This article focuses on the problem of integral boundary value for Riemann-Liouville derivatives equipped with (p,q)-difference calculus in Banach space. To provide further clarification, our focus lies in establishing the existence of a solution to our problem using the measure of noncompactness (m.n.) and the Mönch's fixed point theorem. Our investigation in the Banach space encompasses two nonlinear terms with two distinct orders of derivatives. Our paper concludes with an illustrative example and conclusion.
Citation: Mouataz Billah Mesmouli, Nahed Mustafa Dahshan, Wael W. Mohammed. Existence results for IBVP of (p,q)-fractional difference equations in Banach space[J]. AIMS Mathematics, 2024, 9(6): 15748-15760. doi: 10.3934/math.2024760
[1] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[2] | Jarunee Soontharanon, Thanin Sitthiwirattham . On sequential fractional Caputo (p,q)-integrodifference equations via three-point fractional Riemann-Liouville (p,q)-difference boundary condition. AIMS Mathematics, 2022, 7(1): 704-722. doi: 10.3934/math.2022044 |
[3] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
[4] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[5] | Hamza Moffek, Assia Guezane-Lakoud . Existence of solutions to a class of nonlinear boundary value problems with right and left fractional derivarives. AIMS Mathematics, 2020, 5(5): 4770-4780. doi: 10.3934/math.2020305 |
[6] | Nichaphat Patanarapeelert, Jiraporn Reunsumrit, Thanin Sitthiwirattham . On nonlinear fractional Hahn integrodifference equations via nonlocal fractional Hahn integral boundary conditions. AIMS Mathematics, 2024, 9(12): 35016-35037. doi: 10.3934/math.20241667 |
[7] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[8] | Reny George, Sina Etemad, Fahad Sameer Alshammari . Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional (p,q)-thermostat system. AIMS Mathematics, 2024, 9(1): 818-846. doi: 10.3934/math.2024042 |
[9] | Yitao Yang, Dehong Ji . Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function. AIMS Mathematics, 2020, 5(6): 7359-7371. doi: 10.3934/math.2020471 |
[10] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
This article focuses on the problem of integral boundary value for Riemann-Liouville derivatives equipped with (p,q)-difference calculus in Banach space. To provide further clarification, our focus lies in establishing the existence of a solution to our problem using the measure of noncompactness (m.n.) and the Mönch's fixed point theorem. Our investigation in the Banach space encompasses two nonlinear terms with two distinct orders of derivatives. Our paper concludes with an illustrative example and conclusion.
In the last two decades, q-calculus has become an established field of study that has demonstrated its usefulness in various disciplines, such as hypergeometric series, quantum mechanics, complex analysis, and particle physics, as evidenced by the papers referenced in [1,2,3,4]. Subsequently, the concept of (p,q)-calculus underwent generalization and advancement of q-calculus theory, see here [5,6,7,8,9,10], some works concerning q-calculus. This particular mathematical framework has proven to be highly effective across various disciplines. Further information and findings are, [11,12] for (p,q)-gamma and the (p,q)-beta functions, [13] for certain identities associated with (p,q)-binomial coefficients and (p,q)-Stirling polynomials, [14,15] for (p,q)-integral inequalities and teir applications, and others investigations of (p,q)-calculus can be explored in [16,17,18].
Researchers have extensively explored the subject of fractional order derivatives and (p,q)-calculus, recognizing its significance. They investigated the qualitative properties of solutions such as the existence [19,20], positivity [21,22,23], and [24,25] for M-truncated derivative, as these references will undoubtedly enrich the study of this subject.
Kuratowski [26] introduced the concept of m.n. in 1930. This measure finds numerous applications in mathematical research [27,28]. Darbo [29] was the pioneering researcher who utilized the m.n. to investigate the correlation between contraction and compact mappings. However, the fixed-point theorems of Darbo, Sadovski [30], and Mönch [31,32] have been widely recognized as valuable tools in the analysis of various classes of differential equations. These theorems, particularly in the context of fractional differential equations, have proven to be effective in studying the existence of solutions (see [33,34,35,36,37,38,39]).
Recently, Qin and Sun [23] conducted a study on positive solutions for BVPs of fractional (p,q)-difference
{Dσp,qz(t)+ζ(pσt,z(pσt))=0, t∈(0,1),z(0)=z(1)=0, | (1.1) |
where 0<q<p≤1, 1<σ≤2, Dσp,q is a (p,q)- fractional difference of Riemann-Liouville operator, and ζ:[0,1]×R→R is a non-negative continuous function.
This paper aims to analyze an integral boundary value problem of (p,q)-fractional difference equations which encompasses two nonlinear terms defined as follows:
{Dσp,qz(t)+ζ(pσt,z(pσt))=Dσ−1p,qh(pt,z(pt)), t∈(0,1),z(0)=0, z(1)=∫10h(pv,z(pv))dp,qv, | (1.2) |
where σ∈(1,2], the functions ζ,h:[0,1]×Z→Z will be disclosed at a later stage, and Z is a Banach space supplied with the norm ‖⋅‖.
In the literature, Xu and Han in [21] investigated and proved the existence and uniqueness of a positive solution of (1.2) without (p,q)-calculus. Lachouri, Ardjouni, and Djoudi in [34] also considered problem (1.2) without (p,q) -calculus, but in Banach space and found interesting results for the existence of solutions. The authors in [40] studied and analyzed the existence of solutions for Caputo fractional q-difference equations in a Banach space with different nonlinear integral boundary conditions than in our problem and without the function h, their work is based on Mönch's fixed point theorem and m.n. tool. So, all the previous information invites us to study problem (1.2) in order to generalize and improve previous studies.
This document is created in the following manner. Section 2 will introduce key concepts, tools, and discoveries that are employed in the analysis. The third section is dedicated to examining the existence of solutions. An illustration is provided in Section 4. Section 5 encompasses the derivation of conclusions and generalizations.
This section provides a selection of necessary materials that are essential for our study. We initiate our discussion by presenting the essential tools of definitions and results of the q-calculus and (p,q)-calculus. Therefore, we direct the reader to the following references for more information [6,12,17,18]. Given the numbers p,q such that 0<q<p≤1,
[S]p,q:={pS−qSp−q=pS−1[S]qp,S∈N+,1,S=0, |
[S]p,q!:={[S]p,q[S−1]p,q....[1]p,q=S∏i=1pi−qip−q,S∈N+,1,S=0. |
Expressing the power function (u−w)(n)q under the q-analogue is given by
(u−w)(n)q:={n−1∏i=0(u−wqi),n∈N+, u,w∈R,1,n=0. |
Expressing the power function (u−w)(n)p,q under the (p,q)-analogue is written as
(u−w)(n)p,q:={n−1∏i=0(upi−wqi),n∈N+, u,w∈R,1,n=0, |
and for σ∈R, the general form of the above is given by
\begin{equation*} \left( u-w\right) _{p, q}^{\left( \sigma \right) }: = p^{\binom{\sigma }{2} }\left( u-w\right) _{\frac{q}{p}}^{\left( \sigma \right) } = u^{\sigma }p^{ \binom{\sigma }{2}}\prod\limits_{i = 0}^{\infty }\frac{u-w\left( \frac{q}{p} \right) ^{i}}{u-w\left( \frac{q}{p}\right) ^{\sigma +i}}, \ \ \ 0 < w < u, \end{equation*} |
where p^{\binom{\sigma }{2}}: = \frac{\sigma \left(\sigma -1\right) }{2} .
Let C\left(A, \mathcal{Z}\right) be a Banach space which contains the continuous functions defined from A = \left[0, 1\right] into \mathcal{Z} equipped with the norm
\begin{equation*} \left\Vert z\right\Vert _{\infty } = \sup\limits_{{t}\in A}\left\Vert z\left({t}\right) \right\Vert . \end{equation*} |
Let L^{1}\left(A, \mathcal{Z}\right) be the Banach space which contains the measurable functions defined from A into \mathcal{Z} that are Lebesgue integrable with norm
\begin{equation*} \left\Vert z\right\Vert _{L^{1}} = \int_{0}^{1}\left\Vert z\left( {t} \right) \right\Vert d{t}. \end{equation*} |
Definition 2.1. [18] Given the numbers p, q such that 0 < q < p\leq 1 , the \left(p, q\right) -derivative of the function \zeta is defined as
\begin{equation*} \boldsymbol{D}_{p, q}\zeta \left( {t}\right) : = \frac{\zeta \left( p{t}\right) -\zeta \left( q{t}\right) }{\left( p-q\right) {t}}, \ \ {t}\neq 0, \end{equation*} |
and \left(\boldsymbol{D}_{p, q}\zeta \right) \left(0\right) = \lim_{t} \rightarrow 0}\left(\boldsymbol{D}_{p, q}\zeta \right) \left(t\right) such that \zeta is differentiable at 0 . Moreover, the high order \left(p, q\right) -derivative \boldsymbol{D}_{p, q}^{n}\zeta \left({t}\right) is defined by
\begin{equation*} \boldsymbol{D}_{p, q}^{n}\zeta \left( {t}\right) = \left\{ \begin{array}{ll} \boldsymbol{D}_{p, q}\boldsymbol{D}_{p, q}^{n-1}\zeta \left( {t}\right) , & n\in \mathbb{N} ^{+}, \\ \zeta \left({t}\right) , & n = 0. \end{array} \right. \end{equation*} |
Definition 2.2. [18] Given the numbers p, q such that 0 < q < p\leq 1 , and \zeta is an arbitrary function of a real number, the \left(p, q\right) -integral of the function \zeta is defined as
\begin{equation*} \boldsymbol{I}_{p, q}\zeta \left( {t}\right) : = \int_{0}^{{t} }\zeta \left( v\right) \mathrm{d}_{p, q}v = \left( p-q\right) {t} \sum\limits_{i = 0}^{\infty }\frac{q^{i}}{p^{i+1}}\zeta \left( \frac{q^{i}}{p^{i+1}} {t}\right) . \end{equation*} |
Moreover, \zeta is called \left(p, q\right) -integrable on \left[0, {t}\right] if the series on the right side converges.
Definition 2.3. [17] Let 0 < q < p\leq 1 , \sigma > 0 , and \zeta :A\rightarrow \mathbb{R} be an arbitrary function. The \left(p, q\right) -fractional integral of order \sigma is defined by
\begin{equation*} \boldsymbol{I}_{p, q}^{\sigma }\zeta \left({t}\right) = \frac{1}{ p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) } \int_{0}^{{t}}\left({t}-qv\right) _{p, q}^{\left( \sigma -1\right) }\zeta \left( \frac{v}{p^{\sigma -1}}\right) \mathrm{d}_{p, q}v, \end{equation*} |
and \boldsymbol{I}_{p, q}^{0}\zeta \left(t\right) = \zeta \left(t\right) .
Definition 2.4. [17] Let 0 < q < p\leq 1 , \sigma > 0 , and \zeta be an arbitrary function on A . The \left(p, q\right) -fractional difference operator of Riemann-Liouville type of order \sigma is defined by
\begin{equation*} \boldsymbol{D}_{p, q}^{\sigma }\zeta \left( {t}\right) = \boldsymbol{D} _{p, q}^{S}\boldsymbol{I}_{p, q}^{S-\sigma }\zeta \left( {t}\right), \end{equation*} |
and \boldsymbol{D}_{p, q}^{0}\zeta \left(t\right) = \zeta \left(t\right) , where S represents the smallest integer that is greater than or equal to \sigma . In addition,
\begin{equation*} \boldsymbol{D}_{p, q}^{\sigma }\boldsymbol{I}_{p, q}^{\sigma }\zeta \left({t}\right) = \zeta \left({t}\right) . \end{equation*} |
Lemma 2.1. [17] For 0 < q < p\leq 1 , \sigma \in \left(S-1, S\right] , S\in \mathbb{N} , and \zeta :A\rightarrow \mathbb{R} , obtain
\begin{equation*} \boldsymbol{I}_{p, q}^{\sigma }\boldsymbol{D}_{p, q}^{\sigma }\zeta \left( \mathit{t}\right) = \zeta \left( \mathit{t}\right) +c_{1}\mathit{t}^{\sigma -1}+c_{2}\mathit{t}^{\sigma -2}+...+c_{S}\mathit{t}^{\sigma -S}, \end{equation*} |
with c_{j}\in \mathbb{R}, j = 1, 2, ..., S .
Lemma 2.2. Let 1 < \sigma \leq 2 and 0 < q < p\leq 1 . Then z:A\rightarrow \mathcal{ \ Z} is a solution of the IBVP (1.2) if and only if z\left(t\right) satisfies
\begin{equation*} z\left( \mathit{t}\right) = \int_{0}^{1}\boldsymbol{\phi }\left( \mathit{t} , qv\right) \zeta \left( pv, z\left( pv\right) \right) \mathrm{d} _{p, q}v+\int_{0}^{\mathit{t}}h\left( pv, z\left( pv\right) \right) \mathrm{d} _{p, q}v, \end{equation*} |
where
\begin{equation} \boldsymbol{\phi }\left( \mathit{t}, qv\right) = \frac{1}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\left\{ \begin{array}{ll} \mathit{t}^{\sigma -1}\left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }-\left( \mathit{t}-qv\right) _{p, q}^{\left( \sigma -1\right) }, & 0\leq qv\leq \mathit{t}\leq 1, \\ \mathit{t}^{\sigma -1}\left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }, & 0\leq \mathit{t}\leq qv\leq 1. \end{array} \right. \end{equation} | (2.1) |
Proof. According to Definition 2.3 and Lemma 2.1, by employing the integral operator \boldsymbol{I}_{p, q}^{\sigma } on the two sides of Eq (1.2), it can be deduced that
\begin{align*} & \quad z\left( {t}\right) +c_{1}{t}^{\sigma -1}+c_{2}{t} ^{\sigma -2}+\frac{1}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\int_{0}^{{t}}\left( {t}-qv\right) _{p, q}^{\left( \sigma -1\right) }\zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v \\ & = \boldsymbol{I}_{p, q}\left( \boldsymbol{I}_{p, q}^{\sigma -1}\boldsymbol{D} _{p, q}^{\sigma -1}h\left( p{t}, z\left( p{t}\right) \right) \right) \\ & = \boldsymbol{I}_{p, q}\left( h\left( p{t}, z\left( p{t}\right) \right) +c_{3}{t}^{\sigma -2}\right) \\ & = \int_{0}^{{t}}h\left( pv, z\left( pv\right) \right) \mathrm{d} _{p, q}v+\frac{c_{3}}{\sigma -1}{t}^{\sigma -1}, \end{align*} |
for some constants c_{1}, c_{2}, c_{3}\in \mathbb{R} . As a result of the initial condition z\left(0\right) = 0 and the last equation, we obtain c_{2} = 0 and, based on the boundary condition
\begin{equation*} z\left( 1\right) = \int_{0}^{1}h\left( pv, z\left( pv\right) \right) \mathrm{d} _{p, q}v, \end{equation*} |
we obtain
\begin{equation*} c_{1} = -\frac{1}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\int_{0}^{1}\left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }\zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v+\frac{c_{3}}{ \sigma -1}. \end{equation*} |
Therefore,
\begin{align*} z\left( {t}\right) = &\frac{1}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\int_{0}^{1}{t}^{\sigma -1}\left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }\zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v \\ & -\frac{1}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\int_{0}^{{t}}\left( {t}-qv\right) _{p, q}^{\left( \sigma -1\right) }\zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v +\int_{0}^{{t}}h\left( pv, z\left( pv\right) \right) \mathrm{d} _{p, q}v \\ = &\frac{1}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\int_{0}^{{t}}\left[ {t}^{\sigma -1}\left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }-\left( {t}-qv\right) _{p, q}^{\left( \sigma -1\right) }\right] \zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v \\ & +\frac{1}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\int_{{t}}^{1}{t}^{\sigma -1}\left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }\zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v+\int_{0}^{{t}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v \\ = &\int_{0}^{1}\boldsymbol{\phi }\left( {t}, qv\right) \zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v+\int_{0}^{{t}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v. \end{align*} |
This process is reversible, and The proof is finished.
Lemma 2.3. [23] The function \boldsymbol{\phi } given by (2.1) satisfies the mentioned properties:
(i) \boldsymbol{\phi }\left(\mathit{t}, qv\right) \leq t^{\sigma -1}\left(1-qv\right) _{p, q}^{\left(\sigma -1\right) }\leq \left(1-qv\right) _{p, q}^{\left(\sigma -1\right) } ,
(ii) 0\leq \boldsymbol{\phi }\left(\mathit{t}, qv\right) \leq 1 , for all 0\leq t, v\leq 1 .
Next, let us revisit the concept of the Kuratowski m.n. and provide a concise overview of its key characteristics.
Definition 2.5. [41] Let \mathcal{Z} be a Banach space and let Q_{\mathcal{Z}} be the family of bounded subsets of \mathcal{Z} . The Kuratowski m.n. is the map \mu :Q_{ \mathcal{Z}}\rightarrow \left[0, \infty \right) defined by
\begin{equation*} \mu \left( Q\right) = \inf \left\{ \varepsilon > 0:Q\subset \cup _{i = 0}^{S}Q_{i}\;{ and\; }\dim \left( Q_{i}\right) \leq \varepsilon \right\} {,\; where }\;Q\in Q_{\mathcal{Z}}. \end{equation*} |
Below we provide some information about m.n. \mu (See [41,42]). Let \overline{Q} and convQ be the closure and the convex hull of the bounded set Q , respectively.
1) \mu \left(Q\right) = \mu \left(\overline{Q}\right),
2) \mu \left(Q\right) = 0\Leftrightarrow \overline{Q} is compact ( Q is relatively compact),
3) \mu \left(Q\right) = \mu \left(convQ\right),
4) \mu \left(Q_{1}+Q_{2}\right) \leq \mu \left(Q_{1}\right) +\mu \left(Q_{2}\right),
5) Q_{1}\subset Q_{2}\Rightarrow \mu \left(Q_{1}\right) \leq \mu \left(Q_{2}\right),
6) \mu \left(cQ\right) = \left\vert c\right\vert \mu \left(Q\right), for c\in \mathbb{R}.
Definition 2.6. A mapping \zeta :A\times \mathcal{Z}\rightarrow \mathcal{Z} is said to be Caratheodory if
(i) t\rightarrow \zeta \left(t, z\right) is a measurable function for each z\in \mathcal{Z} .
(ii) t\rightarrow \zeta \left(t, z\right) is a continuous function for almost all t\in A .
Now, let the set K of functions k:A\rightarrow \mathcal{Z} , denoted by
\begin{align*} K\left({t}\right) & = \left\{ k\left({t}\right) :k\in K\right\} , {t}\in A, \\ K\left( A\right) & = \left\{ k\left({t}\right) :k\in K, \ {t}\in A\right\}. \end{align*} |
Lemma 2.4. [39] If K\subset C\left(A, \mathcal{Z}\right) is an equicontinuous bounded set, then
i) The function t\rightarrow \mu \left(K\left(t\right) \right) is a continuous function on A .
ii) \mu \left(\left\{ \int_{A}z\left(t\right) dt, z\in K\right\} \right) \leq \int_{A}\mu \left(K\left(t\right) \right) dt .
Lemma 2.5. [33] Let \Omega be a bounded, closed, and convex subset of the Banach space C\left(A, \mathcal{Z}\right) . Let \Phi be a continuous function on A\times A and \zeta a function from A\times \mathcal{Z} \rightarrow \mathcal{Z} which satisfies the conditions of Carathéodory, and suppose there exists \theta \in L^{1}\left(A, \mathbb{R} ^{+}\right) such that, for all t\in A and any bounded set Q\subset \mathcal{Z} , we have
\begin{equation*} \lim\limits_{\epsilon \rightarrow 0^{+}}\mu \left( \zeta \left( A_{\epsilon }\times Q\right) \right) \leq \theta \left( \mathit{t}\right) \mu \left( Q\right) , \end{equation*} |
with A_{\epsilon } = \left[t-\epsilon, \mathit{t}\right] \cap A . If K is an equicontinuous subset of \Omega , then
\begin{equation*} \mu \left( \left\{ \int_{A}\Phi \left( \mathit{t}, r\right) \zeta \left( r, z\left( r\right) \right) dr, z\in K\right\} \right) \leq \int_{A}\left\vert \Phi \left( \mathit{t}, r\right) \right\vert \theta \left( r\right) \mu \left( K\left( r\right) \right) dr. \end{equation*} |
Theorem 2.1. (Mönch [32]) Let \Omega be a bounded, closed, and convex subset of a Banach space such that 0\in \Omega , and let \mathcal{H} be a continuous mapping of \Omega into itself. In addition, if
\begin{equation} K = \overline{conv}\left( \left( \mathcal{H}K\right) \right) \mathit{or}K = \overline{conv}\left( \left( \mathcal{H}K\right) \right) \cup \left\{ 0\right\} \Rightarrow \mu \left( K\right) = 0, \end{equation} | (2.2) |
holds for every K of \Omega , then \mathcal{H} has a fixed point.
Theorem 2.2. (Arzela-Ascoli's Theorem [43]) A bounded, uniformly Cauchy subset Q of \mathcal{Z} is relatively compact.
In this section, we establish the existence of solutions for our problem (1.2) through the utilization of Mönch's fixed point Theorem 2.1. To accomplish this, we ensure that all the required conditions are prepared.
({\rm{C1}}) The functions \zeta; h:A\times \mathcal{Z}\rightarrow \mathcal{ \ \ Z } satisfy the conditions of Caratheodory.
({\rm{C2}}) There exist \theta, \vartheta \in L^{1}\left(A, \mathbb{R} ^{+}\right) \cap \left(A, \mathbb{R} ^{+}\right) satisfy
\begin{equation*} \left\Vert \zeta \left( {t}, z\left( {t}\right) \right) \right\Vert \leq \theta \left( {t}\right) \left\Vert z\right\Vert , \text{ for a.e. }{\mathit{t}}\;\in A\text{ and each }z\in \mathcal{Z}, \end{equation*} |
\begin{equation*} \left\Vert h\left( {t}, z\left({t}\right) \right) \right\Vert \leq \vartheta \left({t}\right) \left\Vert z\right\Vert , \text{ for a.e. }{\mathit{t}}\;\in A\text{ and each }z\in \mathcal{Z}, \end{equation*} |
and
\begin{equation*} \left\Vert \theta \right\Vert _{\infty }+\left\Vert \vartheta \right\Vert _{\infty } < 1. \end{equation*} |
({\rm{C3}}) Let A_{\epsilon } = \left[t-\epsilon, t\right] \cap A . Then, for all t\in A and for any bounded set Q\subset \mathcal{Z} , we have
\begin{equation*} \lim\limits_{\epsilon \rightarrow 0^{+}}\mu \left( \zeta \left( A_{\epsilon }\times Q\right) \right) \leq \theta \left({t}\right) \mu \left( Q\right) , \end{equation*} |
\begin{equation*} \lim\limits_{\epsilon \rightarrow 0^{+}}\mu \left( h\left( A_{\epsilon }\times Q\right) \right) \leq \vartheta \left({t}\right) \mu \left( Q\right) . \end{equation*} |
As per Lemma 2.2, the operator \mathcal{H} is defined from C\left(A, \mathcal{Z}\right) into itself as
\begin{equation} \left( \mathcal{H}z\right) \left({t}\right) = \int_{0}^{1}\;\boldsymbol{\phi}\left( {t}, qv\right) \zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v+\int_{0}^{{t}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v, \end{equation} | (3.1) |
where the fixed points of the operator \mathcal{H} are the solution of problem (1.2).
To achieve this objective, we establish \Omega as the closed, bounded, and convex subset of C\left(A, \mathcal{Z}\right) for L > 0 ,
\begin{equation*} \Omega = \left\{ z\in C\left( A, \mathcal{Z}\right) :\left\Vert z\right\Vert _{\infty }\leq L\right\} . \end{equation*} |
To demonstrate the fundamental outcomes, we partition the verification into the subsequent lemmas.
Lemma 3.1. Suppose that the condition (C2) holds. Then,
(i) \mathcal{H} maps \Omega into itself.
(ii) \mathcal{H}\left(\Omega \right) is bounded and equicontinuous.
Proof. Let t be an element of A and z be an element of \Omega . By utilizing condition (C2) and referring to Lemma 2.3 (ⅱ), we get
\begin{align*} \left\Vert \left( \mathcal{H}z\right) \left( {t}\right) \right\Vert & \leq \left\Vert \int_{0}^{1}\boldsymbol{\phi }\left( {t}, qv\right) \zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v\right\Vert +\left\Vert \int_{0}^{{t}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v\right\Vert \\ & \leq \int_{0}^{1}\boldsymbol{\phi }\left( {t}, qv\right) \left\Vert \zeta \left( pv, z\left( pv\right) \right) \right\Vert \mathrm{d} _{p, q}v+\int_{0}^{{t}}\left\Vert h\left( pv, z\left( pv\right) \right) \right\Vert \mathrm{d}_{p, q}v \\ & \leq \int_{0}^{1}\boldsymbol{\phi }\left( {t}, qv\right) \theta \left( {t}\right) \left\Vert z\right\Vert \mathrm{d}_{p, q}v+\int_{0}^{ {t}}\vartheta \left( {t}\right) \left\Vert z\right\Vert \mathrm{d}_{p, q}v \\ & \leq \left( \left\Vert \theta \right\Vert _{\infty }\int_{0}^{1} \boldsymbol{\phi }\left( {t}, qv\right) \mathrm{d}_{p, q}v+\left\Vert \vartheta \right\Vert _{\infty }\int_{0}^{{t}}\mathrm{d} _{p, q}v\right) L \\ & \leq L, \end{align*} |
this gives that \mathcal{H} maps \Omega into \Omega and proves that \mathcal{H} \left(\Omega \right) is bounded.
Next, let t_{1}, t_{2}\in A, \ t_{1} < t_{2} , and z\in \Omega . Then
\begin{align} \left\Vert \left( \mathcal{H}z\right) \left( {t}_{2}\right) -\left( \mathcal{H}z\right) \left( {t}_{1}\right) \right\Vert = &\left\Vert \int_{0}^{1}\boldsymbol{\phi }\left( {t}_{2}, qv\right) \zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v+\int_{0}^{{t}_{2}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v\right. \notag \\ & -\left. \int_{0}^{1}\boldsymbol{\phi }\left( {t}_{1}, qv\right) \zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v-\int_{0}^{{t}_{1}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v\right\Vert \\ \leq& \left\Vert \theta \right\Vert _{\infty }L\int_{0}^{1}\left\vert \boldsymbol{\phi }\left( {t}_{2}, qv\right) -\boldsymbol{\phi }\left( {t}_{1}, qv\right) \right\vert \mathrm{d}_{p, q}v \\ & +\left\Vert \int_{0}^{{t}_{2}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v-\int_{0}^{{t}_{1}}h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v\right\Vert \\ \leq& \frac{\left\Vert \theta \right\Vert _{\infty }L}{p^{\binom{\sigma }{2} }\Gamma _{p, q}\left( \sigma \right) }\int_{0}^{{t}_{1}}\left\vert \left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }\left( {t} _{2}^{\sigma -1}-{t}_{1}^{\sigma -1}\right) -\left( {t} _{2}-qv\right) _{p, q}^{\left( \sigma -1\right) }+\left( {t} _{1}-qv\right) _{p, q}^{\left( \sigma -1\right) }\right\vert \mathrm{d}_{p, q}v \\ & +\frac{\left\Vert \theta \right\Vert _{\infty }L}{p^{\binom{\sigma }{2} }\Gamma _{p, q}\left( \sigma \right) }\int_{{t}_{1}}^{{t} _{2}}\left\vert \left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }\left( {t}_{2}^{\sigma -1}-{t}_{1}^{\sigma -1}\right) -\left( {t}_{2}-qv\right) _{p, q}^{\left( \sigma -1\right) }\right\vert \mathrm{d} _{p, q}v \\ & +\frac{\left\Vert \theta \right\Vert _{\infty }L}{p^{\binom{\sigma }{2} }\Gamma _{p, q}\left( \sigma \right) }\int_{{t}_{2}}^{1}\left\vert \left( 1-qv\right) _{p, q}^{\left( \sigma -1\right) }\left( {t} _{2}^{\sigma -1}-{t}_{1}^{\sigma -1}\right) \right\vert \mathrm{d} _{p, q}v+\left( {t}_{2}-{t}_{1}\right) \left\Vert \vartheta \right\Vert _{\infty }L \\ = &\frac{\left\Vert \theta \right\Vert _{\infty }L}{p^{\left( _{2}^{\sigma }\right) }\Gamma _{p, q}\left( \sigma \right) }\left\{ \int_{0}^{{t} _{1}}\left( {t}_{2}^{\sigma -1}-{t}_{1}^{\sigma -1}\right) \mathrm{d}_{p, q}v+\int_{0}^{{t}_{1}}\left[ \left( {t} _{2}-qv\right) _{p, q}^{\left( \sigma -1\right) }-\left( {t} _{1}-qv\right) _{p, q}^{\left( \sigma -1\right) }\right] \mathrm{d} _{p, q}v\right. \\ & +\left. \int_{{t}_{1}}^{{t}_{2}}\left( {t} _{2}^{\sigma -1}-{t}_{1}^{\sigma -1}+1\right) \mathrm{d}_{p, q}v+\int_{ {t}_{2}}^{1}\left( {t}_{2}^{\sigma -1}-{t}_{1}^{\sigma -1}\right) \mathrm{d}_{p, q}v\right\} +\left( {t}_{2}-{t} _{1}\right) \left\Vert \vartheta \right\Vert _{\infty }L \\ \leq& \frac{\left\Vert \theta \right\Vert _{\infty }L}{p^{\binom{\sigma }{2} }\Gamma _{p, q}\left( \sigma \right) }\left\{ \int_{0}^{1}\left( \left[ \left( {t}_{2}-qv\right) _{p, q}^{\left( \sigma -1\right) }-\left( {t}_{1}-qv\right) _{p, q}^{\left( \sigma -1\right) }\right] +2\left( {t}_{2}-{t}_{1}\right) ^{\sigma -1}\right) \mathrm{d} _{p, q}v\right. \\ & +\left. \int_{{t}_{1}}^{{t}_{2}}\left( {t}_{2}-{t}_{1}\right) ^{\sigma -1}\mathrm{d}_{p, q}v+{t}_{2}-{t} _{1}\right\} +\left( {t}_{2}-{t}_{1}\right) \left\Vert \vartheta \right\Vert _{\infty }L, \end{align} | (3.2) |
Since \left(\text{t}-qv\right) _{p, q}^{\left(\sigma -1\right) } is continuous function with respect to t and v on A\times A , it can be inferred that the function is continuously uniform on A\times A . Consequently, for any v\in A , we can deduce the following:
\begin{equation*} \left({t}_{2}-qv\right) _{p, q}^{\left( \sigma -1\right) }-\left({t}_{1}-qv\right) _{p, q}^{\left( \sigma -1\right) }\rightrightarrows 0 \text{ as}{\mathit{t}}_{1}\rightarrow {t}_{2}. \end{equation*} |
As t_{1} approaches t_{2} , it can be concluded that the right-hand side of the aforementioned inequality (3.2) tends to zero. This implies that \mathcal{H}\left(\Omega \right) exhibits equicontinuity.
Lemma 3.2. Suppose that (C1) and (C2) hold. Then, \mathcal{H} is continuous mapping on \Omega .
Proof. Let the sequence \left\{ z_{n}\right\} satisfy z_{n}\rightarrow z\in C\left(A, \mathcal{Z}\right) . So, for each t\in A and by Lemma 2.3 (ⅱ), we have
\begin{align*} \left\Vert \left( \mathcal{H}z_{n}\right) \left( {t}\right) -\left( \mathcal{H}z\right) \left( {t}\right) \right\Vert = &\left\Vert \int_{0}^{1}\boldsymbol{\phi }\left( {t}, qv\right) \zeta \left( pv, z_{n}\left( pv\right) \right) \mathrm{d}_{p, q}v+\int_{0}^{ {t}}h\left( pv, z_{n}\left( pv\right) \right) \mathrm{d}_{p, q}v\right. \\ & -\left. \int_{0}^{1}\boldsymbol{\phi }\left( {t}, qv\right) \zeta \left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v-\int_{0}^{{t} }h\left( pv, z\left( pv\right) \right) \mathrm{d}_{p, q}v\right\Vert \\ \leq& \int_{0}^{1}\left\Vert \zeta \left( pv, z_{n}\left( pv\right) \right) -\zeta \left( pv, z\left( pv\right) \right) \right\Vert \mathrm{d}_{p, q}v \\ & +\int_{0}^{{t}}\left\Vert h\left( pv, z_{n}\left( pv\right) \right) -h\left( pv, z\left( pv\right) \right) \right\Vert \mathrm{d}_{p, q}v. \end{align*} |
Given that the functions h and \zeta adhere to the Carathéodory conditions, it can be deduced that
\begin{equation*} \left\Vert \left( \mathcal{H}z_{n}\right) \left( {t}\right) -\left( \mathcal{H}z\right) \left({t}\right) \right\Vert \rightarrow 0\text{ as }n\rightarrow \infty , \end{equation*} |
which gives us that \left(\mathcal{H}z_{n}\right) converges to \mathcal{H}z on A . However, as demonstrated in Lemma 3.1, the sequence \left(\mathcal{H}z_{n}\right) exhibits equicontinuity. Consequently, \mathcal{H} is continuous because \left(\mathcal{H}z_{n}\right) converges uniformly to \mathcal{H}z .
Theorem 3.1. Suppose conditions (C1)–(C3) hold. Then, at least one solution exists for the boundary value problem (1.2).
Proof. First, Lemmas 3.1 and 3.2 confirm the first part of the proof. In order to establish the validity of this theorem, it is only necessary to demonstrate (2.2).
Let K be a subset of the set \Omega satisfies the relation K\subset \overline{conv}\left(\left(\mathcal{H}K\right) \cup \left\{ 0\right\} \right) . Given that K is both bounded and equicontinuous, it can be deduced the continuity on A of the function k\rightarrow k\left(t\right) = \mu \left(K\left(t\right) \right) . According to Lemma 2.5, Lemma 2.3 (ii), and condition (C3), it can be deduced that for every t\in A , we have the following:
\begin{eqnarray*} k\left( {t}\right) &\leq &\mu \left( \mathcal{H}\left( K\right) \left( {t}\right) \cup \left\{ 0\right\} \right) \leq \mu \left( \mathcal{H}\left( K\right) \left( {t}\right) \right) \\ &\leq &\int_{0}^{1}\boldsymbol{\phi }\left( {t}, qv\right) \theta \left( s\right) \mu \left( K\left( s\right) \right) ds+\int_{0}^{{t} }\vartheta \left( s\right) \mu \left( K\left( s\right) \right) ds \\ &\leq &\left\Vert k\right\Vert _{\infty }\left( \left\Vert \theta \right\Vert _{\infty }+\left\Vert \vartheta \right\Vert _{\infty }\right) . \end{eqnarray*} |
Next, we get
\begin{equation*} \left\Vert k\right\Vert _{\infty }\left( 1-\left\Vert \theta \right\Vert _{\infty }-\left\Vert \vartheta \right\Vert _{\infty }\right) \leq 0. \end{equation*} |
Since \left\Vert \theta \right\Vert _{\infty }+\left\Vert \vartheta \right\Vert _{\infty } < 1 , then \left\Vert k\right\Vert _{\infty } = 0 , which gives that k\left(t\right) = 0 for all t\in A , hence K\left(t\right) is relatively compact in \mathcal{Z} . Furthermore, due to the Ascoli-Arzela theorem, K is relatively compact within \Omega . In conclusion, based on Theorem 2.1, we can deduce that \mathcal{H} possesses a fixed point, serving as a solution to problem (1.2).
Now, we give some restrictions of our study.
Theorem 3.2. Let \zeta be a function that fulfills the conditions (C1)–(C3). Then, at least one solution exists for the boundary value problem (1.1).
Proof. The steps of the proof are similar to the proof of Theorem 3.1 such that h\equiv 0 .
On the other hand, problem (1.2) when p = 1 has not been studied in the literature. Consequently, we present the ensuing theorem.
Theorem 3.3. Assume the conditions (C1)–(C3) hold. If p = 1 . Then, At least one solution exists for the boundary value problem (1.2).
Proof. The steps of the proof are similar to the proof of Theorem 3.1 when p = 1 .
In this section, we aim to enhance the reader's understanding of Theorem 3.1 by providing an illustrative example, drawing inspiration from the examples presented in the papers by [21,34,40]. So, we propose the following IBVP of the (p, q) -fractional difference equation
\begin{equation} \left\{ \begin{array}{l} \boldsymbol{D}_{p, q}^{\frac{7}{4}}z\left( {t}\right) +\frac{z\left( p^{\frac{7}{4}}{t}\right) }{2+\exp \left( p^{\frac{7}{4}}{t} \right) } = \boldsymbol{D}_{p, q}^{\frac{1}{4}}\left( \frac{z\left( p{t} \right) }{6+\exp \left( p{t}\right) ^{2}}\right) \text{, for all}\ {t}\in \left( 0, 1\right) , \\ z\left( 0\right) = 0, \ \ z\left( 1\right) = \int_{0}^{1}\frac{z\left( pv\right) }{6+\exp \left( pv\right) ^{2}}\mathrm{d}_{p, q}v, \end{array} \right. \end{equation} | (4.1) |
where \sigma = \frac{7}{4} , p = 0.5 , q = 0.4 , z = \left(z_{1}, z_{2}, ..., z_{i}, ...\right) , \zeta = \left(\zeta _{1}, \zeta _{2}, ..., \zeta _{i}, ...\right) , and h = \left(h_{1}, h_{2}, ..., h_{i}, ...\right) such that
\begin{equation*} \zeta _{i}\left( {t}, z_{i}\left( {t}\right) \right) = \frac{ z_{i}\left( {t}\right) }{2+e^{{t}}}\text{ and }h_{i}\left({t}, z_{i}\left({t}\right) \right) = \frac{z_{i}\left({t}\right) }{6+e^{{t}^{2}}}\text{ for}{\mathit{t}}\in A, \end{equation*} |
and let the space
\begin{equation*} \mathcal{Z} = l^{1} = \left\{ z = \left( z_{1}, z_{2}, ..., z_{i}, ...\right) \text{ such that }\sum\limits_{i = 1}^{\infty }\left\vert z_{i}\right\vert < \infty \right\} , \end{equation*} |
equipped with the norm
\begin{equation*} \left\Vert z\right\Vert _{l^{1}} = \sum\limits_{i = 1}^{\infty }\left\vert z_{i}\right\vert . \end{equation*} |
Then, we get
\begin{align} \left\vert \zeta _{i}\left( {t}, z_{i}\left( {t}\right) \right) \right\vert &\leq \frac{1}{2+e^{{t}}}\left\vert z_{i}\left( {t} \right) \right\vert \text{, for all}\ {t}\in A, \end{align} | (4.2) |
\begin{align} \left\vert h_{i}\left( {t}, z_{i}\left( {t}\right) \right) \right\vert &\leq \frac{1}{6+e^{{t}^{2}}}\left\vert z_{i}\left({t}\right) \right\vert \text{, for all}\ {t}\in A. \end{align} | (4.3) |
Therefore, it can be deduced that conditions (C1) and (C2) are met by \theta \left(\text{ t}\right) = \frac{1}{4+e^{\text{t}}}, \left(\left\Vert \theta \right\Vert _{\infty } = \frac{1}{3}\right) and \vartheta \left(\text{ t}\right) = \frac{1}{6+e^{\text{t}^{2}}}, \left(\left\Vert \theta \right\Vert _{\infty } = \frac{1}{7}\right) .
Furthermore, condition (C3) holds true as
\begin{align*} \mu \left( \zeta \left( {t}, Q\right) \right) &\leq \frac{1}{2+e^{{t}}}\mu \left( Q\right), \\ \mu \left( h\left( {t}, Q\right) \right) &\leq \frac{1}{6+e^{{t}^{2}}}\mu \left( Q\right). \end{align*} |
are satisfied for every t\in A and any bounded set Q\subset \mathcal{Z} . As a result, it can be concluded from Theorem 3.1 that a solution to problem (4.1) does exist and is defined on A .
The existence of solutions in Banach spaces for the fractional (p, q) -difference equation with boundary conditions of nonlinear integral type has been proven in this study. Our approach involves the utilization of the Kuratowski m.n. and Mönch's fixed point theorem. The efficacy of our findings have been shown by providing an illustrative example.
The findings derived from this paper are commendable and significant becuase the results of existence for [23] can be obtained by the method used in this research when the function h\equiv 0 . On the other hand, without (p, q) -calculus, our results are identical to those in paper [34].
One intriguing avenue for future investigation, undoubtedly, would involve contemplating the fractional (p, q) -difference equations of two orders derivatives different \sigma , \beta where \sigma \in \left(1, 2\right] and \beta \in \left(0, \sigma \right] . Also, study of problems with Riemann-Stieltjes integral-type boundary conditions and including impulsive effects in the equation would broaden the scope of potential applications too.
Writing–original draft, M.B.M; Conceptualization M.B.M; Funding acquisition M.B.M, N.M.D; Writing–review and editing M.B.M, W.W.M; Project administration M.B.M, N.M.D, W.W.M; Supervision W.W.M.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
There are no conflicts of interest.
[1] | F. H. Jackson, On Q-definite integrals, Quart. J. Pure. Appl. Math., 41 (1910), 193–203. |
[2] |
F. H. Jackson, Q-Difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
![]() |
[3] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[4] |
M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiable convex function, J. Math. Inequal., 10 (2016), 1013–1018. http://dx.doi.org/10.7153/jmi-10-81 doi: 10.7153/jmi-10-81
![]() |
[5] |
G. Gasper, M. Rahman, Some systems of multivariable orthogonal q-Racah polynomials, Ramanujan J., 13 (2007), 389–405. https://doi.org/10.1007/s11139-006-0259-8 doi: 10.1007/s11139-006-0259-8
![]() |
[6] |
R. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ., 70 (2010), 1–10. https://doi.org/10.14232/ejqtde.2010.1.70 doi: 10.14232/ejqtde.2010.1.70
![]() |
[7] |
M. B. Mesmouli, A. Ardjouni, Stability in nonlinear neutral Caputo q-fractional difference equations, Mathematics, 10 (2022), 4763. https://doi.org/10.3390/math10244763 doi: 10.3390/math10244763
![]() |
[8] |
H. Liu, Application of the variational iteration method to strongly nonlinear q-difference equations. J. Appl. Math., 2012 (2012), 704138. https://doi.org/10.1155/2012/704138 doi: 10.1155/2012/704138
![]() |
[9] |
M. Riyasat, S. Khan, T. Nahid, q-difference equations for the composite 2D q-Appell polynomials and their applications, Cogent Math., 4 (2017), 1376972. https://doi.org/10.1080/23311835.2017.1376972 doi: 10.1080/23311835.2017.1376972
![]() |
[10] |
T. Ernst, On several q-special matrices, including the q-Bernoulli and q-Euler matrices, Linear Algebra Appl., 542 (2018), 422–440. https://doi.org/10.1016/j.laa.2017.06.028 doi: 10.1016/j.laa.2017.06.028
![]() |
[11] |
A. Aral, V. Gupta, Applications of (p, q)-gamma function to Szász durrmeyer operators, Publ. Inst. Math., 102 (2017), 211–220. http://dx.doi.org/10.2298/PIM1716211A doi: 10.2298/PIM1716211A
![]() |
[12] | P. N. Sadjang, On the (p, q)-gamma and the (p, q)-beta functions, arXiv: 1506.07394, 2015. https://doi.org/10.48550/arXiv.1506.07394 |
[13] |
T. Usman, M. Saif, J. Choi, Certain identities associated with (p, q)-binomial coefficients and (p, q)-Stirling polynomials of the second kind, Symmetry, 12 (2020), 1436. https://doi.org/10.3390/sym12091436 doi: 10.3390/sym12091436
![]() |
[14] |
C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum (p, q)-difference equation with separated boundary conditions, Adv. Math. Phys., 2018 (2018), 9089865. https://doi.org/10.1155/2018/9089865 doi: 10.1155/2018/9089865
![]() |
[15] | M. Tunç, E. Göv, (p, q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1–13. |
[16] |
M. Mursaleen, K. J. Ansari, A. Khan, On (p, q)-analogues of Bernstein operators, Appl. Math. Comput., 266 (2015), 874–882. https://doi.org/10.1016/j.amc.2015.04.090 doi: 10.1016/j.amc.2015.04.090
![]() |
[17] |
J. Soontharanon, T. Sitthiwirattham, On fractional (p, q)-calculus, Adv. Differ. Equ., 2020 (2020), 35. https://doi.org/10.1186/s13662-020-2512-7 doi: 10.1186/s13662-020-2512-7
![]() |
[18] |
P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-taylor formulas, Results Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z
![]() |
[19] |
P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Nonlocal boundary value problems of nonlinear fractional (p, q)-difference equations, Fractal Fract., 5 (2021), 270. https://doi.org/10.3390/fractalfract5040270 doi: 10.3390/fractalfract5040270
![]() |
[20] |
M. B. Mesmouli, A. E. Hamza, D. A Rizk, A study of an IBVP of fractional differential equations in Banach space via the measure of noncompactness, Fractal Fract., 8 (2024), 30. https://doi.org/10.3390/fractalfract8010030 doi: 10.3390/fractalfract8010030
![]() |
[21] |
M. Xu, Z. Han, Positive solutions for integral boundary value problem of two-term fractional differential equations, Bound. Value Probl., 2018 (2018), 100. https://doi.org/10.1186/s13661-018-1021-z doi: 10.1186/s13661-018-1021-z
![]() |
[22] |
M. B. Mesmouli, T. S. Hassan, On the positive solutions for IBVP of conformable differential equations, AIMS Mathematics, 8 (2023), 24740–24750. https://doi.org/10.3934/math.20231261 doi: 10.3934/math.20231261
![]() |
[23] |
Z. Qin, S. Sun, Positive solutions for fractional (p, q)-difference boundary value problems, J. Appl. Math. Comput., 68 (2021), 2571–2588. https://doi.org/10.1007/s12190-021-01630-w doi: 10.1007/s12190-021-01630-w
![]() |
[24] |
W. W. Mohammed, C. Cesarano, F. M. Al-Askar, Solutions to the \left(4+1\right) -dimensional time-fractional Fokas equation with M-truncated derivative, Mathematics, 11 (2022), 194. https://doi.org/10.3390/math11010194 doi: 10.3390/math11010194
![]() |
[25] |
F. M. Al-Askar, W. W. Mohammed, Abundant optical solutions for the Sasa-Satsuma equation with M-truncated derivative, Front. Phys., 11 (2023), 1216451. https://doi.org/10.3389/fphy.2023.1216451 doi: 10.3389/fphy.2023.1216451
![]() |
[26] | C. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301–309. |
[27] | V. Istrăţescu, On a measure of noncompactness, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S), 16 (1972), 195–197. |
[28] | E. Malkowsky, V. Rakočević, An introduction into the theory of sequence spaces and measures of noncompactness, Zb. Rad., 2000,143–234. |
[29] | G. Darbo, Punti uniti in transformazioni a condominio non compatto, Rend. Semin. Mat. Univ. Pad., 24 (1955), 84–92. |
[30] | B. N. Sadovskii, On a fixed point principle [in Russian], Funkts. Analiz Prilozh., 1 (1997), 74–76. |
[31] |
H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3
![]() |
[32] | R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005 |
[33] | S. Szufla, On the application of measure of noncompactness to existence theorems. Rend. Semin. Mat. Univ. Pad., 75 (1986), 1–14. |
[34] |
A. Lachouri, A. Ardjouni, A. Djoudi, Existence results for integral boundary value problems of fractional differential equations with two nonlinear terms in banach spaces, Bull. Int. Math. Virtual Inst., 11 (2021), 159–168. https://doi.org/10.7251/BIMVI2101159L doi: 10.7251/BIMVI2101159L
![]() |
[35] |
R. P. Agarwal, M. Benchohra, D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 55 (2009), 221. https://doi.org/10.1007/s00025-009-0434-5 doi: 10.1007/s00025-009-0434-5
![]() |
[36] |
M. E. Samei, Employing Kuratowski measure of non-compactness for positive solutions of system of singular fractional q-differential equations with numerical effects, Filomat, 34 (2020), 2971–2989. http://dx.doi.org/10.2298/FIL2009971S doi: 10.2298/FIL2009971S
![]() |
[37] |
B. Telli, M. S. Souid, I. Stamova, Boundary-value problem for nonlinear fractional differential equations of variable order with finite delay via Kuratowski measure of noncompactness, Axioms, 12 (2023), 80. https://doi.org/10.3390/axioms12010080 doi: 10.3390/axioms12010080
![]() |
[38] |
B. C. Deuri, A. Das, Solvability of fractional integral equations via Darbo's fixed point theorem, J. Pseudo-Differ. Oper. Appl., 13 (2022), 26. https://doi.org/10.1007/s11868-022-00458-7 doi: 10.1007/s11868-022-00458-7
![]() |
[39] | D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, New York: Springer, 1996. https://doi.org/10.1007/978-1-4613-1281-9 |
[40] |
N. Allouch, J. R. Graef, S. Hamani, Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces, Fractal Fract., 6 (2022), 237. https://doi.org/10.3390/fractalfract6050237 doi: 10.3390/fractalfract6050237
![]() |
[41] | J. Banás, K. Goebel, Measures of noncompactness in Banach spaces, New York: M. Dekker, 1980. |
[42] | R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Birkhäuser Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7 |
[43] | H. L. Royden, P. M. Fitzpatrick, Real analysis, 4 Eds., 2010. |
1. | Farah M. Al-Askar, Jorge E. Macias-Diaz, Abundant Exact Solutions of the Fractional Stochastic Bogoyavlenskii Equation, 2024, 2024, 1687-9120, 10.1155/2024/8812792 | |
2. | Mouataz Billah Mesmouli, Farah M. Al-Askar, Wael W. Mohammed, Upper and lower solutions for an integral boundary problem with two different orders \left ( p,q\right ) -fractional difference, 2024, 2024, 1029-242X, 10.1186/s13660-024-03185-3 | |
3. | Mouataz Billah Mesmouli, Elvan Akın, Loredana Florentina Iambor, Osman Tunç, Taher S. Hassan, On the Fixed Point Theorem for Large Contraction Mappings with Applications to Delay Fractional Differential Equations, 2024, 8, 2504-3110, 703, 10.3390/fractalfract8120703 |