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Abstract: We investigate a fully discrete modular grad-div (MGD) stabilization algorithm for
solving the incompressible micropolar Navier-Stokes equations (IMNSE) model, which couples the
incompressible Navier-Stokes equations and the angular momentum equation together. The mixed
finite element (FE) method is applied for the spatial discretization. The time discretization is based
on the BDF2 implicit scheme for the linear terms and the two-step linearly extrapolated scheme for
the convective terms. The considered algorithm constitutes two steps, which involve a post-processing
step for linear velocity. First, we decouple the fully coupled IMNSE model into two smaller sub-
physics problems at each time step (one is for the linear velocity and pressure, the other is for the
angular velocity), which reduces the size of the linear systems to be solved and allows for parallel
computing of the two sub-physics problems. Then, in the post-processing step, we only need to solve
a symmetrical positive determined grad-div system of linear velocity at each time step, which does
not increase the computational complexity by much. However, the post-processing step can improve
the solution quality of linear velocity. Moreover, we obtain unconditional stability, and error estimates
of the linear velocity and angular velocity. Finally, several numerical experiments involving three-
dimensional and two-dimensional settings are used to validate the theoretical findings and demonstrate
the benefits of the modular grad-div (MGD) stabilization algorithm.
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1. Introduction

The time-dependent IMNSE model is a parabolic partial differential equation, which couples the
linear velocity vector and pressure with the angular velocity. Eringen [1] incorporated an account of the
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microstructure fluid into the well-known Navier-Stokes (NS) fluid equations, and obtained the IMNSE
model in 1965. The IMNSE model constitutes a framework to describe the dynamics of continuum
media [2] where the material particles have both translational and rotational degrees of freedom.

Given a final time T > 0 and a bounded, regular polygonal/polyhedral domain Q c R? (d = 2
or 3) along with Lipschitz continuous boundary 92, we consider the numerical approximation of the
following IMNSE model [3-12]:

u,+ (u-Vyu—voAu + Vp = 2v,curlw + f,

V-u=0,

jwi+ ju-Vyw —ciAw — c,VV - w + dv,w = 2v,curlu + g, (1.1)
u(x,t) =0,w(x, 1) =0; Y(x,1) € 0Q x[0,T],
u(x,0) = u®, w(x, 0) = w’; VxeQ,

where (u, p, w) denote the linear velocity, pressure, and the micro-rotation field, respectively. (f, g) =
(f(x,1),g(x,1)) are given body force functions. The physical parameters j is inertia density, and vy,
v, 1, and ¢, are the kinematic viscosities, which are assumed to be constant and positive. The three
nondimensional numbers appearing in the equations are the Newtonian kinematic viscosity v, the
dynamic micro-rotation viscosity v,, and the angular viscosity c;.

When d = 3,
= = (s _ Owp 0w _ Ouz dwy _ Swy
u_(ul,MZ’ufi)acurlu_(a) 9z’ 0z Ox ° Ox a})’
ow owy  Ow ows  Ow ow
w=(wl,wQ,W3),curlw=(@—3—a—j,a—;—5—;,3—;—3—;),
when d = 2,
_ _ _ Ou ou _ /0 9
u=(u,u,0),w=1(0,0,w),curlu =732 - a—y],curlw = (a—t,—a—z ,

and to simplify notation, we do not differentiate between the ‘curl’ differences when the spatial
dimension is d = 2 or 3.

Because of their significant applications in modern industry [3], such as bearing lubrication [4],
the IMNSE model has received considerable attention in both theoretical and numerical algorithms in
recent years. There are many numerical approaches for solving the IMNSE system, such as that by
Ortega-Torres et al. in [5], where they presented the fully discrete penalty FE method and obtained
optimal error estimates. Jiang et al. analyzed two decoupled time-stepping FE methods in [8],
where the method decouples velocity and angular velocity. Maimaiti et al. [9] analyzed the first-
order and second-order pressure-correction (PC) projection methods for the MNSE, which decouple
velocity and pressure. Zhang et al. in [11] combined the scalar auxiliary variable (SAV) approach for
the convective terms and some subtle implicit-explicit (IMEX) treatments for the coupling terms, as
well as proposed a decoupled, linear, and unconditionally energy stable scheme for MNS system. A
decoupling FE method with different time steps for the model was proposed and analyzed in [12]. Some
projection methods (or fractional-step methods) were proposed and analyzed for the MNSE in [13].
From the expressions of the IMNSE system, it is evident that the system encompasses characteristics
of incompressibility, strong nonlinearity, and coupling between the angular equation of motion and the
fluid equation of motion. This complexity renders solving the MNSE system a challenging endeavor.

