Research article

S-function associated with fractional derivative and double Dirichlet average

  • Received: 30 September 2019 Accepted: 08 January 2020 Published: 20 January 2020
  • MSC : Primary: 26A33, 33C99; Secondary: 33E12, 33E99

  • The object of this article is to investigate the double Dirichlet averages of S-functions. Representations of such relations are obtained in terms of fractional derivative. Some interesting special cases are also stated.

    Citation: Jitendra Daiya, Dinesh Kumar. S-function associated with fractional derivative and double Dirichlet average[J]. AIMS Mathematics, 2020, 5(2): 1372-1382. doi: 10.3934/math.2020094

    Related Papers:

  • The object of this article is to investigate the double Dirichlet averages of S-functions. Representations of such relations are obtained in terms of fractional derivative. Some interesting special cases are also stated.


    加载中


    [1] O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40 (2007), 6287-6303. doi: 10.1088/1751-8113/40/24/003
    [2] B. C. Carlson, Lauricella's hypergeometric function FD, J. Math. Anal. Appl., 7 (1963), 452-470. doi: 10.1016/0022-247X(63)90067-2
    [3] B. C. Carlson, A connection between elementary and higher transcendental functions, SIAM J. Appl. Math., 17 (1969), 116-148. doi: 10.1137/0117013
    [4] B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
    [5] B. C. Carlson, B-splines, hypergeometric functions and Dirichlet average, J. Approx. Theory, 67 (1991), 311-325. doi: 10.1016/0021-9045(91)90006-V
    [6] W. Zu Castell, Dirichlet splines as fractional integrals of B-splines, Rocky Mountain J. Math., 32 (2002), 545-559. doi: 10.1216/rmjm/1030539686
    [7] J. Daiya, Representing double Dirichlet average in term of K-Mittag-Leffler function associated with fractional derivative, Journal of Chemical, Biological and Physical Sciences, Section C, 6 (2016), 1034-1045.
    [8] J. Daiya, J. Ram, Dirichlet averages of generalized Hurwitz-Lerch zeta function, Asian J. Math. Comput. Res., 7 (2015), 54-67.
    [9] R. Diaz, E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15 (2007), 179-192.
    [10] A. Erdélyi, W. Magnus, F. Oberhettinger, et al. Tables of Integral Transforms, Vol. II, McGrawHill, New York-Toronto-London, 1954.
    [11] S. C. Gupta and B. M. Agrawal, Double Dirichlet average and fractional derivative, Ganita Sandesh, 5 (1991), 47-52.
    [12] R. K. Gupta, B. S. Shaktawat, D. Kumar, Certain relation of generalized fractional calculus associated with the generalized Mittag-Leffler function, J. Raj. Acad. Phy. Sci., 15 (2016), 117-126.
    [13] R. K. Gupta, B. S. Shaktawat, D. Kumar, A study of Saigo-Maeda fractional calculus operators associated with the multiparameter K-Mittag-Leffler function, Asian J. Math. Comput. Res., 12 (2016), 243-251.
    [14] R. K. Gupta, B. S. Shaktawat, D. Kumar, Generalized fractional differintegral operators of the K-series, Honam Math. J., 39 (2017), 61-71. doi: 10.5831/HMJ.2017.39.1.61
    [15] V. Kiryakova, A brief story about the operators of the generalized fractional calculus, Fract. Calc. Appl. Anal., 11 (2008), 203-220.
    [16] D. Kumar, On certain fractional calculus operators involving generalized Mittag-Leffler function, Sahand Communication in Mathematical Analysis, 3 (2016), 33-45.
    [17] D. Kumar, R. K. Gupta, D. S. Rawat, et al. Hypergeometric fractional integrals of multiparameter K-Mittag-Leffler function, Nonlinear Science Letters A: Mathematics, Physics and Mechanics, 9 (2018), 17-26.
    [18] D. Kumar, S. D. Purohit, Fractional differintegral operators of the generalized Mittag-Leffler type function, Malaya J. Mat., 2 (2014), 419-425.
    [19] D. Kumar, S. Kumar, Fractional integrals and derivatives of the generalized Mittag-Leffler type function, Internat. Sch. Res. Not., 2014 (2014), 1-5. doi: 10.1093/imrn/rns215
    [20] Shy-Der Lin, H. M. Srivastava, Some miscellaneous properties and applications of certain operators of fractional calculus, Taiwanese J. Math., 14 (2010), 2469-2495. doi: 10.11650/twjm/1500406085
    [21] P. Massopust, B. Forster, Multivariate complex B-splines and Dirichlet averages, J. Approx. Theory, 162 (2010), 252-269. doi: 10.1016/j.jat.2009.05.002
    [22] E. Neuman, Stolarsky means of several variables, J. Inequal. Pure Appl. Math., 6 (2005), 1-10.
    [23] E. Neuman, P. J. Van Fleet, Moments of Dirichlet splines and their applications to hypergeometric functions, J. Comput. Appl. Math., 53 (1994), 225-241. doi: 10.1016/0377-0427(94)90047-7
    [24] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications ("Nauka i Tekhnika", Minsk, 1987), Gordon and Breach Science Publishers, UK, 1993.
    [25] R. K. Saxena, J. Daiya, Integral transforms of the S-function, Le Mathematiche, 70 (2015), 147-159.
    [26] R. K. Saxena, J. Daiya, A. Singh, Integral transforms of the k-Mittag-Leffler function $E_{k,\alpha ,\beta }^\gamma \left( z \right)$, Le Mathematiche, 69 (2014), 7-16.
    [27] R. K. Saxena, T. K. Pogány, J. Ram, et al. Dirichlet averages of generalized multi-index MittagLeffler functions, Armen. J. Math., 3 (2010), 174-187.
    [28] T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3345) PDF downloads(339) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog