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1. Introduction

In the last two decades, q-calculus has become an established field of study that has demonstrated
its usefulness in various disciplines, such as hypergeometric series, quantum mechanics, complex
analysis, and particle physics, as evidenced by the papers referenced in [1–4]. Subsequently,
the concept of (p, q)-calculus underwent generalization and advancement of q-calculus theory, see
here [5–10], some works concerning q-calculus. This particular mathematical framework has proven
to be highly effective across various disciplines. Further information and findings are, [11, 12] for
(p, q)-gamma and the (p, q)-beta functions, [13] for certain identities associated with (p, q)-binomial
coefficients and (p, q)-Stirling polynomials, [14,15] for (p, q)-integral inequalities and teir applications,
and others investigations of (p, q)-calculus can be explored in [16–18].

Researchers have extensively explored the subject of fractional order derivatives and (p, q)-calculus,
recognizing its significance. They investigated the qualitative properties of solutions such as the
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existence [19, 20], positivity [21–23], and [24, 25] for M-truncated derivative, as these references will
undoubtedly enrich the study of this subject.

Kuratowski [26] introduced the concept of m.n. in 1930. This measure finds numerous applications
in mathematical research [27, 28]. Darbo [29] was the pioneering researcher who utilized the m.n.
to investigate the correlation between contraction and compact mappings. However, the fixed-point
theorems of Darbo, Sadovski [30], and Mönch [31, 32] have been widely recognized as valuable tools
in the analysis of various classes of differential equations. These theorems, particularly in the context
of fractional differential equations, have proven to be effective in studying the existence of solutions
(see [33–39]).

Recently, Qin and Sun [23] conducted a study on positive solutions for BVPs of fractional (p, q)-
difference {

Dσ
p,qz (t) + ζ (pσt, z (pσt)) = 0, t ∈ (0, 1) ,

z (0) = z (1) = 0,
(1.1)

where 0 < q < p ≤ 1, 1 < σ ≤ 2, Dσ
p,q is a (p, q)- fractional difference of Riemann-Liouville operator,

and ζ : [0, 1] × R→ R is a non-negative continuous function.
This paper aims to analyze an integral boundary value problem of (p, q)-fractional difference

equations which encompasses two nonlinear terms defined as follows: Dσ
p,qz (t) + ζ (pσt, z (pσt)) = Dσ−1

p,q h (pt, z (pt)) , t ∈ (0, 1) ,
z (0) = 0, z (1) =

∫ 1

0
h (pv, z (pv)) dp,qv,

(1.2)

where σ ∈ (1, 2], the functions ζ, h : [0, 1] × Z → Z will be disclosed at a later stage, and Z is a
Banach space supplied with the norm ‖·‖.

In the literature, Xu and Han in [21] investigated and proved the existence and uniqueness of
a positive solution of (1.2) without (p, q)-calculus. Lachouri, Ardjouni, and Djoudi in [34] also
considered problem (1.2) without (p, q)-calculus, but in Banach space and found interesting results
for the existence of solutions. The authors in [40] studied and analyzed the existence of solutions for
Caputo fractional q-difference equations in a Banach space with different nonlinear integral boundary
conditions than in our problem and without the function h, their work is based on Mönch’s fixed point
theorem and m.n. tool. So, all the previous information invites us to study problem (1.2) in order to
generalize and improve previous studies.

This document is created in the following manner. Section 2 will introduce key concepts, tools,
and discoveries that are employed in the analysis. The third section is dedicated to examining the
existence of solutions. An illustration is provided in Section 4. Section 5 encompasses the derivation
of conclusions and generalizations.

2. Essential materials

This section provides a selection of necessary materials that are essential for our study. We initiate
our discussion by presenting the essential tools of definitions and results of the q-calculus and (p, q)-
calculus. Therefore, we direct the reader to the following references for more information [6,12,17,18].
Given the numbers p, q such that 0 < q < p ≤ 1,

[S ]p,q :=

 pS−qS

p−q = pS−1 [S ] q
p
, S ∈ N+,

1, S = 0,

AIMS Mathematics Volume 9, Issue 6, 15748–15760.



15750

[S ]p,q! :=

 [S ]p,q [S − 1]p,q .... [1]p,q =
S∏

i=1

pi−qi

p−q , S ∈ N+,

1, S = 0.

Expressing the power function (u − w)(n)
q under the q-analogue is given by

(u − w)(n)
q :=


n−1∏
i=0

(
u − wqi

)
, n ∈ N+, u,w ∈ R,

1, n = 0.

Expressing the power function (u − w)(n)
p,q under the (p, q)-analogue is written as

(u − w)(n)
p,q :=


n−1∏
i=0

(
upi − wqi

)
, n ∈ N+, u,w ∈ R,

1, n = 0,

and for σ ∈ R, the general form of the above is given by

(u − w)(σ)
p,q := p(σ2) (u − w)(σ)

q
p

= uσp(σ2)
∞∏

i=0

u − w
(

q
p

)i

u − w
(

q
p

)σ+i , 0 < w < u,

where p(σ2) := σ(σ−1)
2 .

Let C (A,Z) be a Banach space which contains the continuous functions defined from A = [0, 1]
intoZ equipped with the norm

‖z‖∞ = sup
t∈A
‖z (t)‖ .

Let L1 (A,Z) be the Banach space which contains the measurable functions defined from A intoZ that
are Lebesgue integrable with norm

‖z‖L1 =

∫ 1

0
‖z (t)‖ dt.

Definition 2.1. [18] Given the numbers p, q such that 0 < q < p ≤ 1, the (p, q)-derivative of the
function ζ is defined as

Dp,qζ (t) :=
ζ (pt) − ζ (qt)

(p − q) t
, t , 0,

and
(
Dp,qζ

)
(0) = limt→0

(
Dp,qζ

)
(t) such that ζ is differentiable at 0. Moreover, the high order (p, q)-

derivative Dn
p,qζ (t) is defined by

Dn
p,qζ (t) =

{
Dp,q Dn−1

p,q ζ (t) , n ∈ N+,

ζ (t) , n = 0.

Definition 2.2. [18] Given the numbers p, q such that 0 < q < p ≤ 1, and ζ is an arbitrary function
of a real number, the (p, q)-integral of the function ζ is defined as

Ip,qζ (t) :=
∫ t

0
ζ (v) dp,qv = (p − q) t

∞∑
i=0

qi

pi+1 ζ

(
qi

pi+1 t
)
.

Moreover, ζ is called (p, q)-integrable on [0, t] if the series on the right side converges.
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Definition 2.3. [17] Let 0 < q < p ≤ 1, σ > 0, and ζ : A → R be an arbitrary function. The
(p, q)-fractional integral of order σ is defined by

Iσp,qζ (t) =
1

p(σ2 )Γp,q (σ)

∫ t

0
(t − qv)(σ−1)

p,q ζ

(
v

pσ−1

)
dp,qv,

and I0
p,qζ (t) = ζ (t).

Definition 2.4. [17] Let 0 < q < p ≤ 1, σ > 0, and ζ be an arbitrary function on A. The (p, q)-
fractional difference operator of Riemann-Liouville type of order σ is defined by

Dσ
p,qζ (t) = DS

p,qIS−σ
p,q ζ (t) ,

and D0
p,qζ (t) = ζ (t), where S represents the smallest integer that is greater than or equal to σ. In

addition,
Dσ

p,qIσp,qζ (t) = ζ (t) .

Lemma 2.1. [17] For 0 < q < p ≤ 1, σ ∈ (S − 1, S ], S ∈ N, and ζ : A→ R, obtain

Iσp,q Dσ
p,qζ (t) = ζ (t) + c1tσ−1 + c2tσ−2 + ... + cS tσ−S ,

with c j ∈ R, j = 1, 2, ..., S .