In recent years, the grad-div stabilization method for incompressible flow problems has attracted
much attention because it can improve the quality of the numerical solution for the velocity vector
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u [14]. The usual technique is to add 0 = —yV(V - u) to the continuous momentum equation. Because
the grad-div term is nonzero in discrete cases, the grad-div term has a positive impact on discrete
equations. As the grad-div parameter y increases, it leads to reduced computational efficiency. The
matrix resulting from the grad-div term becomes singular for larger stabilized parameter . This will
result in solver breakdown. Recently, Qin Y et al. proposed a standard grad-div stabilization (SGD)
in [15], which involves adding the grad-div stabilization terms —8VV - u, and —yV(V - u)(6 > 0,y > 0)
in the governing equations directly, where vy and £ are stabilized parameters. It is found that the SGD
algorithm can also effectively improve the computational accuracy, but, with the increase of parameters,
the computational efficiency decreases. Fortunately, Fiordilino, et al. in [16] proposed an MGD
stabilization method for the NS equations to weaken this problem. The MGD algorithm constitutes two
steps, which involve a post-processing step for linear velocity, in which the solution of the equation is
not affected by the stabilization parameters. Therefore, the MGD method is widely used in different
equations, such as in 2D/3D nonstationary incompressible magnetohydrodynamic equations [17],
time-dependent thermally coupled MHD equations [18], and the incompressible non-isothermal fluid
flows [19]. The BDF2-MGD stabilization method was proposed for the unsteady NS equations [20]
and the Stokes/Darcy equations [21]. A series of new expansions for the MGD stabilization method
have been presented, including the Crank-Nicolson LeapFrog MGD stabilization method for the time-
dependent Navier-Stokes equations in [22], and the rotational pressure-correction method based on
the MGD in [23]. In this paper, we devised a BDF2 modular grad-div stabilization method for the
micropolar Navier-Stokes equations. This method not only avoids solver breakdown, but also improves
the efficiency of the solution and preserves the advantages of the grad-div stabilization method.
Suppressing the spacial discretization for the moment, we propose a two-step time semi-discrete
method for the IMNSE model. Let At denote the size of the time steps, and #, = nAt, where n =
0,1,2,...,N with T := NAt.
Algorithm 1.1. Modular grad-div stabilization
Step 1. Given u~' = u®; w™! = wP, find "', w**! and p**! forn =0,1,2,--- ,N — 1 satisfying:

sn+l_q,mn o n—1 A _ ~
3it 4u" +u _ VOAI/tn+1 + ((2”" —u" 1) . V) un+1 _ Vpn+1

2At . : (1'2)
= 2v,curlQw" —w* ) + fr+l,

V-t =0, (1.3)
j3wn+1_;X,tn+wn—l + ]((Zun _ un—l) . V) Wn+1 _ C]Awn+l _ CQVV . wn+l + 4VrWn+1 (1 4)

= 2v,curlQu" — u™ ') + g™l '

Step 2. Given #"*!, find u"*! satisfying:
3un+l _ 3If/\tn+l 3un+l —4u"t + un—l

— 4+ pVV. +yVV - u™! = 0. 1.5
2A1 p 2A1 ey (1.5)

In the provided equations, § > 0 and y > 0, and their specific values depend on the application
at hand. The combined result of Steps 1 and 2 is the precise discretization of the model by using the
consistent BDF2 method.

u; +pVV - u; + yVVou+ (u - Vu) — voAu + Vp = 2v,curlw + f,
V-u=0, (1.6)
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jw—ciAw + j(u - Vyw —c,VV - w +4dv,w = 2v,curlu + g.

Algorithm 1.1 is essentially equivalent to Eq (1.6). If Eq (1.6) is discretized by using a decoupled
linearly extrapolated BDF2 scheme, we refer to it as standard grad-div (SGD) stabilization. If the
stabilized parameters S = v = 0, the (1.6) reduces to the BDF2 scheme without stabilization.

Our main contributions to the work are four-fold:

(1) By combining MGD with a linearly extrapolated BDF2 scheme, we have proposed a decoupled,
linear, and second-order scheme for the IMNSE model. Step 1 of this scheme only requires solving
two smaller sub-physics problems at each time step, which reduces the size of the linear systems to be
solved and allows for parallel computing of the two sub-physics problems.

(2) For the SGD stabilization method (1.6), the module grad-div stable terms are directly added to
the momentum equation (the first equation of (1.6)). The grad-div stable terms of the MGD method
are separated as the second step (post-processing) in this paper, making it easy to implement. Not only
can the MGD stabilization method keep the advantages of the grad-div algorithm, but it also avoids the
influence of large parameters 8 and y on the solution.

(3) We have conducted rigorous unconditional stability and error estimates for the proposed MGD
linearly extrapolated BDF2 scheme.

(4) We have provided several numerical examples in 2D and 3D settings to verify the theoretical
findings and to demonstrate the benefits of the MGD stabilization method.

The organization of this article is outlined below. Section 2 furnishes an introduction to fundamental
mathematical concepts. Section 3 offers an detailed outline of the MGD algorithm for the IMNSE
model, along with an analysis of its stability. Section 4 is devoted to convergence analysis of the MGD
algorithm. A series of numerical tests are used to validate the theoretical findings in Section 5. Finally,
in Section 6, the paper is concluded.

2. Preliminaries

This work employs the conventional and well-established Hilbertian and Sobolev spaces, equipped
with their respective inner product and norm definitions.
For a given function a(x, t) defined on [0, T'], we establish the norm as enumerated below:

T N
lallw, = esssup la@l; and llall,,, = ([} la@)} doys.

0<t<T

Additionally, we introduce the following discrete norms:

N-1
a!||, and [llalll,,; := (At )
n=

1
a ‘= max a”“”m i,
Illellleo.s oJmax DL

The functional spaces are outlined below:

X={veH' Q' v=0 on 6Q),
(ze H(Q)? :2=0 on 09},
q € LX(Q): [ qdx =0},

Y =
Q:
V=heX:(p,V-v)=0, Vo e Q}.

{
{
The dual space of H(‘) (Q) is defined as H~'(Q) and endowed with the negative norm.
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gl = sup &5
Z€H)(Q)
The expression governing the curl operator [24] is
(curlw,u) = (w, curlu); YueX,weY. 2.1
The skew-symmetrized trilinear form is indicated as
‘ 1 1
b*(u,v,w) = E(u-Vv,w)—E(u-Vw,v); Yue X;v,weXorY, 2.2)

where b*(u, v, w) satisfies the bounds [24]

b*(u, v, w) < C[Vull[[VV][[IVw]|,
b*(u,v,w) < C (VI + IVl o) el VW, (2.3)
b*(u,v,w) < C||Vull[[v]l [IWl .

Furthermore, we introduce the finite element spaces. Let 7, = UK be a uniform
triangulation/tetrahedron partition of domain Q%(d = 2 or 3), with & := max diameter(K). Further,
€Ty

we introduce the finite element subspaces (Xj, Oy, Y,) € (X, Q,Y) for linear velocity, pressure, and
angular velocity, respectively. We assume that (X, Q;) satisfies the discrete LBB" [24] condition,
meaning there exists a constant M, such that

V.
inf sup @ Vi)

> M, > 0.
an€n vyex;, 1gnll IV V|

There are finite elements that satisfy the stability of LBB" , such as the Tayler-Hood finite elements
(P, Pr_1) and Mini finite elements (P?, P}) on the quai-uniform triangular(2D)/tetrahedral(3D) meshes,
where Py is defined by k-order polynomials on element K .

The discrete divergence-free space V), is defined as:

Viir={vn € Xo : (Vovi,qn) =0, Vg, € On).
3. Numerical scheme and its stability

We first present the fully discrete linearly extrapolated BDF2 MGD scheme, then conduct
stability analysis.

3.1. Numerical scheme

Algorithm 3.1 (MGD-BDF2 full discrete decoupled scheme).
Step 1. Given u;,' = u) = u® € Vyand w,' = w? = w° € ¥, for all (vi,, gy, 21) € (X, O ¥)
find (@*', pi+!, with) € (X, OnY)), satisfying:

3'22+1_4”Z+“Z_1 Virtl v b (2un n—1 aAn+l n+l g
N Vi) Vo Mh > VVp |+ uh_uh auh s Vi) — ph ) Vi

= 2v, (curl(2w;’l - WZ_I), vh) + (f"”, vh) , G-b
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(V- i+ qn) =0, (3.2)

L 3w 4wt ] 1%
(%,zh + jb’ (2142 - uh ””,zh) + ¢ (VWZ” Vzh)

+c; (V . wZ“, V. zh) +4v, ( ”“, zh) (3.3)
=2y, (curl(ZuZ - uZ‘l),zh) (g"“,zh).

Step 2. Given &*! € X, for all v, € X, find u}*' € X, satisfying:

MV +8 V'3u2+1—4u2+uz Vo) +y (Vo Vew) =0 G4
A7 > Vh 2At ' ' | |

Remark 3.2. In Step 1, we decouple the fully coupled IMNSE model into two smaller sub-physics
problems at each time step (one is for the linear velocity and pressure, the other is for the angular
velocity), which reduces the size of the linear systems to be solved and allows for parallel computing
of the two sub-physics problems.

