Research article

Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term

  • Received: 10 October 2019 Accepted: 13 December 2019 Published: 20 January 2020
  • MSC : 35K55, 35J60, 80A22

  • In this article, we are interested in the study of Parabolic system of Cahn-Hilliard with a proliferation term and Dirichet boundary conditions. In particular, we prove the existence and the uniqueness of the solution, the existence of the global attractor and the existence of an exponential attractor.

    Citation: Aymard Christbert Nimi, Daniel Moukoko. Global attractor and exponential attractor for a Parabolic system of Cahn-Hilliard with a proliferation term[J]. AIMS Mathematics, 2020, 5(2): 1383-1399. doi: 10.3934/math.2020095

    Related Papers:

  • In this article, we are interested in the study of Parabolic system of Cahn-Hilliard with a proliferation term and Dirichet boundary conditions. In particular, we prove the existence and the uniqueness of the solution, the existence of the global attractor and the existence of an exponential attractor.


    加载中


    [1] D. Brochet, X. Chen and D. Hilhost, Finite dimensionnal exponentian attractors for the phase-field model, Appl. Anal., 49 (1993), 197-212. doi: 10.1080/00036819108840173
    [2] L. Cherfils, A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Anal., 54 (2009), 89-115.
    [3] L. Cherfils, A. Miranville and S. Zelik, One a generalized Cahn-Hilliard equation with Biological Applications, Disrete and continuous, Dynamical systems series B, 19 (2014), 2013-2026. doi: 10.3934/dcdsb.2014.19.2013
    [4] L. Cherfils, H. Fakih, A. Miranville, A complexe version of the Cahn-Hilliard equation for grasyscale image inpainting, Multiscale Model. Sim., 15 (2017), 575-605. doi: 10.1137/15M1040177
    [5] H. Fakih, A Cahn-Hilliard equation with a proliferation term for biological and chemical applications, Asymptotic, 94 (2015), 71-104. doi: 10.3233/ASY-151306
    [6] G. Gilardi, On a conserved phase field model with irregular potentiel and dynamic boundary condition, Istit. Lombardo Sci. Lett. Accad. Rend. A, 141 (2007), 129-161.
    [7] C. Giorgi, M. Grasseli, and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math.J, 48 (1999), 1395-1446.
    [8] E. Khain and L. M. Sander, A generalized Cahn-Hilliard equation for biological applications, Phys. Rev. E, 77 (2008), 051129.
    [9] A. Miranville, Asymptotic behaviour of a generalized Cahn-Hilliard equation with a proliferation term, Appl. Anal., 92 (2013), 1308-1321. doi: 10.1080/00036811.2012.671301
    [10] A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152. doi: 10.1016/j.jmaa.2012.11.038
    [11] A. J. Ntsokongo, N. Batangouna, Existence and uniqueness of solutions for a conserved phase-field type model, AIMS Mathematics, 1 (2016),144-155. doi: 10.3934/Math.2016.2.144
    [12] Y. Oono and S. Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett., 58 (1987), 836-839. doi: 10.1103/PhysRevLett.58.836
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3436) PDF downloads(466) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog