Research article

Topologically indistinguishable relations and separation axioms

  • Received: 18 March 2024 Revised: 11 April 2024 Accepted: 17 April 2024 Published: 30 April 2024
  • MSC : 54A05, 54A10, 54C50

  • This study focuses on defining separation axioms for sets without an inherent topological structure. By utilizing a mapping to relate such sets to a topological space, we first define a distinguishable relation over the universal set with respect to the neighborhood systems inspired by a topology of the co-domain set and elucidate its basic properties. To facilitate the way of discovering this distinguishable relation, we initiate a color technique for the equivalence classes inspired by a given topology. Also, we provide an algorithm to determine distinguishable members (or objects) under study. Then, we establish a framework for introducing separation properties within these structureless sets and examine their master characterizations. To better understand the obtained results and relationships, we display some illustrative instances.

    Citation: S. Demiralp, Tareq M. Al-shami, Fuad A. Abushaheen, Alaa M. Abd El-latif. Topologically indistinguishable relations and separation axioms[J]. AIMS Mathematics, 2024, 9(6): 15701-15723. doi: 10.3934/math.2024758

    Related Papers:

  • This study focuses on defining separation axioms for sets without an inherent topological structure. By utilizing a mapping to relate such sets to a topological space, we first define a distinguishable relation over the universal set with respect to the neighborhood systems inspired by a topology of the co-domain set and elucidate its basic properties. To facilitate the way of discovering this distinguishable relation, we initiate a color technique for the equivalence classes inspired by a given topology. Also, we provide an algorithm to determine distinguishable members (or objects) under study. Then, we establish a framework for introducing separation properties within these structureless sets and examine their master characterizations. To better understand the obtained results and relationships, we display some illustrative instances.



    加载中


    [1] E. A. Abo-Tabl, On links between rough sets and digital topology, Appl. Math., 5 (2014), 941–948. https://doi.org/10.4236/am.2014.56089 doi: 10.4236/am.2014.56089
    [2] A. Ç. Guler, E. D. Yildirim, O. B. Özbakir, Rough approximations based on different topolofies via ideals, Turk. J. Math., 46 (2022), 1177–1192. https://doi.org/10.55730/1300-0098.3150 doi: 10.55730/1300-0098.3150
    [3] E. D. Yildirim, New topological approaches to rough sets via subset neighborhoods, J. Math., 2022 (2022), 3942708. https://doi.org/10.1155/2022/3942708 doi: 10.1155/2022/3942708
    [4] E. F. Lashin, A. M. Kozae, A. A. A. Khadra, T. Medhat, Rough set theory for topological spaces, Int. J. Approx. Reason., 40 (2005), 35–43. https://doi.org/10.1016/j.ijar.2004.11.007 doi: 10.1016/j.ijar.2004.11.007
    [5] A. S. Salama, Topological solution for missing attribute values in incomplete information tables, Inf. Sci., 180 (2010), 631–639. https://doi.org/10.1016/j.ins.2009.11.010 doi: 10.1016/j.ins.2009.11.010
    [6] T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0
    [7] T. M. Al-shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with applications, Demonstr. Math., 56 (2023), https://doi.org/10.1515/dema-2022-0223 doi: 10.1515/dema-2022-0223
    [8] S. Yan, W. Yu, Formal verification of a topological spatial relations model for geographic information systems in Coq, Mathematics, 11 (2023), 1079. https://doi.org/10.3390/math11051079 doi: 10.3390/math11051079
    [9] T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7
    [10] T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2
    [11] B. Almarri, A. A. Azzam, Energy saving via a minimal structure, Math. Probl. Eng., 2022 (2022), 5450344. https://doi.org/10.1155/2022/5450344 doi: 10.1155/2022/5450344
    [12] M. M. El-Sharkasy, Minimal structure approximation space and some of its application, J. Intell. Fuzzy Syst., 40 (2021), 973–982. https://doi.org/10.3233/JIFS-201090 doi: 10.3233/JIFS-201090
    [13] A. S. Salama, Bitopological approximation space with application to data reduction in multi-valued information systems, Filomat, 34 (2020), 99–110. https://doi.org/10.2298/FIL2001099S doi: 10.2298/FIL2001099S
    [14] J. B. Liu, Y. Bao, W. T. Zheng, Analyses of some structural properties on a class of hierarchical scale-free networks, Fractals, 30 (2022), 2250136. https://doi.org/10.1142/S0218348X22501365 doi: 10.1142/S0218348X22501365
    [15] J. B. Liu, X. Zhang, J. Cao, L. Chen, Mean first-passage time and robustness of complex cellular mobile communication network, IEEE Trans. Network Sci. Eng., 2024. https://doi.org/10.1109/tnse.2024.3358369 doi: 10.1109/tnse.2024.3358369
    [16] J. R. Munkres, Topology, 2 Eds., 2000.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(761) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Tables(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog