
[53] | Z. Ye, The logarithmic coefficients of close-to-convex functions, Bull. Inst. Math. Acad. Sin.(NS), 3 (2008), 445–452. |
[54] | D. Girela, Logarithmic coefficients of univalent functions, Ann. Acad. Sci. Fenn., 25 (2000), 337–350. |
[55] | L. Shi, M. Arif, A. Rafiq, M. Abbas, J. Iqbal, Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions of Bounded Turning Associated with Petal-Shaped Domain, Mathematics, 10 (2022), 1939. |
[56] | O. Roth, A sharp inequality for the logarithmic coefficients of univalent functions, Proc. Am. Math. Soc., 135 (2007), 2051–2054. |