Research article

Analysis of the linearly extrapolated BDF2 fully discrete Modular Grad-div stabilization method for the micropolar Navier-Stokes equations

  • Received: 02 December 2023 Revised: 20 March 2024 Accepted: 11 April 2024 Published: 30 April 2024
  • MSC : 65M12, 65M60, 65N15, 65N30, 76D03

  • We investigate a fully discrete modular grad-div (MGD) stabilization algorithm for solving the incompressible micropolar Navier-Stokes equations (IMNSE) model, which couples the incompressible Navier-Stokes equations and the angular momentum equation together. The mixed finite element (FE) method is applied for the spatial discretization. The time discretization is based on the BDF2 implicit scheme for the linear terms and the two-step linearly extrapolated scheme for the convective terms. The considered algorithm constitutes two steps, which involve a post-processing step for linear velocity. First, we decouple the fully coupled IMNSE model into two smaller sub-physics problems at each time step (one is for the linear velocity and pressure, the other is for the angular velocity), which reduces the size of the linear systems to be solved and allows for parallel computing of the two sub-physics problems. Then, in the post-processing step, we only need to solve a symmetrical positive determined grad-div system of linear velocity at each time step, which does not increase the computational complexity by much. However, the post-processing step can improve the solution quality of linear velocity. Moreover, we obtain unconditional stability, and error estimates of the linear velocity and angular velocity. Finally, several numerical experiments involving three-dimensional and two-dimensional settings are used to validate the theoretical findings and demonstrate the benefits of the modular grad-div (MGD) stabilization algorithm.

    Citation: Yunzhang Zhang, Xinghui Yong. Analysis of the linearly extrapolated BDF2 fully discrete Modular Grad-div stabilization method for the micropolar Navier-Stokes equations[J]. AIMS Mathematics, 2024, 9(6): 15724-15747. doi: 10.3934/math.2024759

    Related Papers:

  • We investigate a fully discrete modular grad-div (MGD) stabilization algorithm for solving the incompressible micropolar Navier-Stokes equations (IMNSE) model, which couples the incompressible Navier-Stokes equations and the angular momentum equation together. The mixed finite element (FE) method is applied for the spatial discretization. The time discretization is based on the BDF2 implicit scheme for the linear terms and the two-step linearly extrapolated scheme for the convective terms. The considered algorithm constitutes two steps, which involve a post-processing step for linear velocity. First, we decouple the fully coupled IMNSE model into two smaller sub-physics problems at each time step (one is for the linear velocity and pressure, the other is for the angular velocity), which reduces the size of the linear systems to be solved and allows for parallel computing of the two sub-physics problems. Then, in the post-processing step, we only need to solve a symmetrical positive determined grad-div system of linear velocity at each time step, which does not increase the computational complexity by much. However, the post-processing step can improve the solution quality of linear velocity. Moreover, we obtain unconditional stability, and error estimates of the linear velocity and angular velocity. Finally, several numerical experiments involving three-dimensional and two-dimensional settings are used to validate the theoretical findings and demonstrate the benefits of the modular grad-div (MGD) stabilization algorithm.



    加载中


    [1] A. C. Eringen, Theory of micropolar fluids, J. Math. Mec., 16 (1966), 1–18.
    [2] A. C. Eringen, Microcontinuum field theories: Ⅱ. fluent media, Appl. Mech. Rev., 55 (2002), B15. https://doi.org/10.1115/1.1445333 doi: 10.1115/1.1445333
    [3] G. Lukaszewicz, Micropolar fluids: Theory and applications, Springer Science & Business Media, 2012.
    [4] X. Xing, D. M. Liu, Numerical analysis and comparison of three iterative methods based on finite element for the 2D/3D stationary micropolar fluid equations, Entropy, 24 (2022), 628. https://doi.org/10.3390/e24050628 doi: 10.3390/e24050628
    [5] E. Ortega-Torres, M. Rojas-Medar, Optimal error estimate of the penalty finite element method for the micropolar fluid equations, Numer. Func. Anal. Opt., 29 (2008), 612–637. https://doi.org/10.1080/01630560802099555 doi: 10.1080/01630560802099555
    [6] R. H. Nochetto, A. J. Salgado, I. Tomas, The micropolar Navier-Stokes equations: A priori error analysis, Math. Mod. Meth. Appl. S., 24 (2014), 1237–1264. https://doi.org/10.1142/S0218202514500018 doi: 10.1142/S0218202514500018
    [7] A. J. Salgado, Convergence analysis of fractional time-step techniques for incompressible fluids with microstructure, J. Sci. Comput., 64 (2015), 216–233. https://doi.org/10.1007/s10915-014-9926-x doi: 10.1007/s10915-014-9926-x
    [8] Y. B. Yang, Y. L. Jiang, Analysis of two decoupled time-stepping finite-element methods for incompressible fluids with microstructure, Int. J. Comput. Math., 95 (2018), 686–709. https://doi.org/10.1080/00207160.2017.1294688 doi: 10.1080/00207160.2017.1294688
    [9] H. Maimaiti, D. M. Liu, Pressure correction projection methods for the time dependent micropolar fluids, Int. J. Numer. Meth. Fl., 94 (2022), 377–393. https://doi.org/10.1002/fld.5058 doi: 10.1002/fld.5058
    [10] J. Shen, N. Zheng, Efficient and unconditional energy stable schemes for the micropolar Navier-Stokes equations, CSIAM Trans. Appl. Math., 3 (2022), 57–81. https://doi.org/10.4208/csiam-am.so-2021-0008 doi: 10.4208/csiam-am.so-2021-0008
    [11] X. D. Zhang, X. N. Long, Unconditional stability and error analysis of an Euler IMEX-SAV scheme for the micropolar Navier-Stokes equations, Appl. Numer. Math., 192 (2023), 214–240. https://doi.org/10.1016/j.apnum.2023.05.027 doi: 10.1016/j.apnum.2023.05.027
    [12] P. Z. Huang, C. Liao, A decoupling finite element method with different time steps for the micropolar fluid model, Electron. T. Numer. Ana., 55 (2022), 263–284.
    [13] Y. L. Jiang, Y. B. Yang, Analysis of some projection methods for the incompressible fluids with microstructure, J. Korean Math. Soc., 55, (2018), 471–506. https://doi.org/10.4134/JKMS.j170303 doi: 10.4134/JKMS.j170303
    [14] J. D. Frutos, B. García-Archilla, V. John, J. Novo, Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements, Adv. Comput. Math., 44 (2018), 195–225. https://doi.org/10.1007/s10444-017-9540-1 doi: 10.1007/s10444-017-9540-1
    [15] Y. Qin, Y. R. Hou, P. Z. Huang, Y. S. Wang, Numerical analysis of two grad-div stabilization methods for the time-dependent Stokes/Darcy model, Comput. Math. Appl., 79 (2020), 817–832. https://doi.org/10.1016/j.camwa.2019.07.032 doi: 10.1016/j.camwa.2019.07.032
    [16] J. A. Fiordilino, W. Layton, Y. Rong, An efficient and modular grad-div stabilization, Comput. Method. Appl. M., 335 (2018), 327–346. https://doi.org/10.1016/j.cma.2018.02.023 doi: 10.1016/j.cma.2018.02.023
    [17] X. L. Lu, P. Z. Huang, A modular grad-div stabilization for the 2D/3D nonstationary incompressible magnetohydrodynamic equations, J. Sci. Comput., 82 (2020), 1–24. https://doi.org/10.1007/s10915-019-01114-x doi: 10.1007/s10915-019-01114-x
    [18] X. Z. Li, H. Y. Su, A modular grad-div stabilization method for time-dependent thermally coupled MHD equations, Entropy, 24 (2022), 1336. https://doi.org/10.3390/e24101336 doi: 10.3390/e24101336
    [19] M. Akbas, L. G. Rebholz, Modular grad-div stabilization for the incompressible non-isothermal fluid flows, Appl. Math. Comput., 393 (2021), 125748. https://doi.org/10.1016/j.amc.2020.125748 doi: 10.1016/j.amc.2020.125748
    [20] Y. Rong, J. A. Fiordilino, Numerical analysis of a BDF2 modular grad-div stabilization method for the Navier-Stokes equations, J. Sci. Comput., 82 (2020), 1–22. https://doi.org/10.1007/s10915-020-01165-5 doi: 10.1007/s10915-020-01165-5
    [21] J. S. Wang, L. X. Meng, X. F. Jia, H. G. Jia, Numerical analysis of a BDF2 modular Grad-Div stability method for the Stokes/Darcy equations, Acta Math. Sci., 42 (2022), 1981–2000. https://doi.org/10.1007/s10473-022-0515-z doi: 10.1007/s10473-022-0515-z
    [22] X. F. Jia, Z. Y. Tang, H. Feng, Numerical analysis of CNLF modular grad-div stabilization method for time-dependent Navier-Stokes equations, Appl. Math. Lett., 112 (2021), 106798. https://doi.org/10.1016/j.aml.2020.106798 doi: 10.1016/j.aml.2020.106798
    [23] W. Li, J. L. Fang, Y. Qin, P. Z. Huang, Rotational pressure-correction method for the Stokes/Darcy model based on the modular grad-div stabilization, Appl. Numer. Math., 160 (2021), 451–465. https://doi.org/10.1016/j.apnum.2020.10.021 doi: 10.1016/j.apnum.2020.10.021
    [24] V. Girault, P. A. Raviart. Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer Science & Business Media, 2012.
    [25] S. S. Ravindran, Convergence of extrapolated BDF2 finite element schemes for unsteady penetrative convection model, Numer. Func. Anal. Opt., 33 (2012), 48–79. https://doi.org/10.1080/01630563.2011.618899 doi: 10.1080/01630563.2011.618899
    [26] L. K. Xia, G. Y. Zhou, A linearizing-decoupling finite element method with stabilization for the Peterlin viscoelastic model, Japan J. Indust. Appl. Math., 2023, 1–31. https://doi.org/10.1007/s13160-023-00629-z
    [27] S. S. Ravindran, Analysis of stabilized Crank-Nicolson time-stepping scheme for the evolutionary Peterlin viscoelastic model, Numer. Func. Anal. Opt., 41 (2020), 1611–1641. https://doi.org/10.1080/01630563.2020.1789165 doi: 10.1080/01630563.2020.1789165
    [28] V. DeCaria, W. Layton, H. Y. Zhao, A time-accurate, adaptive discretization for fluid flow problems, arXiv preprint, 2018,254–280. https://doi.org/10.48550/arXiv.1810.06705
    [29] A. Cibik, F G. Eroglu, S. Kaya, Analysis of second order time filtered backward Euler method for MHD equations, J. Sci. Comput., 82 (2020), 1–25. https://doi.org/10.1007/s10915-020-01142-y doi: 10.1007/s10915-020-01142-y
    [30] FreeFem++, Version 4.12, 2020. Available from: http: www.freefem.org/ff++/ (accessed on 1 September 2021).
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(498) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog