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Techniques, Université Marien Ngouabi, B.P.69 Brazzaville, Congo

* Correspondence: Email: nimichristbert@gmail.com.

Abstract: In this article, we are interested in the study of Parabolic system of Cahn-Hilliard with
a proliferation term and Dirichet boundary conditions. In particular, we prove the existence and the
uniqueness of the solution, the existence of the global attractor and the existence of an exponential
attractor.

Keywords: Cahn-Hilliard system; proliferation term; dissipativity; global attractor; exponential
attractors
Mathematics Subject Classification: 35K55, 35J60, 80A22

1. Introduction

The generalization of the Cahn-Hilliard equation

∂u
∂t

+ ∆2u − ∆ f (u) + g(u) = 0, (1.1)

where g is the proliferation term, has been proposed in [3, 5] as a model for the growth of cancerous
tumors and other biological entities.

Generally, g can be the linear function g(s) = αs, α > 0 in which case (1.1) is known as the Cahn-
Hilliard-Oono equation and accounts for long-ranged interactions in the phase equations and in the
phase separation process ( see [8]). The other possibility is the quadratic function g(s) = αs(s−1), α >
0 (nonlinear). In that case (1.1) has applications in biology and, precisely, models wound healing and
tumour growth ( see [12]). To be more precise, such a model deals with cells which move, proliferate
and interact via diffusion and cell-cell adhesion. Here, u is the order parameter, f is the local free
energy and α is the proliferation rate.

These equation has been studied; we refer to, e.g., [3, 5, 9], in which authors have proved the
existence and the uniqueness of the solution and the existence of the finite-dimensional attractors.
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Precisely, we are going to study the model for the growth of cancerous tumors and other biological
entities, model obtained by combinaison of (1.1) with the following temperature equation

∂θ

∂t
− ∆θ = −

∂u
∂t
. (1.2)

The same kind of model without proliferation term are knwon as the conserved phase field model
and has been studied (see for instance D. Brochet, X. Chen and D. Hilhost G [1], L. Cherfils and A.
Miranville [2], Gilardi [6], C. Giorgi, M. Grasseli, and V. Pata A [7], Miranville [10], A. J. Ntsokongo
and N. Batangouna [11]).

This work is structured as follows: firstly, we have the setting of the problem followed by a priori
estimates which allow us to construct the dissipative semigroup associated to the problem, and finally
we prove the existence of the exponential attractors and, thus, of finite-dimensional global attractors.

2. Setting of the problem

We consider the following parabolic system of Cahn-Hilliard with a proliferation term

∂u
∂t

+ ∆2u − ∆ f (u) + g(u) = θ in R∗+ ×Ω, (2.1)

∂θ

∂t
− ∆θ = −

∂u
∂t

in R∗+ ×Ω, (2.2)

θ = ∆u = u = 0 on R∗+ × Γ, (2.3)
θ(0, x) = θ0(x); u(0, x) = u0(x), ∀x ∈ Ω, (2.4)

in a bounded and regular domain Ω ⊂ Rn( n = 1, 2 or 3) with boundary Γ.
f and g verifies the following properties:

f ∈ C2(R), f (0) = 0, g ∈ C1(R) (2.5)

f
′

(s) > −c0, s ∈ R, c0 > 0 (2.6)

f (s)s > c1F(s) − c2 > −c3, s ∈ R, c1 > 0, c2, c3 > 0, (2.7)

where F(s) =

∫ s

0
f (ξ)dξ and for all u ∈ L2(Ω), such that

∫
Ω

F(u)dx < +∞, we have

‖g(u)‖‖u‖ 6 ε
∫

Ω

F(u)dx + cε , ∀ ε > 0, (2.8)

‖g
′

(u)‖2 6 c6

∫
Ω

F(u)dx + c7, c6 > 0, (2.9)

Notation. We denote by (., .) the usual L2-scalar product, with associated norm ‖.‖, and we set
‖.‖−1 = ‖(−∆)−

1
2 .‖, where −∆ denotes the minus Laplace operator with Dirichlet boundary conditions.

More generally, ‖.‖X denotes the norm in the Banach space X.

Remark 2.1. The properties (2.8) and (2.9) essentially mean that g is subordinated to f . In particular,
they hold for the usual choices f (s) = s3 − s and g(s) = αs or g(s) = αs(s− 1), α > 0. More generally,
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(2.8) and (2.9) hold when f and g have polynomial growths of order 2p + 1, p > 1 and q > 1 such

that q 6 p + 1. Indeed, let us assume, for simplicity, that f (s) =

2p+1∑
i=1

aisi, a2p+1 > 0 and g(s) =

q∑
i=1

bisi,

bq > 0. Then,

‖g(u)‖‖u‖ 6 c(‖u‖q
L2p(Ω) + 1)‖u‖ 6 c(‖u‖q+1

L2p(Ω) + 1) 6 ε
∫

Ω

F(u)dx + cε ∀ ε > 0,

since 2q 6 2p + 2 and q + 1 < 2p + 2. Furthermore ,

‖g
′

(u)‖2 6 c
∫

Ω

u2q−2dx + c
′

6 c
∫

Ω

u2q+2dx + c
′

, hence (2.9).

In this article, we assume f (s) = s3 − s and g(s) = αs(s − 1), α > 0.

Finally, the same letter c, c
′

and c
′′

denotes constants which may vary from line to line, or even in
a same line. Similary, the same letter Q denotes monotone increasing functions which may vary from
line to line, or even in a same line.

3. A priori estimates

In what follows, the Poincaré, Hölder and Young inequalities are extensively used, without further
referring to them.

We multiply (2.1) by (−∆)−1u and integrate over Ω, we obtain

1
2

d
dt
‖u‖2−1 + ‖∇u‖2 + ( f (u), u) + (g(u), (−∆)−1u) = (θ, (−∆)−1u), (3.1)

owing to (2.7) and (2.8), we obtain

d
dt
‖u‖2−1 + c

(
‖u‖2H1(Ω) +

∫
Ω

F(u)dx
)

dx 6
c
2

∫
Ω

F(u)dx + c
′

‖θ‖2 + c
′′

, c > 0,

hence
d
dt
‖u‖2−1 + c

(
‖u‖2H1(Ω) +

∫
Ω

F(u)dx
)
6 c

′

‖θ‖2 + c
′′

, c > 0. (3.2)

We now multiply (2.2) by θ and integrate over Ω, we find

d
dt
‖θ‖2 + 2‖∇θ‖2 = −2

(
∂u
∂t
, θ

)
. (3.3)

We then multiply (2.1) by
∂u
∂t

and integrate over Ω, we have

1
2

d
dt
‖∆u‖2 +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

=

(
∆ f (u),

∂u
∂t

)
−

(
g(u),

∂u
∂t

)
+

(
θ,
∂u
∂t

)
. (3.4)

AIMS Mathematics Volume 5, Issue 2, 1383–1399.



1386

Here, ∣∣∣∣∣∣
(
g(u),

∂u
∂t

)∣∣∣∣∣∣ 6 ‖g(u)‖
∥∥∥∥∥∂u
∂t

∥∥∥∥∥
6 ‖g(u)‖2 +

1
4

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

.

Furthermore, (
∆ f (u),

∂u
∂t

)
6 c‖ f (u)‖2H2(Ω) +

1
4

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

,

which yields

d
dt
‖∆u‖2 +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

6 c(‖ f (u)‖2H2(Ω) + ‖g(u)‖2) + 2
(
θ,
∂u
∂t

)
. (3.5)

We recal that H2(Ω) is continuously embedded in C(Ω) and owing to (2.5),

‖ f (u)‖2H2(Ω) + ‖g(u)‖2 6 Q(‖u‖H2(Ω)), (3.6)

and inserting (3.6) into (3.5), we obtain

d
dt
‖∆u‖2 +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

6 Q(‖u‖H2(Ω)) + 2
(
θ,
∂u
∂t

)
. (3.7)

Summing finally (3.3) and (3.7), we find

d
dt

(‖∆u‖2 + ‖θ‖2) +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

+ 2‖∇θ‖2 6 Q(‖∆u‖2).

In particular, we deduce
d
dt

(‖∆u‖2 + ‖θ‖2) 6 Q(‖∆u‖2). (3.8)

We set
y = ‖∆u‖2 + ‖θ‖2,

we deduce from (3.8) an inequation of the form

y
′

6 Q(y). (3.9)

Let z be the solution to the ordinary differential equation

z
′

= Q(z), z(0) = y(0) = ‖∆u0‖
2 + ‖θ0‖

2.

It follows from the comparison principle, that there exists a time T0 = T0(‖u0‖H2(Ω), ‖θ0‖) > 0

belonging to, say (0,
1
2

) such that
y(t) 6 z(t) ∀t 6 T0,
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hence
‖u‖2H2(Ω) + ‖θ‖2 6 Q(‖u0‖H2(Ω), ‖θ0‖), ∀t 6 T0. (3.10)

We multiply (2.1) by (−∆)−1∂u
∂t

and integrate over Ω, we have

d
dt

(
‖∇u‖2 + 2

∫
Ω

F(u)dx
)

+

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
6 c‖g(u)‖2 + 2

(
θ, (−∆)−1∂u

∂t

)
. (3.11)

We then multiply (2.2) by (−∆)−1θ and integrate over Ω, we obtain

d
dt
‖θ‖2−1 + 2‖θ‖2 = −2

(
(−∆)−1∂u

∂t
, θ

)
. (3.12)

Summing (3.11) and (3.12), owing to (3.6)-(3.10), we find

dE1

dt
+ c

(∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ ‖θ‖2

)
6 Q(‖u0‖H2(Ω), ‖θ0‖), c > 0, (3.13)

where

E1 = ‖∇u‖2 + 2
∫

Ω

F(u)dx + ‖θ‖2−1.

Summing ψ1(3.2) and (3.13) , where ψ1 > 0 is small enough, we obtain

dE2

dt
+ c

(
E2 +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ ‖θ‖2

)
6 Q(‖u0‖H2(Ω), ‖θ0‖) + c

′

, c > 0, (3.14)

where

E2 = E1 + ψ1‖u‖2−1,

satisfies

c
(
‖u‖2H1(Ω) +

∫
Ω

F(u)dx + ‖θ‖2−1

)
+ c

′

6 E2 6 c
′′

(
‖u‖2H1(Ω) +

∫
Ω

F(u)dx + ‖θ‖2−1

)
+ c

′′′

,

c, c
′′

> 0.

In particular, we deduce from (3.14) and Gronwall’s lemma the dissipative estimate

E2(t) +

∫ t

0
e−c(t−s)

∥∥∥∥∥∂u(s)
∂t

∥∥∥∥∥2

−1
ds 6 ce−ctQ(‖u0‖H2(Ω), ‖θ0‖) + c

′′

, c > 0, t > 0, (3.15)

where we have used the continuous embedding H2(Ω) ↪→ C(Ω) to deduce that

|

∫
Ω

F(u0)dx| 6 Q(‖u0‖H2(Ω), ‖θ0‖).

Furthermore,∫ t+1

t

(∥∥∥∥∥∂u(s)
∂t

∥∥∥∥∥2

−1
+ ‖θ(s)‖2

)
ds 6 ce−ctQ(‖u0‖H2(Ω), ‖θ0‖) + c

′′

, c > 0, t > 0. (3.16)
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Finally, more generally, for every r > 0∫ t+r

t

(∥∥∥∥∥∂u(s)
∂t

∥∥∥∥∥2

−1
+ ‖θ(s)‖2

)
ds 6 ce−ctQ(‖u0‖H2(Ω), ‖θ0‖) + c

′′

(r), c > 0, t > 0. (3.17)

We now differentiate (2.1) with respect to time and have, noting that
∂θ

∂t
= −

∂u
∂t

+ ∆θ,

(−∆)−1 ∂

∂t
∂u
∂t
− ∆

∂u
∂t

+ f
′

(u)
∂u
∂t

+ (−∆)−1(g
′

(u)
∂u
∂t

) = −(−∆)−1∂u
∂t
− θ. (3.18)

We multiply (3.18) by t
∂u
∂t

and integrate over Ω, owing (2.6), we find for t 6 T0

t
2

d
dt

(∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1

)
+ t

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

6 c0t
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

+ t
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ t

∣∣∣∣∣∣
(
θ,
∂u
∂t

)∣∣∣∣∣∣ + t

∣∣∣∣∣∣
(
(−∆)−1(g

′

(u)
∂u
∂t

),
∂u
∂t

)∣∣∣∣∣∣ .
(3.19)

We know that H2(Ω) ⊂ L∞(Ω) with continuous injection and (−∆)−1∂u
∂t
∈ H2(Ω). Then∣∣∣∣∣∣

(
(−∆)−1(g

′

(u)
∂u
∂t

),
∂u
∂t

)∣∣∣∣∣∣ 6
∫

Ω

∣∣∣g′(u)
∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣(−∆)−1∂u
∂t

∣∣∣dx

6 ‖g
′

(u)‖
∥∥∥∥∥∂u
∂t

∥∥∥∥∥ ∥∥∥∥∥(−∆)−1∂u
∂t

∥∥∥∥∥
L∞(Ω)

6 ‖g
′

(u)‖
∥∥∥∥∥∂u
∂t

∥∥∥∥∥ ∥∥∥∥∥(−∆)−1∂u
∂t

∥∥∥∥∥
H2(Ω)

6 c‖g
′

(u)‖
∥∥∥∥∥∂u
∂t

∥∥∥∥∥ ∥∥∥∥∥(−∆)(−∆)−1∂u
∂t

∥∥∥∥∥
6 c‖g

′

(u)‖
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

6 c
′

‖g
′

(u)‖2
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+

1
4

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

6 Q(‖u0‖H2(Ω), ‖θ0‖)
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+

1
4

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

. (3.20)

Inserting (3.20) into (3.19), we have

d
dt

(
t
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1

)
+ t

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

6 Q(‖u0‖H2(Ω), ‖θ0‖)
(
t
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1

)
+ 2c0t

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

+ 2ct‖θ‖2 +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
.

Noting that, ∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

6 c
∥∥∥∥∥∂u
∂t

∥∥∥∥∥
−1

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥ ,
hence

d
dt

(
t
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1

)
+

t
2

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

6 Q(‖u0‖H2(Ω), ‖θ0‖)
(
t
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1

)
+ c

′

t‖θ‖2 + c
∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
.

AIMS Mathematics Volume 5, Issue 2, 1383–1399.



1389

(3.21)

Using the estimates (3.17), ( 3.21) and Gronwall’s lemma, we find∥∥∥∥∥∂u(t)
∂t

∥∥∥∥∥2

−1
6

1
t

Q(‖u0‖H2(Ω), ‖θ0‖), ∀t ∈ (0,T0]. (3.22)

Multiplying then (3.18) by
∂u
∂t

and integrate over Ω, we obtain, proceeding as above,

d
dt

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+

1
2

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

6 c
(∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ ‖θ‖2

)
. (3.23)

It thus follows from (3.17), (3.23) and Gronwall’s lemma∥∥∥∥∥∂u(t)
∂t

∥∥∥∥∥2

−1
6 ectQ(‖u0‖H2(Ω), ‖θ0‖)

∥∥∥∥∥∂u(T0)
∂t

∥∥∥∥∥2

−1
, c > 0, t > T0, (3.24)

and it finally follows from (3.22) that∥∥∥∥∥∂u(t)
∂t

∥∥∥∥∥2

−1
6 ectQ(‖u0‖H2(Ω), ‖θ0‖), c > 0, t > T0. (3.25)

We now rewrite, for t > T0 fixed, (2.1) in the form

− ∆u + f (u) + (−∆)−1g(u) = hu(t), u = 0 on Γ, (3.26)

where
hu(t) = −(−∆)−1∂u

∂t
+ (−∆)−1θ. (3.27)

We multiply (3.27) by hu(t) and integrate over Ω, we obtain

‖hu(t)‖2 6 c
′

(∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ ‖θ‖2

)
,

owing to (3.15)-(3.25), we have

‖hu(t)‖2 6 ectQ(‖u0‖H2(Ω), ‖θ0‖), c > 0, t > T0. (3.28)

We multiply (3.26) by u and integrate over Ω, we find

‖∇u‖2 + ( f (u), u) 6 ‖hu(t)‖‖u‖ + c‖g(u)‖‖u‖,

which yields, owing to (2.7) and (2.8)

‖∇u‖2 + c1

∫
Ω

F(u)dx 6 c‖hu(t)‖2 + c
′

, c1 > 0. (3.29)

Then, multiplying (3.26) by −∆u and integrate over Ω, we obtain

‖∆u‖2 + ( f ′(u)∇u,∇u) 6 ‖hu(t)‖‖∆u‖ + ‖g(u)‖‖u‖,
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which yields, owing to (2.6) and (2.8)

‖∆u‖2 6 ‖hu(t)‖2 + c
′

‖∇u‖2 + c
∫

Ω

F(u)dx + c
′′

. (3.30)

Summing (3.29) and ψ2(3.30), where ψ2 > 0 is small enough, we find

‖∇u‖2 + c(‖u‖2H2(Ω) +

∫
Ω

F(u)dx) 6 c
′

‖hu(t)‖2 + c
′′

, c > 0. (3.31)

We thus deduce from (3.28) and (3.31) that

‖u‖2H2(Ω) 6 ectQ(‖u0‖H2(Ω), ‖θ0‖) + c
′′

, c > 0, t > T0. (3.32)

The estimate (3.3) implies

d
dt
‖θ‖2 + ‖∇θ‖2 6 c

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

. (3.33)

It follows from (3.10), (3.23) and (3.25) that∫ t

T0

∥∥∥∥∥∂u(s)
∂t

∥∥∥∥∥2

ds 6 ectQ(‖u0‖H2(Ω), ‖θ0‖), c > 0, t > T0. (3.34)

We then deduce from (3.33) and (3.34) that

‖θ‖2 +

∫ t

T0

‖∇θ(s)‖2ds 6 ectQ(‖u0‖H2(Ω), ‖θ0‖), c > 0, t > T0,

which gives

‖θ‖2 6 ectQ(‖u0‖H2(Ω), ‖θ0‖), c > 0, t > T0. (3.35)

Combining (3.32) and (3.35), we obtain

‖u‖2H2(Ω) + ‖θ‖2 6 ectQ(‖u0‖H2(Ω), ‖θ0‖) + c
′′

, c > 0, t > T0. (3.36)

Finally, we deduce from (3.10) and (3.36), that

‖u‖2H2(Ω) + ‖θ‖2 6 ectQ(‖u0‖H2(Ω), ‖θ0‖) + c
′′

, c > 0, t > 0. (3.37)

We now note, it follows from (3.16) that∫ 1

0
‖θ‖2dt 6 Q(‖u0‖H2(Ω), ‖θ0‖) + c

′′

. (3.38)

Furthermore, multiplying (2.1) by u and integrate over Ω, we find, thanks to (2.6)

d
dt
‖u‖2 + ‖∆u‖2 6 c(‖∇u‖2 + ‖θ‖2) + c

′

‖g(u)‖2.
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Owing to ( 3.6) and (3.10), we have
d
dt
‖u‖2 + ‖∆u‖2 6 Q(‖u0‖H2(Ω), ‖θ0‖). (3.39)

We thus deduce from (3.39) that ∫ 1

0
‖u‖2H2(Ω)dt 6 Q(‖u0‖H2(Ω), ‖θ0‖). (3.40)

Therefore, the estimates (3.38) and (3.40) allow to affirm, there exists T ∈ (0, 1) such that

‖u(T )‖2H2(Ω) + ‖θ(T )‖2 6 Q(‖u0‖H2(Ω), ‖θ0‖) + c
′′

. (3.41)

Actually, repeating the above estimates, starting from t = T instead of t=0, we see that (3.41) holds for
T = 1, i.e. we have the smoothing property

‖u(1)‖2H2(Ω) + ‖θ(1)‖2 6 Q(‖u0‖H2(Ω), ‖θ0‖) + c
′′

. (3.42)

In particular, having this smoothing property, it is not difficult to prove that we have, owing to (3.15),
(3.37) and (3.42), the dissipative estimate

‖u(t)‖2H2(Ω) + ‖θ(t)‖2 6 e−ctQ(‖u0‖H2(Ω), ‖θ0‖) + c
′

, c > 0, t > 0, (3.43)

We multiply (2.2) by −∆
∂θ

∂t
and integrate over Ω, we obtain

d
dt
‖∆θ‖2 +

∥∥∥∥∥∇∂θ∂t

∥∥∥∥∥2

6

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

. (3.44)

Thanks to (3.17) and (3.23), we have∫ t+r

t

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

ds 6 e−ctQ(‖u0‖H2(Ω), ‖θ0‖, r) + c
′′

(r), c > 0, t > t0 + r.

Setting y = ‖∆θ‖2, g = 0 and h =

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

, we deduce from (3.44) that

y
′

6 gy + h, t > t0,

where, owing to the above estimates, y, g and h satisfy the assumptions of the uniform Gronwall’s
lemma (for t > t0), which yields that, for t > t0 + r,∫ t+r

t
‖∆θ‖2ds 6 e−ctQ(‖u0‖H2(Ω), ‖θ0‖, r) + c

′′

(r), c > 0, t > r,

hence
‖θ‖2H2(Ω) 6 e−ctQ(‖u0‖H2(Ω), ‖θ0‖, r) + c

′′

(r), c > 0, t > r. (3.45)

Combining (3.43) and (3.45), we obtain the dissipative estimate

‖u(t)‖2H2(Ω) + ‖θ(t)‖2H2(Ω) 6 e−ctQ(‖u0‖H2(Ω), ‖θ0‖H1(Ω), r) + c
′′

(r), c > 0, t > r. (3.46)

From where the

Theorem 3.1. We assume that (u0, θ0) ∈ (H2(Ω) ∩ H1
0(Ω)) × L2(Ω). Then, the system (2.1)-(2.4)

possesses at least solution (u, θ) such that u ∈ L∞(0,T ; H2(Ω) ∩ H1
0(Ω)), θ ∈ L∞(0,T ; L2(Ω)) and

∂u
∂t
∈ L2(0,T ; H−1(Ω)), ∀T > 0.

The proof of existence is based on the estimates (3.15), (3.43) and a standard Galerkin scheme.
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4. The dissipative semigroup

We have the

Theorem 4.1. We assume that (u0, θ0) ∈ (H2(Ω) ∩ H1
0(Ω)) × L2(Ω). Then, the system (2.1)-(2.4)

possesses a unique solution (u, θ) such that u ∈ L∞(0,T ; H2(Ω) ∩ H1
0(Ω)), θ ∈ L∞(0,T ; L2(Ω)) and

∂u
∂t
∈ L2(0,T ; H−1(Ω)), ∀T > 0.

Proof. Let now (u1, θ1) and (u2, θ2) be two solutions to (2.1)-(2.4) with initial data (u1,0 , θ1,0) and
(u2,0 , θ2,0) ∈ (H2(Ω) ∩ H1

0(Ω)) × L2(Ω), respectively. We set (u , θ) = (u1 , θ1) − (u2 , θ2) and
(u0 , θ0) = (u1,0 , θ1,0) − (u2,0 , θ2,0). Then (u , θ) verifies the following problem

∂u
∂t

+ ∆2u − ∆( f (u1) − f (u2)) + g(u1) − g(u2) = θ in [0,T ] ×Ω, (4.1)

∂θ

∂t
− ∆θ = −

∂u
∂t

in [0,T ] ×Ω, (4.2)

θ = ∆u = u = 0 on [0,T ] × Γ, (4.3)
θ(0, x) = θ0(x); u(0, x) = u0(x), ∀x ∈ Ω. (4.4)

We multiply (4.1) by (−∆)−1∂u
∂t

and (4.2) by (−∆)−1θ integrate over Ω, summing the two resulting
equations, we have

1
2

d
dt

(‖∇u‖2 + ‖θ‖2−1) +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ ‖θ‖2 6

∣∣∣∣∣∣
(

f (u1) − f (u2),
∂u
∂t

)
)∣∣∣∣∣∣ +

∣∣∣∣∣∣
(
g(u1) − g(u2), (−∆)−1∂u

∂t

)∣∣∣∣∣∣ .
(4.5)

We have thanks to lagrange theorem, the following estimate∣∣∣∣∣∣
(
g(u1) − g(u2), (−∆)−1∂u

∂t

)∣∣∣∣∣∣
6

∫
Ω

|u|
∣∣∣∣∣(−∆)−1∂u

∂t

∣∣∣∣∣ ∫ 1

0
|g
′

(su1 + (1 − s)u2)|dsdx

6 α

∫
Ω

|u|
∣∣∣∣∣(−∆)−1∂u

∂t

∣∣∣∣∣ ∫ 1

0
|2(su1 + (1 − s)u2) − 1|dsdx

6 c
∫

Ω

(2(|u1| + |u2|) + 1)|u|
∣∣∣∣∣(−∆)−1∂u

∂t

∣∣∣∣∣ dsdx

6 c(‖u1‖L4(Ω) + ‖u2‖L4(Ω) + 1)‖u‖L4(Ω)

∥∥∥∥∥∂u
∂t

∥∥∥∥∥
−1
.

Noting that H1(Ω) ⊂ L4(Ω) with continuous injection and while using (3.43), we have∣∣∣∣∣∣
(
g(u1) − g(u2), (−∆)−1∂u

∂t

)∣∣∣∣∣∣ 6 Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω), ‖θ1,0‖, ‖θ2,0‖)‖∇u‖2 +
1
4

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
. (4.6)

Besides ∣∣∣∣∣∣
(

f (u1) − f (u2),
∂u
∂t

)∣∣∣∣∣∣ 6 ‖∇( f (u1) − f (u2)
)
‖

∥∥∥∥∥∂u
∂t

∥∥∥∥∥
−1
,
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and owing to (3.43),

‖∇
(
f (u1) − f (u2)

)
‖

=

∥∥∥∥∥∥∇
(∫ 1

0
f
′

(su1 + (1 − s)u2)dsu
)∥∥∥∥∥∥

6

∥∥∥∥∥∥∫ 1

0
f
′

(su1 + (1 − s)u2)ds

∥∥∥∥∥∥ ∥∥∥∇u
∥∥∥ +

∥∥∥∥∥∥∫ 1

0
f
′′

(su1 + (1 − s)u2)ds

∥∥∥∥∥∥ (
‖|u||∇u1|‖ + ‖|u||∇u2|‖

)
6 Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω), ‖θ1,0‖, ‖θ2,0‖)(‖∇u‖ + ‖|u||∇u1|‖ + ‖|u||∇u2|‖

)
6 Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω), ‖θ1,0‖, ‖θ2,0‖)‖∇u‖. (4.7)

We insert the estimates (4.6) and (4.7) into (4.5), we find

d
dt

(‖∇u‖2 + ‖θ‖2−1) +

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ ‖θ‖2 6 Q(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω), ‖θ1,0‖, ‖θ2,0‖)‖∇u‖2. (4.8)

Where Q is monotone increasing with respect to both arguments. We deduce from
(4.8) and Gronwall’s lemma that

‖u(t)‖2H1(Ω) + ‖θ(t)‖2−1 6 ectQ(‖u1,0‖H2(Ω), ‖u2,0‖H2(Ω), ‖θ1,0‖, ‖θ2,0‖)(‖u0‖
2
H1(Ω) + ‖θ0‖

2
−1),

hence the uniqueness, as well as the continuous depending with respect to the initial data. �

We set Ψ = (H2(Ω) ∩ H1
0(Ω)) × L2(Ω)). It follows from Theorem 4.1, that we have the continuous

(with respect to the H1(Ω) × H−1(Ω) − norm) of the following semigroup

S (t) : Ψ −→ Ψ,

(u0, θ0) −→ (u(t), θ(t)),

(i.e, S (0) = I, S (t) ◦ S (s) = S (t + s), t, s > 0). We then deduce from (3.43) the following theorem.

Theorem 4.2. The semigroup S (t) is dissipative in Ψ, i.e., there exists a bounded set B0 ∈ Ψ(called
absorbing set) such that, for every bounded B ∈ Ψ, there exists t0 = t0(B) > 0 such that t > t0 implies
S (t)B ⊂ B0.

Remark 4.1. It is easy to see that we can assume, without loss of generality, that B0 is positively
invariant by S (t), i.e., S (t)B0 ⊂ B0, ∀t > 0. Furthermore, it follows from (3.46) that S (t) is dissipative
in (H2(Ω))2 and it follows from (3.45) that we can take B0 in (H2(Ω))2.

Corollary 4.1. The semigroup S (t) possesses the global attractor A who is bounded in (H2(Ω))2 and
compact in Ψ.

The existence of the global attractor being established, one question is to know whether this attractor
has a finite dimension in terms of the fractal or Hausdorff dimension. This is the aim of the final section.
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5. Existence of exponential attractors

The aim of this section is to prove the existence of exponential attractors for the semigroup
S (t), t > 0, associated to the problem (2.1)-(2.4). To do so, we need the semigroup that has to be
Lipschitz continuous, satisfying the smoothing property and checking a Hölder continuous with
respect to time. This is enough to conclude on the existence of exponential attractors .

Lemma 5.1. Let (u1, θ1) and (u2, θ2) be two solutions to (2.1)-(2.4) with initial data (u1,0 , θ1,0) and
(u2,0 , θ2,0), respectively, belonging to B0. Then, the corresponding solutions of the problem (2.1)-(2.4)
satisfy the following estimate

‖u1(t) − u2(t)‖2H2 + ‖θ1(t) − θ2(t)‖2 6 cec
′
t(‖u1,0 − u2,0‖

2
H1 + ‖θ1,0 − θ2,0‖

2
−1), t > 1, (5.1)

where the constants only depend on B0.

Proof. We set (u , θ) = (u1 , θ1)− (u2 , θ2) and (u0 , θ0) = (u1,0 , θ1,0)− (u2,0 , θ2,0), then (u , θ) satisfies

∂u
∂t

+ ∆2u − ∆( f (u1) − f (u2)) + g(u1) − g(u2) = θ in [0,T ] ×Ω, (5.2)

∂θ

∂t
− ∆θ = −

∂u
∂t

in [0,T ] ×Ω, (5.3)

θ = ∆u = u = 0 on [0,T ] × Γ, (5.4)
θ(0, x) = θ0(x); u(0, x) = u0(x) in Ω. (5.5)

We first deduce from (4.8) that

‖∇u(t)‖2 + ‖θ(t)‖2−1 6 cec
′
t(‖u0‖

2
H1(Ω) + ‖θ0‖

2
−1), c

′

> 0, t > 0, (5.6)

and ∫ t

0

(∥∥∥∥∥∂u(s)
∂t

∥∥∥∥∥2

−1
+ ‖θ(s)‖2

)
ds 6 cec

′
t(‖u0‖

2
H1(Ω) + ‖θ0‖

2
−1), c

′

> 0, t > 0, (5.7)

where the constants only depend on B0.
We differentiate (5.2) with respect to time and have, owing to (5.3),

(−∆)−1∂ϕ

∂t
− ∆ϕ + f

′

(u1)ϕ + ( f
′

(u1) − f
′

(u2))
∂u2

∂t

+(−∆)−1
(
g
′

(u1)ϕ + (g
′

(u1) − g
′

(u2))
∂u2

∂t

)
= −θ − (−∆)−1ϕ, (5.8)

where ϕ =
∂u
∂t

.
We multiply (5.8) by (t − T0)ϕ and integrate over Ω, where T0 is same as in one of previous section,
owing to (2.6), we obtain

1
2

d
dt

(
(t − T0)

∥∥∥ϕ∥∥∥2

−1

)
+ (t − T0)‖∇ϕ‖2

6
1
2
‖ϕ‖2−1 + c0(t − T0)‖ϕ‖2 + (t − T0)‖ϕ‖2−1 + (t − T0)

∣∣∣∣∣∣
(
( f
′

(u1) − f
′

(u2))
∂u2

∂t
, ϕ

)∣∣∣∣∣∣
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+(t − T0)
∣∣∣(θ, ϕ)

∣∣∣ + (t − T0)
∣∣∣((−∆)−1(g

′

(u1)ϕ), ϕ)
∣∣∣

+(t − T0)

∣∣∣∣∣∣
(
(−∆)−1(g

′

(u1) − g
′

(u2))
∂u2

∂t
, ϕ

)∣∣∣∣∣∣ . (5.9)

Noting that u1, u2 ∈ H2(Ω), then

∣∣∣(( f
′

(u1) − f
′

(u2))
∂u2

∂t
, ϕ)

∣∣∣ 6 ∫
Ω

| f
′

(u1) − f
′

(u2)
∣∣∣ ∣∣∣ϕ∣∣∣ ∣∣∣∣∣∂u2

∂t

∣∣∣∣∣ dx

6

∫
Ω

|3u2
1 − 3u2

2

∣∣∣ ∣∣∣ϕ∣∣∣ ∣∣∣∣∣∂u2

∂t

∣∣∣∣∣ dx

6 c(‖u1‖L∞(Ω) + ‖u2‖L∞(Ω))
∫

Ω

|u|
∣∣∣ϕ∣∣∣ ∣∣∣∣∣∂u2

∂t

∣∣∣∣∣ dx

6 c
∫

Ω

∣∣∣u∣∣∣ ∣∣∣ϕ∣∣∣ ∣∣∣∣∣∂u2

∂t

∣∣∣∣∣ dx

6 c‖u‖L4(Ω)

∥∥∥ϕ∥∥∥
L4(Ω)

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥
6 c‖∇u‖

∥∥∥∇ϕ∥∥∥ ∥∥∥∥∥∂u2

∂t

∥∥∥∥∥ , (5.10)

proceeding as in (3.20), we find∣∣∣∣(((−∆)−1(g′(u1))ϕ), ϕ
)∣∣∣∣ 6 c

∥∥∥∇ϕ∥∥∥ ∥∥∥ϕ∥∥∥
−1
, (5.11)

and ∣∣∣∣∣∣
(
(−∆)−1((g

′

(u1) − g
′

(u2))
∂u2

∂t
), ϕ

)∣∣∣∣∣∣ 6 2α
∫

Ω

∣∣∣(−∆)−1ϕ
∣∣∣ |u| ∣∣∣∣∣∂u2

∂t

∣∣∣∣∣ dx

6 c‖u‖L4(Ω)

∥∥∥(−∆)−1ϕ
∥∥∥

L4(Ω)

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥
6 c‖∇u‖‖(−∆)−1ϕ‖H1(Ω)

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥
6 c‖∇u‖‖ϕ‖−1

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥
6 c‖∇u‖‖ϕ‖

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥
6 c‖∇u‖‖∇ϕ‖

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥ , (5.12)

where the constants only depend on B0.
By substituting (5.10), (5.11) and (5.12) into (5.9), we have, owing to the interpolation inequality,

d
dt

(
(t − T0)

∥∥∥ϕ∥∥∥2

−1

)
+ (t − T0)

∥∥∥∇ϕ∥∥∥2

6 c(t − T0)
(∥∥∥ϕ∥∥∥2

−1
+ ‖θ‖2

)
+ c(t − T0)‖∇u‖2

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥2

+
∥∥∥ϕ∥∥∥2

−1
. (5.13)
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We now multiply (5.3) by −(t − T0)θ and integrate over Ω, we obtain

d
dt

(
(t − T0)‖θ‖2

)
+ (t − T0)‖∇θ‖2 6 c(t − T0)

∥∥∥ϕ∥∥∥2
+ ‖θ‖2. (5.14)

Therefore, noting that it follows from (3.13), (3.15), (3.23) and (3.25) (for (u, θ) = (u2, θ2)) that∫ t

T0

∥∥∥∥∥∂u2

∂t

∥∥∥∥∥2

ds 6 cec
′
t, t > T0,

where the constants only depend on B0.

Combining (5.13) and (5.14), we find, owing to Gronwall’s lemma over (T0, t); note that T0 < 1,∥∥∥∥∥∂u(t)
∂t

∥∥∥∥∥2

−1
+ ‖θ(t)‖2 6 cec

′
t(‖u0‖

2
H1(Ω) + ‖θ0‖

2
−1), t > 1, (5.15)

where the constants only depend on B0.
We rewrite (5.2) in the form

−∆u = h̃u(t), u = 0 sur ∂Ω, (5.16)

for t > 1 fixed, where

h̃u(t) = −(−∆)−1∂u
∂t
− ( f (u1) − f (u2)) − (−∆)−1(g(u1) − g(u2)) + (−∆)−1θ. (5.17)

We multiply (5.17) by h̃u(t) and integrate over Ω, we obtain

‖h̃u(t)‖2 6 c
(∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
+ ‖θ‖2

)
+ c‖∇u‖2.

It then follows from (5.6) and (5.15) that

‖h̃u(t)‖2 6 cec
′
t(‖u0‖

2
H1(Ω) + ‖θ0‖

2
−1), t > 1, (5.18)

where the constants only depend on B0.
We multiply (5.16) by −∆u and integrate over Ω, we find

‖∆u‖2 6 ‖h̃u(t)‖2,

hence, owing to (5.18), we have

‖u‖2H2(Ω) 6 cec
′
t(‖u0‖

2
H1(Ω) + ‖θ0‖

2
−1), t > 1, (5.19)

where the constants only depend on B0.
We finally deduce from (5.15) and (5.19), the estimate (5.1) which concludes the proof. �
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Lemma 5.2. Let (u1, θ1) and (u2, θ2) be two solutions to (2.1)-(2.4) with initial data (u1,0 , θ1,0) and
(u2,0 , θ2,0), respectively, belonging to B0. Then, the semigroup {S (t)}t>0 is Lipschitz continuity with
respect to space, i.e, there exists the constant c > 0 such that

‖u1(t) − u2(t)‖2H1(Ω) + ‖θ1(t) − θ2(t)‖2−1 6 cec
′
t(‖u1,0 − u2,0‖

2
H1(Ω) + ‖θ1,0 − θ2,0‖

2
−1), c

′

> 0, t > 0,
(5.20)

where the constants only depend on B0.

