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Abstract: This study focuses on defining separation axioms for sets without an inherent topological
structure. By utilizing a mapping to relate such sets to a topological space, we first define a
distinguishable relation over the universal set with respect to the neighborhood systems inspired by
a topology of the co-domain set and elucidate its basic properties. To facilitate the way of discovering
this distinguishable relation, we initiate a color technique for the equivalence classes inspired by a
given topology. Also, we provide an algorithm to determine distinguishable members (or objects)
under study. Then, we establish a framework for introducing separation properties within these
structureless sets and examine their master characterizations. To better understand the obtained results
and relationships, we display some illustrative instances.
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1. Introduction

General topology is interested in the geometric properties of an object (set) while neglecting the
notion of the distance between the points (elements) of this object (set). This qualifies topology as a
forceful instrument to handle some practical issues and describe their qualitative properties. In recent
years, researchers and scholars have exploited topological frames to transect different types of
real-life problems, which can be noted in the published monographs concerning digital topology [1],
decision-making [2, 3], and information systems [4, 5]. Also, it has been benefited from some
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topological concepts, such as separation axioms, compactness, generalized open sets, and operators,
to cope with some practical issues in diverse disciplines such as economics, incomplete
information [6], medical science [7], geographic information systems [8], and algebraic structures.
Moreover, extensions of topology have been applied to handle some practical issues, for example,
supra topology [9], infra topology [10], minimal structures [11, 12], and bitopology [13] which
enhances study of these structures from a theoretical and applied point of view. Some contributions to
networks have been conducted by [14, 15].

In topology, the notion of topological distinguishability plays a fundamental role in understanding
the properties and structure of spaces. It allows us to distinguish between points based on their
neighborhoods and their relationships within a given topological space. This investigation falls under
the study of separation axioms, which have been introduced by using diverse manners in topology
such as limit points and functions. Separation axioms provide us with a tool to categorize spaces and
enable us to discover the main properties of these spaces; they also reveal the behaviors of topological
concepts and their properties in specific types of spaces. However, what if we are dealing with a set
without any inherent structure? How can we distinguish points in such a set using only a function?
This study addresses this question and presents a method to distinguish discrete points in a
structureless set using a mapping from the Cartesian product of the set to a topological space. That is,
we examine separation axioms for sets without an inherent topological structure.

We organize this work as follows: Section 2 is designed to recall some elementary concepts that
make this manuscript self-contained. In Section 3, we display the idea of “ fT -topological
distinguishability”, where f is a function from the Cartesian product of a set X to a topological space
(Y,T ). Also, we set up a method to discover the distinguishable elements using distinct colors for the
equivalence classes inspired by a given topology. This method is described in Algorithm 1. Then, in
Section 4, we display the concepts of “ fT − Ti” set (i = 0, 1, 2) and scrutinize their major
characterizations. In addition, we reveal the relationships between them and build some
counterexamples to demonstrate the invalid directions. Ultimately, we outline the main contributions
of this article and suggest some future works in Section 5.

2. Preliminaries

A neighborhood of a point x ∈ X is a subset N of X that contains an open set U containing x. The
collection of all neighborhoods of x is denoted byNT (x) and is referred to as the neighborhood system
of x:

N ∈ NT (x)⇔ x ∈ U ⊆ N,U ∈ T .

Additionally, let T (x) denote the collection of all open sets in the topology T that contains the
element x.

In a topological space, points can be distinguished based on their neighborhoods. If any two points
have distinct neighborhood systems, they are said to be topologically distinguishable; otherwise, they
are called topologically indistinguishable:

x and y are topologically indistinguishable ⇔NT (x) = NT (y)
⇔∀U, [U ∈ T (x)⇒ U ∈ T (y)]
∧ ∀V, [V ∈ T (y)⇒ V ∈ T (x)];
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x and y are topologically distinguishable⇔NT (x) , NT (y)
⇔∃U ∈ T (x),U < T (y) ∨ ∃V ∈ T (y),V < T (x).

It is apparent that topological distinguishability forms an equivalence relation, denoted by “∼”,
where x ∼ y⇔ x and y are topologically indistinguishable. We represent the equivalence class of x as

[x] = {y ∈ X | x ∼ y}.

There are various methods to establish a topology on a set X, and one of them involves the use of a
topological base. Let (X,T ) be a topological space, B ⊂ 2X and

B∗ = {A ⊆ X | A =
⋃
B∈Φ

B,Φ ⊆ B}. (2.1)

If B∗ = T then B is called a basis for the topology T .

Lemma 2.1. [16] Let B ⊆ P(X). Then the family B∗ forms a topological structure on X, iff

i) X =
⋃

B∈B B;
ii) ∀A, B ∈ B and ∀x ∈ A ∩ B,∃C ∈ B such that x ∈ C ⊆ A ∩ B.

Furthermore, it is possible to construct a topological structure on a set using equivalence classes.
Consider the quotient set

Y = X/∼ = {[x] | x ∈ X}.

The quotient space Y is endowed with the quotient topology, where a subset U ⊆ Y is declared open if
and only if its preimage q−1(U), under the quotient map q: X → Y defined as

q(x) = [x],

is an open set in X.

Definition 2.2. Let g be a function from X to Y. If E is a subset of X, then the restriction of g to E is
the function gE: E → Y given by

gE(x) = g(x)

for all x ∈ E.

3. fT -distinguishability

It is feasible to establish a topology on a set that initially lacks any inherent topological structure
by introducing a topological space and a function defined on it. The initial topology and the resulting
topology serve as illustrative examples of this approach. Thus, by utilizing these topologies, separation
axioms can be defined on such sets. However, our objective is to formulate separation axioms for a set
devoid of any pre-existing topology without imposing any specific topological structure. In this study,
we have developed a methodology to discern discrete points within a structureless set by employing a
function from the Cartesian product of the set and a reference set to a topological space. We postulate
that the two points are distinguishable if the images of these points, obtained through the Cartesian
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product with at least one reference point, exhibit topological distinguishability within the resulting
image space.

From this point onwards, let X be a set, R be a reference set, and (Y,T ) be considered a topological
space unless otherwise stated.

Definition 3.1. Let g: X × R → Y be a function. For two distinct points a, b ∈ X, if

NT (g(a, r)) = NT (g(b, r))

holds for all r ∈ R, then a and b are called indistinguishable via g with respect to the reference set R
and, the topology T (simply, we write a and b are grt-indistinguishable). Otherwise, a and b are called
grt-distinguishable. Therefore, if g(a, r) and g(b, r) are topologically distinguishable in (Y,T ) for at
least one r ∈ R, then a and b are grt-distinguishable in X.

When it is stated that two elements are grt-distinguishable, it should be noted that this distinction is
made with respect to the specific reference set, the topological space involved, and the function g.

Remark 3.2. For any distinct points a, b ∈ X, a and b are frt-distinguishable ( frt-dis.) if and only if
there exists an open set U ⊆ Y such that f (a, r) ∈ U and f (b, r) < U, for some r ∈ R, or there exists an
open set V ⊆ Y such that f (b, r) ∈ V and f (a, r) < V, for some r ∈ R.

Result 3.3. In the context of frt-distinguishability, two distinct points a and b in X are considered frt-
indistinguishable if and only if, for all r ∈ R, the following condition holds: for all open sets U and V
in the topology T , either f (a, r) ∈ U implies f (b, r) ∈ U, or f (b, r) ∈ V implies f (a, r) ∈ V.

Example 3.4. Let

X = {x1, x2, x3, x4, x5}, R = {r1, r2, r3, r4},

Y = {y1, y2, y3, y4, y5, y6}, T = {∅,Y, {y1, y4, y5}}.

Let f : X × R → Y be a map defined as:

f (x1, r1) = f (x1, r2) = f (x2, r1) = f (x3, r4) = f (x4, r1) = y1,

f (x1, r3) = f (x1, r4) = f (x2, r3) = f (x2, r4) = f (x3, r1) = y2,

f (x3, r2) = f (x4, r4) = f (x5, r1) = f (x5, r2) = y3,

f (x2, r2) = f (x4, r2) = f (x5, r3) = f (x5, r4) = y4.

f (x3, r3) = f (x4, r3) = y5.

Then x3 and x4 are frt-distinguishable because

f (x3, r4) ∈ {y1, y4, y5} ∈ T

and
f (x4, r4) < {y1, y4, y5}.

However, x1 and x2 are frt−indistinguishable since for every r ∈ R, f (x1, r) and f (x2, r) are in the same
open set in T .
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Table 1 presents the function f with its corresponding values.

Table 1. Function f with its corresponding values.

f r1 r2 r3 r4

x1 y1 y1 y2 y2

x2 y1 y4 y2 y2

x3 y2 y3 y5 y1

x4 y1 y4 y5 y3

x5 y3 y3 y4 y4

To better visualize the frt-distinguishable points, we represent the topologically distinguishable
points of Y in Table 2 by highlighting them with different colors.

Table 2. Different colors for topologically distinguishable points of Y .

f r1 r2 r3 r4

x1 y1 y1 y2 y2

x2 y1 y4 y2 y2

x3 y2 y3 y5 y1

x4 y1 y4 y5 y3

x5 y3 y3 y4 y4

Points that exhibit distinct color rows in Table 2 are considered frt-distinguishable. Table 2 reveals
that the following pairs of points are frt-distinguishable:

(x1, x3), (x1, x4), (x1, x5), (x2, x3), (x2, x4), (x2, x5), (x3, x4), (x4, x5).

It is evident that the distinguishability of elements in X can vary based on the defined function and
the topology on Y .

Remark 3.5. In the subsequent section of this study, during the construction of the table for a function
f , segments corresponding to topologically indistinguishable points in the co-domain set of f will be
visually represented by highlighting them with the same color.

Example 3.6. Let us consider Example 3.4.

i) Let g: X×R → (Y,T ) be defined as shown in Table 3. Then the pairs of grt-distinguishable points
are:

(x1, x2), (x1, x4), (x1, x5), (x2, x3), (x2, x4), (x2, x5), (x3, x4), (x3, x5), (x4, x5).
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Table 3. Different colors for topologically distinguishable points of Y .

g r1 r2 r3 r4

x1 y5 y5 y5 y4

x2 y4 y4 y2 y2

x3 y1 y1 y1 y4

x4 y3 y6 y3 y4

x5 y3 y4 y1 y5

ii) Let
T ′ = {∅,Y, {y1, y5}, {y3, y4, y5}, {y5}, {y1, y3, y4, y5}}.

In this case, Table 2 transforms into Table 4. Therefore, all distinct points of X are frt-distinguishable
respect to T ′.

Table 4. Function f with its corresponding values.

f r1 r2 r3 r4

x1 y1 y1 y2 y2

x2 y1 y4 y2 y2

x3 y2 y3 y5 y1

x4 y1 y4 y5 y3

x5 y3 y3 y4 y4

The ordering induced by the containment of topologies on Y leads to variability in the
distinguishability of elements in X. The coarsening of the topology on Y restricts the
distinguishability of elements in X. In other words, as the topology on Y becomes finer, a greater
number of elements in X can be frt-distinguished.

Theorem 3.7. Let T ⊆ T1. If a and b are frt-indistinguishable with respect to T1, then they are also
frt-indistinguishable with respect to T .

Proof. Straightforward. □

Result 3.8. Let T ⊆ T1. If a and b are frt-distinguishable with respect to T , then they are also
frt-distinguishable with respect to T1.

However, the converse of Result 4.15 does not hold in general. The following example illustrates its
invalidity and demonstrates that as the topology on Y becomes finer, the number of frt-indistinguishable
elements in X decreases.
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Example 3.9. Let
X = {x1, x2, x3, x4, x5, x6}, Y = {y1, y2, y3, y4, y5}

and f be defined as shown in Table 5.

Table 5. Function f with its corresponding values.

f r1 r2 r3 r4

x1 y1 y5 y5 y4

x2 y4 y4 y2 y2

x3 y1 y5 y1 y4

x4 y3 y2 y3 y4

x5 y3 y4 y1 y5

x6 y2 y4 y5 y5

Let us define topologies T2 ⊆ T1 ⊆ T on Y such that

T2 = {∅,Y, {y1, y5}},

T1 = {∅,Y, {y1, y5}, {y2, y3}, {y1, y2, y3, y5}},

T = {∅,Y, {y1, y5}, {y2, y3}, {y1, y2, y3, y5}, {y2, y5}, {y5}, {y2}, {y1, y2, y5}, {y2, y3, y5}}.

Then the elements x1 and x3 are frt-distinguishable with respect to T , but not with respect to T1 and
T2.

Sets of the pairs of points are frt-indistinguishable in the context of topologies T2,T1 and T ,
respectively, as follows:

{(x1, x3), (x2, x4), (x5, x6)}, {(x1, x3), (x5, x6)}, ∅.

Thus, the finer topology on Y has increased the number of distinguishable elements.
To better visualize the distinguishable elements with respect to T2,T1 and T topologies, we present

Tables 6–8, respectively.

Table 6. Topologically distinguishable points of (Y,T2).

f r1 r2 r3 r4

x1 y1 y5 y5 y4

x2 y4 y4 y2 y2

x3 y1 y5 y1 y4

x4 y3 y2 y3 y4

x5 y3 y4 y1 y5

x6 y2 y4 y5 y5
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Table 7. Topologically distinguishable points of (Y,T1).

f r1 r2 r3 r4

x1 y1 y5 y5 y4

x2 y4 y4 y2 y2

x3 y1 y5 y1 y4

x4 y3 y2 y3 y4

x5 y3 y4 y1 y5

x6 y2 y4 y5 y5

Table 8. Topologically distinguishable points of (Y,T ).

f r1 r2 r3 r4

x1 y1 y5 y5 y4

x2 y4 y4 y2 y2

x3 y1 y5 y1 y4

x4 y3 y2 y3 y4

x5 y3 y4 y1 y5

x6 y2 y4 y5 y5

To facilitate the way of determining distinguishable members (or objects), we provide the
subsequent algorithm.

Increasing the number of reference points in the reference set may enable us to distinguish a greater
number of elements in the set X. Similarly, decreasing the number of elements in the reference set may
lead to a reduction in the number of distinguishable elements. The following theorem explains this
situation.

Theorem 3.10. Let R1 ⊆ R. If any distinct points a and b are frt-distinguishable with respect to R1,
then a and b are frt-distinguishable with respect to R.

Proof. Straightforward. □

The following example demonstrates that the converse of Theorem 3.10 is invalid.

Example 3.11. Let

X = {x1, x2, x3, x4, x5, x6, x7, x8}, R = {r1, r2, r3, r4},

Y = {y1, y2, y3, y4}, T = {∅,Y, {y1, y3}, {y3, y4}, {y3}, {y1, y3, y4}}.
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Algorithm 1. The algorithm for determining a frt-distinguishable relation.
Input: The universal set X = {x1, x2, ..., xn}, the reference set R = {r1, r2, ..., rs}, and the set of topology Y = {y1, y2, ..., y j}

Output: frt-distinguishable relation Ω over X.
1: Structure a topology T over Y;
2: for y ∈ Y do
3: Calculate the neighborhood systems NT (y);
4: end for
5: Build an equivalence relation ρ over Y inspired by its topology as follows: y1ρy2 ⇔ NT (y1) = NT (y2);
6: Present the equivalence classes over Y generated by ρ;
7: Ask experts of the system to define a map f from X × R into Y according to the scenario under study;
8: Structure a table, consisting of elements of X as columns and elements of R as rows, to display the range of a map f ;
9: Color each equivalence class, given in Step 6, with a distinct color;

10: Build an equivalence relation σ over X using the colored table as follows x1σx2 ⇔

the rows of x1 and x2 have the same color;
11: Present the set A of equivalence classes over X generated by σ, that is, A = {(xi, x j) ∈ X × X : xiσx j};
12: Structure the frt-distinguishable relation Ω as follows: Ω = {(xi, x j) ∈ X × X : (xi, x j) < A};
13: Print Ω.

Let f be defined as in Table 9. Let

R1 = {r1}, R2 = {r1, r2}, R3 = {r1, r2, r4}.

Then the sets of frt-indistinguishable points with respect to R1,R2,R3, and R, respectively:

{(x1, x3), (x1, x4), (x1, x5), (x2, x6), (x3, x4), (x3, x5), (x4, x5), (x7, x8)}, {(x1, x3), (x2, x6), (x4, x5), (x7, x8)}, {(x2, x6)}, ∅.

Table 9. Different colors for topologically distinguishable points of (Y,T ).

f r1 r2 r3 r4

x1 y1 y4 y3 y3

x2 y3 y4 y1 y2

x3 y1 y4 y3 y2

x4 y1 y2 y3 y3

x5 y1 y2 y3 y2

x6 y3 y4 y4 y2

x7 y2 y4 y3 y3

x8 y2 y4 y3 y2

Thus, the converse of Theorem 3.10 is not valid. For instance, it can be seen that:
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(i) x2 and x6 are frt-distinguishable with respect to R, but they are not frt-distinguishable with respect
to R1, R2, and R3.

(ii) x1 and x3 are frt-distinguishable with respect to R3, but they are not frt-distinguishable with respect
to R1 and R2.

(iii) x1 and x4 are frt-distinguishable with respect toR2, but they are not frt-distinguishable with respect
to R1.

Even if the functions we use to distinguish the elements in X are different from each other, the
elements they distinguish may turn out to be the same in the end. Therefore, it would make sense
to classify functions that have made the same distinction together. The following theorem gives the
relationship that allows us to make this classification.

Theorem 3.12. Let F(X × R,Y) represent the set of all functions from X × R to (Y,T ). We define a
relation on F(X × R,Y) for any f , g ∈ F(X × R,Y) as follows: f ∼ g if and only if the elements that
are frt-indistinguishable and the elements that are grt-indistinguishable are the same. Then ∼ is an
equivalence relation.

Proof. The proof of the theorem is straightforward. □

Example 3.13. Let us consider the sets and a function mentioned in Example 3.4. Let g be defined as
shown in Table 10.

Table 10. Function g with its corresponding values.

g r1 r2 r3 r4

x1 y2 y2 y1 y4

x2 y2 y2 y4 y4

x3 y2 y3 y3 y4

x4 y4 y2 y2 y3

x5 y2 y3 y2 y4

In view of the fact that all pairs of points that are frt-distinguishable and grt-distinguishable are
identical, it follows that f and g are equivalent, denoted by f ∼ g.

It is clear that frt-indistinguishability defines an equivalence relation on X. Thus, by utilizing
equivalence classes, it is possible to classify the elements in a set without any topological structure by
examining the individual relations of different pairs of elements with other elements of the set.

The following theorem demonstrates that a topology can be constructed on the set X using the
generated equivalence classes.

Theorem 3.14. [16] Let ρ be an equivalence relation on X, and B be the set of equivalence classes:

B = {[x] | x ∈ X}.

Then the set B∗ defined in (2.1) forms a topological structure on X.
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Theorem 3.14 states that a topology can be constructed on X using the equivalence relation ρ defined
as:

xρy⇔ x and y are frt-indistinguishable.

Let us refer to this topology as frt−topology and denote it as fT .
Furthermore, it should be noted that in this particular classification, there exists no one-to-one

correspondence between the quotient set resulting from the topology indistinguishable relation between
the value set and the quotient set in X. Specifically, in example 3.4, the equivalence classes formed in
(Y,T ) are {[y1], [y2]}, where

[y1] = {y1, y4, y5}

and

[y2] = {y2, y3, y6}.

On the other hand, the equivalence classes in X with respect to T are {[x1], [x3], [x4]}, where

[x1] = {x1, x2}, [x3] = {x3, x5} and [x4] = {x4},

where [x] refers to the respective equivalence class of an element x.
The equivalence relation established in Theorem 3.12 divides the set F(X × R,Y) into equivalence

classes. Let [ f ] denote the equivalence class of any function f , and let [X × R,Y] represent the set of
all equivalence classes in F(X×R,Y). The following theorem demonstrates that a partial order relation
can be defined on the set [X × R,Y].

The following result is immediate, so we omit its proof.

Theorem 3.15. Let us define

[ f ] ⪯ [g]⇔ fT ⊆ gT

for any [ f ], [g] ∈ [X × R,Y]. Then ([X × R,Y],⪯) is a partial ordered set.

Proof. The proof of the theorem is evident. □

Example 3.16. If fT is the indiscrete topology on X, then [ f ] is the minimum element of ([X×R,Y],⪯).
Also, if fT is the discrete topology, then [ f ] is the maximum element.

The following example shows that “⪯” is not a total ordering relation.

Example 3.17. Let

X = {x1, x2, x3, x4, x5}, R = {r1, r2, r3, r4, r5, r6}, Y = {y1, y2, y3, y4, y5, y6, y7},

T = {∅,Y, {y1, y5}, {y2, y4}, {y3}, {y1, y3, y5}, {y2, y3, y4}, {y1, y2, y4, y5}}.

Let us define f , g ∈ F(X × R,Y) as shown in Tables 11 and 12, respectively.
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Table 11. Function f with its corresponding values.

f r1 r2 r3 r4 r5 r6

x1 y1 y1 y5 y2 y2 y2

x2 y5 y3 y3 y4 y4 y4

x3 y1 y1 y3 y2 y4 y3

x4 y5 y5 y3 y4 y4 y3

x5 y5 y1 y1 y4 y2 y2

Table 12. Function g with its corresponding values.

g r1 r2 r3 r4 r5 r6

x1 y3 y3 y3 y2 y2 y2

x2 y3 y3 y3 y4 y4 y2

x3 y3 y3 y3 y4 y2 y2

x4 y5 y5 y1 y3 y3 y3

x5 y1 y1 y1 y3 y3 y1

Then we have

fT = {∅, X, {x2}, {x1, x5}, {x3, x4}, {x1, x2, x5}, {x2, x3, x4}, {x1, x3, x4, x5}},

gT = {∅, X, {x1, x2, x3}, {x4}, {x5}, {x4, x5}, {x1, x2, x3, x4}, {x1, x2, x3, x5}}.

As a result, [ f ] ⪯̸ [g] and [g] ⪯̸ [ f ].

4. frt-separation axioms

Separation axioms play a fundamental role in the study of topological spaces and are crucial for
determining and analyzing topological properties. Hausdorff (or T2) axiom, introduced by Felix
Hausdorff in 1914, defines a topological space where distinct points can be separated. This axiom
represents the strongest form of separability in topology, requiring points to be completely separated
from each other.

However, separation axioms are not limited to just the T2 axiom. Mathematicians such as
Alexandroff and Smirnov have defined other separability axioms, such as T0 and T1. The T0 axiom
states that distinct points must have at least one point that distinguishes them topologically, while the
T1 axiom requires that every pair of distinct points has disjoint neighborhoods. Therefore, separation
axioms are considered essential concepts in topology and play a crucial role in various mathematical
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studies. The works of Felix Hausdorff, contributions by Alexandroff and Smirnov, and the research of
other mathematicians have supported the development of separation axioms in topology.
Understanding and applying separation axioms is a fundamental step in the advancement of
topological analysis and the better understanding of mathematical structures.

We will now define and investigate certain separation axioms using the concept of frt-
distinguishability on the space X and analyze their fundamental properties. Subsequently, we define
the concept of frt − T0 set, which represents an extension of the distinguishability concept to a higher
level of rigor. Finally, we present the concept of the frt − T1 set, which imposes further conditions on
distinct elements, facilitating their definitive separation based on specific criteria. Each successive
separation axiom strengthens the distinguishability attribute compared to its predecessor and provides
a more robust capacity to discriminate between distinct elements.

Definition 4.1. A set in which all distinct points are frt-distinguishable is referred to as an frt − T0 set.

Definition 4.2. If, for any two distinct points x1, x2 ∈ X, and for some r1, r2 ∈ R, there exist
neighborhoods U and V in (Y,T ) such that f (x1, r1) ∈ U and f (x2, r1) < U, and f (x2, r2) ∈ V and
f (x1, r2) < V, then X is referred to as an frt − T1 set. In other words, X satisfies the conditions:

∃U ∈ NT ( f (x1, r1)) , f (x2, r1) < U

and
∃V ∈ NT ( f (x2, r2)), f (x1, r2) < V.

Conversely, for all r ∈ R, if for all U ∈ NT ( f (x1, r)), we have f (x2, r) ∈ U, or for all V ∈ NT ( f (x2, r)),
we have f (x1, r) ∈ V, then X is not an frt − T1 set.

Definition 4.3. Let f : X × R → Y be a function. If for any two distinct points a, b ∈ X, there exists
r ∈ R such that there exist neighborhoods of each which are disjoint from each other, then X is called
as frt − T2 set, i.e.,

∃U ∈ NT ( f (a, r)) ,∃V ∈ NT ( f (b, r)),U ∩ V , ∅.

The following result is a natural consequence of the definition of the frt separation axioms.

Result 4.4. The following propositions are valid:

i) X is an frt − T0 set if and only if, for all distinct points x1, x2 ∈ X, there exists an open set
U ∈ T ( f (x1, r)) such that f (x2, r) < U or there exists an open set V ∈ T ( f (x2, r)) such that
f (x1, r) < V, for some r ∈ R.

ii) X is not an frt − T0 set if and only if there exist distinct points x1, x2 ∈ X, and for all open sets
U ∈ T , the condition

f (x1, r) ∈ U ⇔ f (x2, r) ∈ U

holds for all r ∈ R.
iii) X is an frt − T1 set if and only if for all distinct points x1, x2 ∈ X, there exist open sets U ∈
T ( f (x1, r)) and V ∈ T ( f (x2, r)), such that f (x2, r) < U and f (x1, r) < V, for some r ∈ R.

iv) X is not an frt − T1 set if and only if for some distinct points x1, x2 ∈ X, there exists an open set
U ∈ T , containing both f (x1, r) and f (x2, r), which is different from Y for all r ∈ R.
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v) X is an frt − T2 set if and only if for all distinct points x1, x2 ∈ X, there exist open sets U ∈
T ( f (x1, r)) and V ∈ T ( f (x2, r)), such that U ∩ V = ∅, for some r ∈ R.

vi) X is not an frt − T2 set if and only if there exist distinct points x1, x2 ∈ X such that, for all open
sets U ∈ T ( f (x1, r)) and V ∈ T ( f (x2, r)), we have U ∩ V , ∅, for all r ∈ R.

Theorem 4.5. X is an frt − T0 set if and only if, for any distinct points x1, x2 ∈ X and for some r ∈ R,
the closures of the sets { f (x1, r)} and { f (x2, r)} are not equal.

Proof. Let A denote the closure of the subset A ⊂ X. Consider X to be an frt − T0 space. We assume
that

{ f (x1, r)} = { f (x2, r)}

for all r ∈ R. Since
f (x1, r) ∈ { f (x1, r)},

it follows that
f (x1, r) ∈ { f (x2, r)}.

Therefore, any open set containing f (x1, r) in T , must also contain f (x2, r). Similarly, for any open set
containing f (x2, r) in T , it must contain f (x1, r). However, this contradicts the fact that X is an frt − T0

set. Hence,
{ f (x1, r)} , { f (x2, r)}.

Now, to prove the converse, assume X is not an frt − T0 set. Then there exist distinct points x1 and
x2 such that

NT ( f (x1, r)) = NT ( f (x2, r)) (4.1)

for all r ∈ R. Let
c ∈ { f (x1, r)}.

In this case, every open set in (Y,T ) that contains c also contains f (x1, r). From (4.1), we have that
every open set containing c also contains f (x2, r). Thus

c ∈ { f (x2, r)}.

This implies
{ f (x1, r)} ⊆ { f (x2, r)}.

Similarly, we can show that
{ f (x2, r)} ⊆ { f (x1, r)}.

Therefore
{ f (x1, r)} = { f (x2, r)}.

However, this contradicts the assumption. Hence X is an frt − T0 set. □

Theorem 4.6. Let f be an injective map, and for all x ∈ X and some r ∈ R, { f (x, r)} be closed in
(Y,T ). Then X is an frt − T0 set.

AIMS Mathematics Volume 9, Issue 6, 15701–15723.



15715

Proof. For any distinct points x1, x2 ∈ X, and for any r ∈ R, the injective property of the function f
ensures that

{ f (x1, r)} = { f (x1, r)} , { f (x2, r)} = { f (x2, r)}.

Consequently, by virtue of Theorem 4.5, we deduce that X is an frt − T0 set. □

Theorem 4.6 also holds for the topology T that considers every finite set as a closed set, where f is
injective.

The following relation between separation axioms is evident:

frt − T2 ⇒ frt − T1 ⇒ frt − T0. (4.2)

Example 4.7. If (Y,T ) is a discrete topological space, then X becomes a frt − T2 set, thereby implying
that it is also either a frt − T1 or a frt − T0 set, considering all f ∈ F(X × R,Y). Conversely, if (Y,T ) is
an indiscrete topological space, then X ceases to be a frt − T0 set, leading to its inability to qualify as
a frt − T1 or a frt − T2 set for any f ∈ F(X × R,Y).

However, it should be noted that the converse of (4.2) is not universally valid.

Example 4.8. Let X = R = Z and Y = R with the right ray topology

D− = {Aλ | A = ∅ or Aλ =]λ,∞[}.

Consider the function f : Z × Z→ R, defined as

f (z, r) = (z + r)2.

Let z1 and z2 be distinct points in Z. Then, for r ∈ Z, if U ∈ D−( f (z1, r)), there exists ϵ > 0 such that

U =](z1 + r)2 − ϵ,∞[.

Similarly, if V ∈ D−( f (z2, r)), there exists δ > 0 such that

V =](z2 + r)2 − δ,∞[.

It is evident that
U ∩ V =](z1 + r)2 − ϵ,∞[∩](z2 + r)2 − δ,∞[, ∅.

Thus, Z is not an frt − T2 set.
Let

max{ f (z1, r), f (z2, r)} = f (z1, r).

Then, there exists γ > 0 such that

f (z2, r) <](z1 + r)2 − γ,∞[.

Therefore, Z is an frt − T0 set.
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Example 4.9. Let

X = {x1, x2, x3, x4, x5}, R = {r1, r2, r3, r4, r5, r6, r7},

Y = {y1, y2, y3, y4, y5, y6, y7, y8, y9}.

Consider the topological base

B = {{y1, y5, y6}, {y2, y3}, {y4}, {y7, y8}, {y4, y9}}

for the topology T , and let f : X × R → Y be defined as in Table 13.

Table 13. Function f with its corresponding values.

f r1 r2 r3 r4 r5 r6 r7

x1 y2 y3 y2 y4 y4 y7 y9

x2 y6 y1 y2 y2 y4 y1 y6

x3 y3 y2 y2 y4 y4 y8 y4

x4 y1 y1 y2 y3 y4 y8 y6

x5 y5 y7 y7 y7 y5 y7 y3

Since all distinct points of X are frt-distinguishable, X is an frt − T0 set. However, since x1 , x3 but
there does not exist any U ∈ T containing f (x1, r) and not containing f (x3, r) for all r ∈ R, X is not
an frt − T1 set. Consequently, X is also not an frt − T2 set.

The following examples demonstrate that there is no necessary and sufficient condition between X
being a frt − Ti set and Y being a Ti-space, where i = 0, 1, 2.

Example 4.10. Let
X = {x1, x2, x3, x4},Y = {0, 1}

and
R = {r1, r2, r3, r4, r5}.

Consider the topological space (Y, {∅,Y, {1}}) and let f : X × R → Y be defined as in Table 14.

Table 14. Function f with its corresponding values.

f r1 r2 r3 r4 r5

x1 1 1 1 1 0

x2 1 1 1 1 0

x3 0 0 1 1 0

x4 1 1 0 0 0

Thus, X is not an frt − T0 set, whereas Y is a T0-space.
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Example 4.11. Consider
Y = {y1, y2, y3}, T = {∅,Y, {y1}}

and let g: X × R → Y be defined as in Table 15.

Table 15. Function g with its corresponding values.

g r1 r2 r3 r4 r5

x1 y1 y1 y2 y2 y3

x2 y2 y1 y1 y3 y3

x3 y2 y2 y3 y3 y1

x4 y3 y1 y3 y2 y2

Consequently, X is a grt − T0 set, whereas (Y,T ) is not a T0-space.

Example 4.12. Let

X = {x1, x2, x3, x4}, R = {r1, r2, r3}, Y = {0, 1, 2}, and T = {∅,Y, {0}, {1}, {0, 1}}.

Consider the function f : X × R → Y, defined as in Table 16.

Table 16. Function f with its corresponding values.

f r1 r2 r3

x1 0 1 0

x2 1 0 1

x3 1 1 2

x4 2 0 0

Then X is an frt − T2 set, while (Y,T ) is not an T2-space.

Example 4.13. Let X = Z, R = Z − 0, and Y = R with the usual topologyU. Consider the function f :
Z × R → (R,U) defined as

f (z, r) =
sin z

r
.

For distinct points z1 and z2 = z1 + 2π, we observe that f (z1, r) = f (z2, r) for all r ∈ R. Consequently,
Z fails to satisfy the frt−T0 property, while (R,U) is a T2-space (Hausdorff space). Therefore, Z is not
even an frt − T1 or frt − T2 set.

Theorem 4.14. Let (Y,T ) be a discrete topological space, and consider a bijective map g: X → Y. In
this context, there exists a function f : X × R → Y such that it renders the set X an frt − T2 set.
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Proof. Let h: X × R → X be a function defined as h(x, r) = x. Let us show that the following diagram
is commutative:

X × R X

Y

h

f
g .

Let us consider the composition of functions, f = g ◦ h. For any distinct points x1 and x2 in X, we have

f (x1, r) = (g ◦ h)(x1, r) = g(x1)

and
f (x2, r) = (g ◦ h)(x2, r) = g(x2)

for all r ∈ R. Since g is an injective map, it follows that g(x1) , g(x2). Additionally, since (Y,T ) is a
discrete topological space, we observe that

U = {g(x1)} ∈ NT ( f (x1, r))

and
V = {g(x2)} ∈ NT ( f (x2, r)), U ∩ V = ∅.

Thus, X is an frt − T2 set. □

The following result can be derived as a consequence of Theorem 3.7.

Result 4.15. Let X be a frt − T0 set with respect to T and P is a finer topology than T (i.e., T ⊂ P).
Then X is a frt − T0 set with respect to P.

The result stated in 4.15 holds true for frt − T2 as well.

Theorem 4.16. Let X be a frt − T2 set with respect to T , and P be a finer topology than T . Then X is
a frt − T2 set with respect to P.

Proof. Let x1 and x2 be distinct points in X. As X is an frt−T2 set, there exist open sets U ∈ T ( f (x1, r))
and V ∈ T ( f (x2, r)) for some r ∈ R, such that U ∩ V = ∅. Additionally, since T ⊆ P, it follows that U
and V are in P. Hence, X is also an frt − T2 set with respect to P. □

Let us state the theorem that proves the preservation of the frt−T2 property under bijective functions:

Theorem 4.17. Let g: Z → X be a bijective map. If X is an frt − T2 set, then there exists a map h:
Z × R → (Y,T ) such that Z becomes an hrt − T2 set.

Proof. Let us show that the following diagram is commutative:

X × R (Y,T )

Z × R

f

g×IR
h .
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We define the map
h : Z × R → (Y,T )

as
h = f ◦ (g × IR),

where IR represents the identity function on the reference set R. Now, consider two distinct points, z1

and z2, in Z. Then
h(z1, r) = f (g(z1), IR(r)) = f (g(z1), r),

h(z2, r) = f (g(z2), IR(r)) = f (g(z2), r).

Since g is bijective, we have
(g(z1), r) , (g(z2), r)

for all r ∈ R. Additionally, as X is an frt − T2 set, there exist open sets

U ∈ T ( f (g(z1), r)) and V ∈ T ( f (g(z2), r))

such that U ∩ V = ∅. Therefore,

U ∈ T (h(z1, r)) and V ∈ T (h(z2, r))

such that U ∩ V = ∅. Thus, we have shown that Z is also an hrt − T2 set. □

Result 4.18. Let g: Z → X be a bijective map. The results obtained from the relationship (4.2) and
Theorem 3.14 are as follows:

i) If X is an frt − T1 set, then there exists a map h: Z × R → (Y,T ) such that Z becomes an hrt − T1

set.
ii) If X is an frt − T0 set, then there exists a map h: Z × R → (Y,T ) such that Z becomes an hrt − T0

set.

The following theorem demonstrates that the property of being an frt−T2 set is a hereditary property.

Theorem 4.19. Let X be an frt − T2 set, and A ⊂ X. Then A is also an grt − T2 set.

Proof. Let X be an frt − T0 set, and A ⊂ X. Let g: A × R→ Y be defined as g(a, r) = f (a, r). Consider
any distinct points a, b ∈ A. Since a, b ∈ X and X is an frt −T2, there exist open sets U and V in T such
that

g(a, r) = f (a, r) ∈ U, g(b, r) = f (b, r) ∈ V and U ∩ V = ∅.

Therefore A is an grt − T2 set. □

Result 4.20. Let f : X × R→ Y, A ⊆ X and g: A × R→ Y, g(a, r) = f (a, r). Then

X is an frt − T0 ⇒ A is an grt − T0,

X is an frt − T1 ⇒ A is an grt − T1.

The following example demonstrates that the converses of Theorem 4.19 and Result 4.20 are not
true.
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Example 4.21. Let us consider Example 4.10. Let

A = {x1, x3, x4} ⊆ X.

Then A is an grt − T0 set, while X is not an frt − T0 set, where g is the restriction of f to A.
Similar examples can be found for frt − T1 and frt − T2 sets as well.

The following example establishes that the property of being frt − T0 sets with respect to the same
topological space, is not preserved under the Cartesian product.

Example 4.22. Let
Y = {y1, y2, y3}, T = {∅,Y, {y1, y2}}.

Consider X1 = {x1, x2}, R1 = {r1, r2}, and f be defined as

f (x1, r1) = f (x1, r2) = y1, f (x2, r1) = f (x2, r2) = y2.

Let
X2 = {x′1, x

′
2, x
′
3}, R2 = {r′1, r

′
2},

and g be defined as

g(x′1, r
′
1) = g(x′2, r

′
2) = g(x′3, r

′
1) = g(x′3, r

′
2) = y3, g(x′1, r

′
2) = y2, g(x′2, r

′
1) = y1.

Let us define
h : (X1 × X2) × (R1 × R2)→ ((Y × Y),P),

such that
h((x, x′), (r, r′)) = ( f (x, r), g(x′, r′)),

where P is the product topology on Y × Y. The table for h is given below in Table 17.

Table 17. Function h with its corresponding values.

h r1 × r′1 r1 × r′2 r2 × r′1 r2 × r′2

(x1, x′1) (y1, y3) (y1, y2) (y1, y3) (y1, y2)

(x1, x′2) (y1, y1) (y1, y3) (y1, y1) (y1, y3)

(x1, x′3) (y1, y3) (y1, y3) (y1, y3) (y1, y3)

(x2, x′1) (y2, y3) (y2, y2) (y2, y3) (y2, y2)

(x2, x′2) (y2, y1) (y2, y3) (y2, y1) (y2, y3)

(x2, x′3) (y2, y3) (y2, y3) (y2, y3) (y2, y3)

Therefore, X1 × X2 is not an hrt − T0 set, while X1 and X2 are −rt − T0 sets.

Theorem 4.23. Let X be an frt − T2 set with respect to the topological space (X, τ), and (Y,T ) be
homeomorphic to (Z,V). Then X is an hrt − T2 set with respect to the topological space (Z,V).
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Proof. Since X is an frt − T2 set, for any distinct points x1, x2 ∈ X, there exist open sets U,V ∈ T such
that f (x1, r) ∈ U, f (x2, r) ∈ V , and U ∩ V = ∅. Let g be the homeomorphism between Y and Z. Define
h = g ◦ f .

X × R (Y,T )

(Z,V)

f

h
g .

Then we have
h(x1, r) = g( f (x1, r)) ∈ g(U) ∈ V,

h(x2, r) = g( f (x1, r)) ∈ g(U) ∈ V

and
g(U ∩ V) = g(U) ∩ g(V) = ∅.

Consequently, X is an (g ◦ f )rt − T2 set. □

Similar to the expression in Theorem 4.19, the validity extends to reference sets. The subsequent
theorem establishes that the separation axioms of frt − Ti provided by X remain preserved in the event
of a one-to-one correspondence between two reference sets.

Theorem 4.24. Let X be an frt − Ti set, h: R → R1 is a bijective map. then X is a grt − Ti set, where
i = 0, 1, 2.

Proof. Let us define g: X × R1 → (Y,T ) as the composition of f and (1X, h):

X × R (Y,T )

X × R1

f

(1X ,h)
g .

Consider distinct points x1 and x2 in X:

i) Suppose X is an frt − T0 set. Then there exists r ∈ R such that

NT ( f (x1, r)) , NT ( f (x2, r)).

Since h is a bijective map, there exists r′ ∈ R1 such that h(r′) = r. Therefore,

g(x1, r′) = ( f ◦ (1X, h))(x1, r′) = f (x1, h(r′)) = f (x1, r), (4.3)

g(x2, r′) = ( f ◦ (1X, h))(x2, r′) = f (x2, h(r′)) = f (x2, r). (4.4)

Hence,
NT (g(x1, r′)) , NT (g(x2, r′)).

AIMS Mathematics Volume 9, Issue 6, 15701–15723.



15722

ii) Suppose X is an frt − T1 set. Then there exist an open set U and a reference point r ∈ R such
that f (x1, r) ∈ U and f (x2, r) < U, or there exist an open set V and a reference point r0 such that
f (x2, r0) ∈ V and f (x1, r0) < V . Since h is a bijective map, there exists r′, r′0 ∈ R1 such that

h(r′) = r and h(r′0) = h(r0).

Thus, from (4.3) and (4.4), the result follows.
iii) The argument can be extended similarly to case (ii).

□

5. Conclusions and future work

In this article, we have introduced a novel approach to studying separation axioms using functions
instead of topological spaces. That is, we have categorized elements of a set without an inherent
topological structure. To familiarize ourselves with this approach, we have presented the concept of
distinguishable relation over the universal set, which is defined by a topology over another set. We have
discussed the main properties of this relationship and provided some elucidative examples. To facilitate
the way of discovering distinguishable relations, we provide a color technique for the equivalences
classes inspired by a given topology. Then, we have defined a novel set of separation axioms within
these structureless sets and revealed the interrelations between them with the aid of some illustrative
instances.

In future work, we will plan to display separation axioms corresponding to regularity and normality
by using the current approach. Also, we shall examine how the proposed separation axioms behave
when the structure of the topology is relaxed, that is, it is replaced by supra topology, infra topology,
and weak structure. Moreover, we expect that utilizing elements from the reference set to determine
distinguishable elements in the desired context (where the chosen function defines the nature of the
differentiation) would be highly advantageous in practical applications. Therefore, we look for some
real applications in the upcoming work.
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