Citation: Aymard Christbert Nimi, Daniel Moukoko. Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term[J]. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095
[1] | D. Brochet, X. Chen and D. Hilhost, Finite dimensionnal exponentian attractors for the phase-field model, Appl. Anal., 49 (1993), 197-212. doi: 10.1080/00036819108840173 |
[2] | L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Anal., 54 (2009), 89-115. |
[3] | L. Cherfils, A. Miranville and S. Zelik, One a generalized Cahn-Hilliard equation with Biological Applications, Disrete and continuous, Dynamical systems series B, 19 (2014), 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 |
[4] | L. Cherfils, H. Fakih, A. Miranville, A complexe version of the Cahn-Hilliard equation for grasyscale image inpainting, Multiscale Model. Sim., 15 (2017), 575-605. doi: 10.1137/15M1040177 |
[5] | H. Fakih, A Cahn-Hilliard equation with a proliferation term for biological and chemical applications, Asymptotic, 94 (2015), 71-104. doi: 10.3233/ASY-151306 |
[6] | G. Gilardi, On a conserved phase field model with irregular potentiel and dynamic boundary condition, Istit. Lombardo Sci. Lett. Accad. Rend. A, 141 (2007), 129-161. |
[7] | C. Giorgi, M. Grasseli, and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math.J, 48 (1999), 1395-1446. |
[8] | E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129. |
[9] | A. Miranville, Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term, Appl. Anal., 92 (2013), 1308-1321. doi: 10.1080/00036811.2012.671301 |
[10] | A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152. doi: 10.1016/j.jmaa.2012.11.038 |
[11] | A. J. Ntsokongo, N. Batangouna, Existence and uniqueness of solutions for a conserved phase-field type model, AIMS Mathematics, 1 (2016),144-155. doi: 10.3934/Math.2016.2.144 |
[12] | Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839. doi: 10.1103/PhysRevLett.58.836 |