Proof. The proof of the lemma 5.2 is a direct consequence of the estimate (5.6). �

It just remains to prove the Hölder continuity with respect to time .

Lemma 5.3. Let (u, θ) be the solution of (5.2)-(5.5) with intial data (u0, θ0) in B0. Then, the semigroup
{S (t)}t>0 is Hölder continuous with respect to time ,i.e, there exists the constant c > 0 such that
∀t1, t2 ∈ [0,T ]

‖S (t1)(u0, θ0) − S (t2)(u0, θ0)‖Ψ 6 c|t1 − t2|
1
2 , (5.21)

where the constants only depends on B0 and T .

Proof.

‖S (t1)(u0, θ0) − S (t2)(u0, θ0)‖Ψ = ‖(u(t1) − u(t2), θ(t1) − θ(t2))‖Ψ
6 ‖u(t1) − u(t2)‖H1(Ω) + ‖θ(t1) − θ(t2)‖−1

6 c(‖∇(u(t1) − u(t2))‖ + ‖θ(t1) − θ(t2)‖−1)

6 c
(∥∥∥∥∥∥

∫ t2

t1
∇
∂u
∂t

ds

∥∥∥∥∥∥ +

∥∥∥∥∥∥
∫ t2

t1

∂θ

∂t
ds

∥∥∥∥∥∥
−1

)
6 c|t1 − t2|

1
2

∣∣∣∣∣∣
∫ t2

t1

(∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

+

∥∥∥∥∥∂θ∂t

∥∥∥∥∥2

−1

)
ds

∣∣∣∣∣∣
1
2

.

(5.22)

Noting that, thanks to (3.16), (3.23) and (3.25), we have∣∣∣∣∣∣
∫ t2

t1

∥∥∥∥∥∇∂u
∂t

∥∥∥∥∥2

ds

∣∣∣∣∣∣ 6 c, (5.23)

where the constant c depends only on B0 and T > T0 such that t1, t2 ∈ [0,T ].

Furthermore, multiplying (2.2) by (−∆)−1∂θ

∂t
and integrate over Ω, we obtain

d
dt
‖θ‖2 +

∥∥∥∥∥∂θ∂t

∥∥∥∥∥2

−1
6 c

∥∥∥∥∥∂u
∂t

∥∥∥∥∥2

−1
, (5.24)

and it follows from (5.23) and (5.24) that∣∣∣∣∣∣
∫ t2

t1

∥∥∥∥∥∂θ∂t

∥∥∥∥∥2

−1
ds

∣∣∣∣∣∣ 6 c, (5.25)

where c only depends on B0 and T such that t1, t2 ∈ [0,T ].
Finally, we obtain thanks to (5.23) and (5.25), the estimate (5.21). Thus, the lemma is proved. �
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We finally deduce from Lemma 5.1, Lemma 5.2 and Lemma 5.3 the following result (see,e.g, [9,
10]).

Theorem 5.1. The semigroup S (t) possesses an exponential attractorM ⊂ B0, i.e,

(i) M is compact in H1(Ω) × H−1(Ω);

(ii) M is positively invariant, S (t)M ⊂M, ∀t > 0;

(iii) M has finite fractal dimension in H1(Ω) × H−1(Ω);

(iv) M attracts exponentially fast the bounded subsets of Ψ

∀B ∈ Ψ bounded, distH1(Ω)×H−1(Ω)(S (t)B,M) 6 Q(‖B‖Ψ)e−ct, c > 0, t > 0,

where the constant c is independent of B and distH1(Ω)×H−1(Ω) denotes the Hausdorff semidistance
between sets defined by

distH1(Ω)×H−1(Ω)(A, B) = sup
a∈A

inf
b∈B
‖a − b‖H1(Ω)×H−1(Ω).

Remark 5.1. Setting M̃ = S (1)M, we can prove that M̃ is an exponential attractor for S (t), but now
in the topology of Ψ.
Since M ( or M̃ ) is a compact attracting set, we deduce from Theorem 5.1 and standard results
(see,e.g, [4, 10]) the

Corollary 5.1. The semigroup S (t) possesses the finite-dimensional global attractorA ⊂ B0.

Remark 5.2. We note that the global attractorA is the smallest (for inlusion) compact set of the phase
space which is invariant by the flow (i.e. S (t)A = A,∀t > 0) and attractors all bounded sets of initial
data as time goes to infinity; thus, it appears as a suitable object in view of the study of the asymptotic
behaviour of the system. Furthermore, the finite dimensionality means, roughy speaking, that, even
though the initial phase space is infinite dimensional, the reduced dynamics is, in some proper sense,
finite dimensional and can be described by a finite number of parameters.

Remark 5.3. Compared to the global attractor, an exponentiel attractor is expected to be more robust
under perturbations. Indeed, the rate of attraction of trajectories to the global attractor may be slow
and it is very difficult, if not impossible, to estimate this rate of attraction with respect to the physical
parameters of the problem in general. As a consequence, global attractors may change drastically
under small perturbations.

6. Conclusion

This manuscript explains in a clear way, the context of dynamic system with a proliferation term,
when the relative solution exists. The existence of exponential attractor, associated to the problem
(2.1)-(2.4) that we have proved, allow to assert that the existing solution of the problem (2.1)-(2.4) that
we have shown in this work, belongs to the finite-dimensional subset called global attractor, from a
certain time.
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