Lemma 2.2. Let 1 < σ ≤ 2 and 0 < q < p ≤ 1. Then z : A→ Z is a solution of the IBVP (1.2) if and
only if z (t) satisfies

z (t) =

∫ 1

0
φ (t, qv) ζ (pv, z (pv)) dp,qv +

∫ t

0
h (pv, z (pv)) dp,qv,

where

φ (t, qv) =
1

p(σ2 )Γp,q (σ)

{
tσ−1 (1 − qv)(σ−1)

p,q − (t − qv)(σ−1)
p,q , 0 ≤ qv ≤ t ≤ 1,

tσ−1 (1 − qv)(σ−1)
p,q , 0 ≤ t ≤ qv ≤ 1.

(2.1)

Proof. According to Definition 2.3 and Lemma 2.1, by employing the integral operator Iσp,q on the two
sides of Eq (1.2), it can be deduced that

z (t) + c1tσ−1 + c2tσ−2 +
1

p(σ2 )Γp,q (σ)

∫ t

0
(t − qv)(σ−1)

p,q ζ (pv, z (pv)) dp,qv

= Ip,q

(
Iσ−1

p,q Dσ−1
p,q h (pt, z (pt))

)
= Ip,q

(
h (pt, z (pt)) + c3tσ−2

)
=

∫ t

0
h (pv, z (pv)) dp,qv +

c3

σ − 1
tσ−1,

for some constants c1, c2, c3 ∈ R. As a result of the initial condition z (0) = 0 and the last equation, we
obtain c2 = 0 and, based on the boundary condition

z (1) =

∫ 1

0
h (pv, z (pv)) dp,qv,
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we obtain

c1 = −
1

p(σ2 )Γp,q (σ)

∫ 1

0
(1 − qv)(σ−1)

p,q ζ (pv, z (pv)) dp,qv +
c3

σ − 1
.

Therefore,

z (t) =
1

p(σ2 )Γp,q (σ)

∫ 1

0
tσ−1 (1 − qv)(σ−1)

p,q ζ (pv, z (pv)) dp,qv

−
1

p(σ2 )Γp,q (σ)

∫ t

0
(t − qv)(σ−1)

p,q ζ (pv, z (pv)) dp,qv +

∫ t

0
h (pv, z (pv)) dp,qv

=
1

p(σ2 )Γp,q (σ)

∫ t

0

[
tσ−1 (1 − qv)(σ−1)

p,q − (t − qv)(σ−1)
p,q

]
ζ (pv, z (pv)) dp,qv

+
1

p(σ2 )Γp,q (σ)

∫ 1

t
tσ−1 (1 − qv)(σ−1)

p,q ζ (pv, z (pv)) dp,qv +

∫ t

0
h (pv, z (pv)) dp,qv

=

∫ 1

0
φ (t, qv) ζ (pv, z (pv)) dp,qv +

∫ t

0
h (pv, z (pv)) dp,qv.

This process is reversible, and The proof is finished. �

Lemma 2.3. [23] The function φ given by (2.1) satisfies the mentioned properties:
(i) φ (t, qv) ≤ tσ−1 (1 − qv)(σ−1)

p,q ≤ (1 − qv)(σ−1)
p,q ,

(ii) 0 ≤ φ (t, qv) ≤ 1, for all 0 ≤ t, v ≤ 1.

Next, let us revisit the concept of the Kuratowski m.n. and provide a concise overview of its key
characteristics.

Definition 2.5. [41] LetZ be a Banach space and let QZ be the family of bounded subsets ofZ. The
Kuratowski m.n. is the map µ : QZ → [0,∞) defined by

µ (Q) = inf
{
ε > 0 : Q ⊂ ∪S

i=0Qi and dim (Qi) ≤ ε
}

, where Q ∈ QZ.

Below we provide some information about m.n. µ (See [41, 42]). Let Q and convQ be the closure
and the convex hull of the bounded set Q, respectively.

1) µ (Q) = µ
(
Q
)
,

2) µ (Q) = 0⇔ Q is compact (Q is relatively compact),
3) µ (Q) = µ (convQ) ,
4) µ (Q1 + Q2) ≤ µ (Q1) + µ (Q2) ,
5) Q1 ⊂ Q2 ⇒ µ (Q1) ≤ µ (Q2) ,
6) µ (cQ) = |c| µ (Q) , for c ∈ R.

Definition 2.6. A mapping ζ : A ×Z → Z is said to be Caratheodory if
(i) t → ζ (t, z) is a measurable function for each z ∈ Z.
(ii) t → ζ (t, z) is a continuous function for almost all t ∈ A.
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Now, let the set K of functions k : A→ Z, denoted by

K (t) = {k (t) : k ∈ K} , t ∈ A,

K (A) = {k (t) : k ∈ K, t ∈ A} .

Lemma 2.4. [39] If K ⊂ C (A,Z) is an equicontinuous bounded set, then
i) The function t → µ (K (t)) is a continuous function on A.
ii) µ

({∫
A

z (t) dt, z ∈ K
})
≤

∫
A
µ (K (t)) dt.

Lemma 2.5. [33] Let Ω be a bounded, closed, and convex subset of the Banach space C (A,Z). Let
Φ be a continuous function on A × A and ζ a function from A ×Z → Z which satisfies the conditions
of Carathéodory, and suppose there exists θ ∈ L1 (A,R+) such that, for all t ∈ A and any bounded set
Q ⊂ Z, we have

lim
ε→0+

µ (ζ (Aε × Q)) ≤ θ (t) µ (Q) ,

with Aε = [t − ε, t] ∩ A. If K is an equicontinuous subset of Ω, then

µ

({∫
A

Φ (t, r) ζ (r, z (r)) dr, z ∈ K
})
≤

∫
A
|Φ (t, r)| θ (r) µ (K (r)) dr.

Theorem 2.1. (Mönch [32]) Let Ω be a bounded, closed, and convex subset of a Banach space such
that 0 ∈ Ω, and letH be a continuous mapping of Ω into itself. In addition, if

K = conv ((HK)) or K = conv ((HK)) ∪ {0} ⇒ µ (K) = 0, (2.2)

holds for every K of Ω, thenH has a fixed point.

Theorem 2.2. (Arzela-Ascoli’s Theorem [43]) A bounded, uniformly Cauchy subset Q of Z is
relatively compact.

3. Main results

In this section, we establish the existence of solutions for our problem (1.2) through the utilization
of Mönch’s fixed point Theorem 2.1. To accomplish this, we ensure that all the required conditions are
prepared.

(C1) The functions ζ; h : A ×Z → Z satisfy the conditions of Caratheodory.
(C2) There exist θ, ϑ ∈ L1 (A,R+) ∩ (A,R+) satisfy

‖ζ (t, z (t))‖ ≤ θ (t) ‖z‖ , for a.e.t ∈ A and each z ∈ Z,

‖h (t, z (t))‖ ≤ ϑ (t) ‖z‖ , for a.e.t ∈ A and each z ∈ Z,

and
‖θ‖∞ + ‖ϑ‖∞ < 1.

(C3) Let Aε = [t − ε, t] ∩ A. Then, for all t ∈ A and for any bounded set Q ⊂ Z, we have

lim
ε→0+

µ (ζ (Aε × Q)) ≤ θ (t) µ (Q) ,

lim
ε→0+

µ (h (Aε × Q)) ≤ ϑ (t) µ (Q) .
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As per Lemma 2.2, the operatorH is defined from C (A,Z) into itself as

(Hz) (t) =

∫ 1

0
φ (t, qv) ζ (pv, z (pv)) dp,qv +

∫ t

0
h (pv, z (pv)) dp,qv, (3.1)

where the fixed points of the operatorH are the solution of problem (1.2).
To achieve this objective, we establish Ω as the closed, bounded, and convex subset of C (A,Z) for

L > 0,
Ω = {z ∈ C (A,Z) : ‖z‖∞ ≤ L} .

To demonstrate the fundamental outcomes, we partition the verification into the subsequent lemmas.

Lemma 3.1. Suppose that the condition (C2) holds. Then,
(i)H maps Ω into itself.
(ii)H (Ω) is bounded and equicontinuous.

Proof. Let t be an element of A and z be an element of Ω. By utilizing condition (C2) and referring to
Lemma 2.3 (ii), we get

‖(Hz) (t)‖ ≤

∥∥∥∥∥∥
∫ 1

0
φ (t, qv) ζ (pv, z (pv)) dp,qv

∥∥∥∥∥∥ +

∥∥∥∥∥∥
∫ t

0
h (pv, z (pv)) dp,qv

∥∥∥∥∥∥
≤

∫ 1

0
φ (t, qv) ‖ζ (pv, z (pv))‖ dp,qv +

∫ t

0
‖h (pv, z (pv))‖ dp,qv

≤

∫ 1

0
φ (t, qv) θ (t) ‖z‖ dp,qv +

∫ t

0
ϑ (t) ‖z‖ dp,qv

≤

(
‖θ‖∞

∫ 1

0
φ (t, qv) dp,qv + ‖ϑ‖∞

∫ t

0
dp,qv

)
L

≤ L,

this gives thatH maps Ω into Ω and proves thatH (Ω) is bounded.
Next, let t1, t2 ∈ A, t1 < t2, and z ∈ Ω. Then

‖(Hz) (t2) − (Hz) (t1)‖ =

∥∥∥∥∥∥
∫ 1

0
φ (t2, qv) ζ (pv, z (pv)) dp,qv +

∫ t2

0
h (pv, z (pv)) dp,qv

−

∫ 1

0
φ (t1, qv) ζ (pv, z (pv)) dp,qv −

∫ t1

0
h (pv, z (pv)) dp,qv

∥∥∥∥∥∥
≤ ‖θ‖∞ L

∫ 1

0
|φ (t2, qv) − φ (t1, qv)| dp,qv

+

∥∥∥∥∥∥
∫ t2

0
h (pv, z (pv)) dp,qv −

∫ t1

0
h (pv, z (pv)) dp,qv

∥∥∥∥∥∥
≤
‖θ‖∞ L

p(σ2)Γp,q (σ)

∫ t1

0

∣∣∣∣(1 − qv)(σ−1)
p,q

(
tσ−1
2 − tσ−1

1

)
− (t2 − qv)(σ−1)

p,q + (t1 − qv)(σ−1)
p,q

∣∣∣∣ dp,qv

+
‖θ‖∞ L

p(σ2)Γp,q (σ)

∫ t2

t1

∣∣∣∣(1 − qv)(σ−1)
p,q

(
tσ−1
2 − tσ−1

1

)
− (t2 − qv)(σ−1)

p,q

∣∣∣∣ dp,qv
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+
‖θ‖∞ L

p(σ2)Γp,q (σ)

∫ 1

t2

∣∣∣∣(1 − qv)(σ−1)
p,q

(
tσ−1
2 − tσ−1

1

)∣∣∣∣ dp,qv + (t2 − t1) ‖ϑ‖∞ L

=
‖θ‖∞ L

p(σ2 )Γp,q (σ)

{∫ t1

0

(
tσ−1
2 − tσ−1

1

)
dp,qv +

∫ t1

0

[
(t2 − qv)(σ−1)

p,q − (t1 − qv)(σ−1)
p,q

]
dp,qv

+

∫ t2

t1

(
tσ−1
2 − tσ−1

1 + 1
)

dp,qv +

∫ 1

t2

(
tσ−1
2 − tσ−1

1

)
dp,qv

}
+ (t2 − t1) ‖ϑ‖∞ L

≤
‖θ‖∞ L

p(σ2)Γp,q (σ)

{∫ 1

0

([
(t2 − qv)(σ−1)

p,q − (t1 − qv)(σ−1)
p,q

]
+ 2 (t2 − t1)σ−1

)
dp,qv

+

∫ t2

t1
(t2 − t1)σ−1 dp,qv + t2 − t1

}
+ (t2 − t1) ‖ϑ‖∞ L, (3.2)

Since (t − qv)(σ−1)
p,q is continuous function with respect to t and v on A × A, it can be inferred that the

function is continuously uniform on A× A. Consequently, for any v ∈ A, we can deduce the following:

(t2 − qv)(σ−1)
p,q − (t1 − qv)(σ−1)

p,q ⇒ 0 ast1 → t2.

As t1 approaches t2, it can be concluded that the right-hand side of the aforementioned
inequality (3.2) tends to zero. This implies thatH (Ω) exhibits equicontinuity. �

Lemma 3.2. Suppose that (C1) and (C2) hold. Then,H is continuous mapping on Ω.

Proof. Let the sequence {zn} satisfy zn → z ∈ C (A,Z). So, for each t ∈ A and by Lemma 2.3 (ii), we
have

‖(Hzn) (t) − (Hz) (t)‖ =

∥∥∥∥∥∥
∫ 1

0
φ (t, qv) ζ (pv, zn (pv)) dp,qv +

∫ t

0
h (pv, zn (pv)) dp,qv

−

∫ 1

0
φ (t, qv) ζ (pv, z (pv)) dp,qv −

∫ t

0
h (pv, z (pv)) dp,qv

∥∥∥∥∥∥
≤

∫ 1

0
‖ζ (pv, zn (pv)) − ζ (pv, z (pv))‖ dp,qv

+

∫ t

0
‖h (pv, zn (pv)) − h (pv, z (pv))‖ dp,qv.

Given that the functions h and ζ adhere to the Carathéodory conditions, it can be deduced that

‖(Hzn) (t) − (Hz) (t)‖ → 0 as n→ ∞,

which gives us that (Hzn) converges to Hz on A. However, as demonstrated in Lemma 3.1, the
sequence (Hzn) exhibits equicontinuity. Consequently, H is continuous because (Hzn) converges
uniformly toHz. �

Theorem 3.1. Suppose conditions (C1)–(C3) hold. Then, at least one solution exists for the boundary
value problem (1.2).
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Proof. First, Lemmas 3.1 and 3.2 confirm the first part of the proof. In order to establish the validity
of this theorem, it is only necessary to demonstrate (2.2).

Let K be a subset of the set Ω satisfies the relation K ⊂ conv ((HK) ∪ {0}). Given that K is both
bounded and equicontinuous, it can be deduced the continuity on A of the function k → k (t) = µ (K (t)).
According to Lemma 2.5, Lemma 2.3 (ii), and condition (C3), it can be deduced that for every t ∈ A,
we have the following:

k (t) ≤ µ (H (K) (t) ∪ {0}) ≤ µ (H (K) (t))

≤

∫ 1

0
φ (t, qv) θ (s) µ (K (s)) ds +

∫ t

0
ϑ (s) µ (K (s)) ds

≤ ‖k‖∞ (‖θ‖∞ + ‖ϑ‖∞) .

Next, we get
‖k‖∞ (1 − ‖θ‖∞ − ‖ϑ‖∞) ≤ 0.

Since ‖θ‖∞ + ‖ϑ‖∞ < 1, then ‖k‖∞ = 0, which gives that k (t) = 0 for all t ∈ A, hence K (t) is relatively
compact in Z. Furthermore, due to the Ascoli-Arzela theorem, K is relatively compact within Ω. In
conclusion, based on Theorem 2.1, we can deduce thatH possesses a fixed point, serving as a solution
to problem (1.2). �

Now, we give some restrictions of our study.

Theorem 3.2. Let ζ be a function that fulfills the conditions (C1)–(C3). Then, at least one solution
exists for the boundary value problem (1.1).

Proof. The steps of the proof are similar to the proof of Theorem 3.1 such that h ≡ 0. �

On the other hand, problem (1.2) when p = 1 has not been studied in the literature. Consequently,
we present the ensuing theorem.

Theorem 3.3. Assume the conditions (C1)–(C3) hold. If p = 1. Then, At least one solution exists for
the boundary value problem (1.2).

Proof. The steps of the proof are similar to the proof of Theorem 3.1 when p = 1. �

4. An example

In this section, we aim to enhance the reader’s understanding of Theorem 3.1 by providing an
illustrative example, drawing inspiration from the examples presented in the papers by [21,34,40]. So,
we propose the following IBVP of the (p, q)-fractional difference equation

D
7
4
p,qz (t) +

z
(
p

7
4 t

)
2+exp

(
p

7
4 t

) = D
1
4
p,q

(
z(pt)

6+exp(pt)2

)
, for all t ∈ (0, 1) ,

z (0) = 0, z (1) =
∫ 1

0
z(pv)

6+exp(pv)2 dp,qv,
(4.1)

where σ = 7
4 , p = 0.5, q = 0.4, z = (z1, z2, ..., zi, ...), ζ = (ζ1, ζ2, ..., ζi, ...), and h = (h1, h2, ..., hi, ...) such

that
ζi (t, zi (t)) =

zi (t)
2 + et and hi (t, zi (t)) =

zi (t)
6 + et2

fort ∈ A,
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and let the space

Z = l1 =

z = (z1, z2, ..., zi, ...) such that
∞∑

i=1

|zi| < ∞

 ,
equipped with the norm

‖z‖l1 =

∞∑
i=1

|zi| .

Then, we get

|ζi (t, zi (t))| ≤
1

2 + et |zi (t)| , for all t ∈ A, (4.2)

|hi (t, zi (t))| ≤
1

6 + et2
|zi (t)| , for all t ∈ A. (4.3)

Therefore, it can be deduced that conditions (C1) and (C2) are met by θ ( t) = 1
4+e t ,

(
‖θ‖∞ = 1

3

)
and

ϑ ( t) = 1
6+et2

,
(
‖θ‖∞ = 1

7

)
.

Furthermore, condition (C3) holds true as

µ (ζ (t,Q)) ≤
1

2 + etµ (Q) ,

µ (h (t,Q)) ≤
1

6 + et2
µ (Q) .

are satisfied for every t ∈ A and any bounded set Q ⊂ Z. As a result, it can be concluded from
Theorem 3.1 that a solution to problem (4.1) does exist and is defined on A.

5. Conclusions

The existence of solutions in Banach spaces for the fractional (p, q)-difference equation with
boundary conditions of nonlinear integral type has been proven in this study. Our approach involves
the utilization of the Kuratowski m.n. and Mönch’s fixed point theorem. The efficacy of our findings
have been shown by providing an illustrative example.

The findings derived from this paper are commendable and significant becuase the results of
existence for [23] can be obtained by the method used in this research when the function h ≡ 0.
On the other hand, without (p, q)-calculus, our results are identical to those in paper [34].

One intriguing avenue for future investigation, undoubtedly, would involve contemplating the
fractional (p, q)-difference equations of two orders derivatives different σ, β where σ ∈ (1, 2] and
β ∈ (0, σ]. Also, study of problems with Riemann-Stieltjes integral-type boundary conditions and
including impulsive effects in the equation would broaden the scope of potential applications too.
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