This article focuses on the problem of integral boundary value for Riemann-Liouville derivatives equipped with $ \left(p, q\right) $-difference calculus in Banach space. To provide further clarification, our focus lies in establishing the existence of a solution to our problem using the measure of noncompactness (m.n.) and the Mönch's fixed point theorem. Our investigation in the Banach space encompasses two nonlinear terms with two distinct orders of derivatives. Our paper concludes with an illustrative example and conclusion.
Citation: Mouataz Billah Mesmouli, Nahed Mustafa Dahshan, Wael W. Mohammed. Existence results for IBVP of $ \left(p, q\right) $-fractional difference equations in Banach space[J]. AIMS Mathematics, 2024, 9(6): 15748-15760. doi: 10.3934/math.2024760
This article focuses on the problem of integral boundary value for Riemann-Liouville derivatives equipped with $ \left(p, q\right) $-difference calculus in Banach space. To provide further clarification, our focus lies in establishing the existence of a solution to our problem using the measure of noncompactness (m.n.) and the Mönch's fixed point theorem. Our investigation in the Banach space encompasses two nonlinear terms with two distinct orders of derivatives. Our paper concludes with an illustrative example and conclusion.
[1] | F. H. Jackson, On $Q$-definite integrals, Quart. J. Pure. Appl. Math., 41 (1910), 193–203. |
[2] | F. H. Jackson, $Q$-Difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183 |
[3] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[4] | M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for $q$-differentiable convex function, J. Math. Inequal., 10 (2016), 1013–1018. http://dx.doi.org/10.7153/jmi-10-81 doi: 10.7153/jmi-10-81 |
[5] | G. Gasper, M. Rahman, Some systems of multivariable orthogonal $q$-Racah polynomials, Ramanujan J., 13 (2007), 389–405. https://doi.org/10.1007/s11139-006-0259-8 doi: 10.1007/s11139-006-0259-8 |
[6] | R. Ferreira, Nontrivial solutions for fractional $q$-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ., 70 (2010), 1–10. https://doi.org/10.14232/ejqtde.2010.1.70 doi: 10.14232/ejqtde.2010.1.70 |
[7] | M. B. Mesmouli, A. Ardjouni, Stability in nonlinear neutral Caputo $q$-fractional difference equations, Mathematics, 10 (2022), 4763. https://doi.org/10.3390/math10244763 doi: 10.3390/math10244763 |
[8] | H. Liu, Application of the variational iteration method to strongly nonlinear q-difference equations. J. Appl. Math., 2012 (2012), 704138. https://doi.org/10.1155/2012/704138 doi: 10.1155/2012/704138 |
[9] | M. Riyasat, S. Khan, T. Nahid, $q$-difference equations for the composite 2D $q$-Appell polynomials and their applications, Cogent Math., 4 (2017), 1376972. https://doi.org/10.1080/23311835.2017.1376972 doi: 10.1080/23311835.2017.1376972 |
[10] | T. Ernst, On several $q$-special matrices, including the $q$-Bernoulli and $q$-Euler matrices, Linear Algebra Appl., 542 (2018), 422–440. https://doi.org/10.1016/j.laa.2017.06.028 doi: 10.1016/j.laa.2017.06.028 |
[11] | A. Aral, V. Gupta, Applications of $(p, q)$-gamma function to Szász durrmeyer operators, Publ. Inst. Math., 102 (2017), 211–220. http://dx.doi.org/10.2298/PIM1716211A doi: 10.2298/PIM1716211A |
[12] | P. N. Sadjang, On the $(p, q)$-gamma and the $(p, q)$-beta functions, arXiv: 1506.07394, 2015. https://doi.org/10.48550/arXiv.1506.07394 |
[13] | T. Usman, M. Saif, J. Choi, Certain identities associated with $(p, q)$-binomial coefficients and (p, q)-Stirling polynomials of the second kind, Symmetry, 12 (2020), 1436. https://doi.org/10.3390/sym12091436 doi: 10.3390/sym12091436 |
[14] | C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum $(p, q)$-difference equation with separated boundary conditions, Adv. Math. Phys., 2018 (2018), 9089865. https://doi.org/10.1155/2018/9089865 doi: 10.1155/2018/9089865 |
[15] | M. Tunç, E. Göv, $(p, q)$-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1–13. |
[16] | M. Mursaleen, K. J. Ansari, A. Khan, On $(p, q)$-analogues of Bernstein operators, Appl. Math. Comput., 266 (2015), 874–882. https://doi.org/10.1016/j.amc.2015.04.090 doi: 10.1016/j.amc.2015.04.090 |
[17] | J. Soontharanon, T. Sitthiwirattham, On fractional $(p, q)$-calculus, Adv. Differ. Equ., 2020 (2020), 35. https://doi.org/10.1186/s13662-020-2512-7 doi: 10.1186/s13662-020-2512-7 |
[18] | P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-taylor formulas, Results Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z |
[19] | P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Nonlocal boundary value problems of nonlinear fractional $(p, q)$-difference equations, Fractal Fract., 5 (2021), 270. https://doi.org/10.3390/fractalfract5040270 doi: 10.3390/fractalfract5040270 |
[20] | M. B. Mesmouli, A. E. Hamza, D. A Rizk, A study of an IBVP of fractional differential equations in Banach space via the measure of noncompactness, Fractal Fract., 8 (2024), 30. https://doi.org/10.3390/fractalfract8010030 doi: 10.3390/fractalfract8010030 |
[21] | M. Xu, Z. Han, Positive solutions for integral boundary value problem of two-term fractional differential equations, Bound. Value Probl., 2018 (2018), 100. https://doi.org/10.1186/s13661-018-1021-z doi: 10.1186/s13661-018-1021-z |
[22] | M. B. Mesmouli, T. S. Hassan, On the positive solutions for IBVP of conformable differential equations, AIMS Mathematics, 8 (2023), 24740–24750. https://doi.org/10.3934/math.20231261 doi: 10.3934/math.20231261 |
[23] | Z. Qin, S. Sun, Positive solutions for fractional $(p, q)$-difference boundary value problems, J. Appl. Math. Comput., 68 (2021), 2571–2588. https://doi.org/10.1007/s12190-021-01630-w doi: 10.1007/s12190-021-01630-w |
[24] | W. W. Mohammed, C. Cesarano, F. M. Al-Askar, Solutions to the $\left(4+1\right) $-dimensional time-fractional Fokas equation with M-truncated derivative, Mathematics, 11 (2022), 194. https://doi.org/10.3390/math11010194 doi: 10.3390/math11010194 |
[25] | F. M. Al-Askar, W. W. Mohammed, Abundant optical solutions for the Sasa-Satsuma equation with M-truncated derivative, Front. Phys., 11 (2023), 1216451. https://doi.org/10.3389/fphy.2023.1216451 doi: 10.3389/fphy.2023.1216451 |
[26] | C. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301–309. |
[27] | V. Istrăţescu, On a measure of noncompactness, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N.S), 16 (1972), 195–197. |
[28] | E. Malkowsky, V. Rakočević, An introduction into the theory of sequence spaces and measures of noncompactness, Zb. Rad., 2000,143–234. |
[29] | G. Darbo, Punti uniti in transformazioni a condominio non compatto, Rend. Semin. Mat. Univ. Pad., 24 (1955), 84–92. |
[30] | B. N. Sadovskii, On a fixed point principle [in Russian], Funkts. Analiz Prilozh., 1 (1997), 74–76. |
[31] | H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3 |
[32] | R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005 |
[33] | S. Szufla, On the application of measure of noncompactness to existence theorems. Rend. Semin. Mat. Univ. Pad., 75 (1986), 1–14. |
[34] | A. Lachouri, A. Ardjouni, A. Djoudi, Existence results for integral boundary value problems of fractional differential equations with two nonlinear terms in banach spaces, Bull. Int. Math. Virtual Inst., 11 (2021), 159–168. https://doi.org/10.7251/BIMVI2101159L doi: 10.7251/BIMVI2101159L |
[35] | R. P. Agarwal, M. Benchohra, D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 55 (2009), 221. https://doi.org/10.1007/s00025-009-0434-5 doi: 10.1007/s00025-009-0434-5 |
[36] | M. E. Samei, Employing Kuratowski measure of non-compactness for positive solutions of system of singular fractional $q$-differential equations with numerical effects, Filomat, 34 (2020), 2971–2989. http://dx.doi.org/10.2298/FIL2009971S doi: 10.2298/FIL2009971S |
[37] | B. Telli, M. S. Souid, I. Stamova, Boundary-value problem for nonlinear fractional differential equations of variable order with finite delay via Kuratowski measure of noncompactness, Axioms, 12 (2023), 80. https://doi.org/10.3390/axioms12010080 doi: 10.3390/axioms12010080 |
[38] | B. C. Deuri, A. Das, Solvability of fractional integral equations via Darbo's fixed point theorem, J. Pseudo-Differ. Oper. Appl., 13 (2022), 26. https://doi.org/10.1007/s11868-022-00458-7 doi: 10.1007/s11868-022-00458-7 |
[39] | D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, New York: Springer, 1996. https://doi.org/10.1007/978-1-4613-1281-9 |
[40] | N. Allouch, J. R. Graef, S. Hamani, Boundary value problem for fractional $q$-difference equations with integral conditions in Banach spaces, Fractal Fract., 6 (2022), 237. https://doi.org/10.3390/fractalfract6050237 doi: 10.3390/fractalfract6050237 |
[41] | J. Banás, K. Goebel, Measures of noncompactness in Banach spaces, New York: M. Dekker, 1980. |
[42] | R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Birkhäuser Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7 |
[43] | H. L. Royden, P. M. Fitzpatrick, Real analysis, 4 Eds., 2010. |