Remark 3.3. Since Algorithm 3.1 is a two-step scheme, it requires that the initial values (uh, )
and (u,,w,) are second-order accuracy. For simplicity, here we use ghost points (u;', w,') and set
(uh ,whl) (uh, ) (u®, w?). This ensures that (uh, )and (uh, wh) are of second-order accuracy.

3.2. Stability analysis

In this subsection, we will conduct a stability analysis.
Lemma 3.4. [20] For the MGD-BDEF2 scheme, the following identities hold for Eq (3.4):

i = +1|| e +‘|| +4ya v+ (9
(3.5)
oY - urt - I + - g =20+ 0],
and
un+l_ " u"l “
A 56
= LV Gt = du + |+ (VY- Gt - dug ).
The subsequent statement certifies its unconditional stability.
Theorem 3.5. Assume that f, g € L*(0, T; H~'(Q)?), then the following holds for At > 0:
eI + o = P+ 89 - I+ 19 - 2uf = D)
(b1 2wy = I+ 22 (9 - )+ 19 - uf = D)
+ AL S Vs ||vaz+l||2+zclm’vi‘ [owylf )
n=0 n=0 n=0 '

+]||

”*‘II 2RI + 2+ 5 2B e

N-1 9
+eAt 5, |V wr |+ 2w,
n=0

sar NG +1][? o NG
<SR+ B S
n=0 n=0
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Proof. Substituting v, = uZ“ qn = pZ“ into (3.1) and (3.2), and z,, = wZ” into (3.3), respectively, we
derive the following equations:

3u"+l—4u +ut! 3utl 4y 1 An+l n+1
h n+1 h W ~An+1 n+1 30" =3u ~n+1
( u, |+ A1 U ( W )

2At >Yh (3 8)
+V0||Vﬁ2”|| = (f“1 A"H) +2v, ((2Wh —wih, curl“””),
3 )1+1_4 n n—1 ‘
(S ) e (Vg Vo) 0 (2 = o) 39

+cy (V wit V. w"“) + 4v, (WZJrl "“) 2v, ((2uh —uy 1) curlw"“) +(g’“rl wz”)_

We first add Egs (3.8) and (3.9), and apply the identity 2(3a — 4b + ¢)a = a> — b> + (2a — b)* — (2b —
¢)* + (a — 2b + ¢)* and Lemma 3.4. Then we sum the equation from n = 0 to N — 1 to obtain

P+ 2 = 1 + 2 9 -+ 9 - ) =
a5 5 |97 o ) + f(||w5:||2 o - wN—1||2)

N—1
+4At z |

Wit = 2 w1 +4At(c1 5 oo S [ )
(3.10)
+16Atc, 2 IV - wiet||* = 4a z (f"“ A”+1)+4At z ( a8 w;;“)
N-— 1 N-1
+8Atv, Y. (ZWZ —-wp” curlA"+1)+8Atv, > (ZMZ —up” curlw”“)

n=0 n=0

2]+ 23l

By employing Young’s inequality and the Cauchy-Schwartz inequality, we establish the following
relation for the terms on the right-hand sides (RHS) of (3.10):

4At Z (fn+l An+l)+4At Z ( n+1 WZH)

L (3.11)
< 4At Z |fn+l|| +VoAL Z ||VI:ZZ+1|| 4At > n+1|| 1+61Al Z ||an+1| ,
A, z ((2uh — ™), curlwi ™) + 8Av, z ((2wh v, curliy*!)
< iﬁ’ N T (3.12)
n=0 n=0

vz N-1 _ 2 N-1 An 2
25 oy vt 3, 0
Substituting (3.11) and (3.12) into (3.10), we end the proof and obtain Theorem 3.5.
4. Error analysis

In what follows, an account of the error estimates of the MGD-BDF2 algorithm shall be provided.
Assumption 4.1 To obtain the most precise error estimates for the MGD-BDF2 Algorithm 3.1, we
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need the regularity

ue L0, T; X N H*'(Q));we L0, T;Y N H*'(Q)Y),

u, € L0, T; H(Q)Y); wy € L0, T; H(Q)Y),

Uy € LZ(O, T:H (Q));w, € H(0, T; LZ(Q)), “4.1)
Uy € LZ(O, T, LZ(Q)); Wiy € LZ(O, T, LZ(Q)),

pE L*0,T; on H™(Q)).

Additionally, we define two types of projections [25,26]. Denote by (s, [;) the Stokes projection of
(u, p) € X X Q such that

vo(V(u = s), Vi) — (p = 1,V -vy) = 0, Vv, € X,
(V- (u—s1),q1) =0,Yg, € Qp,

and the Ritz projection operator P, : w(t) € Y — P,w € Y),,Vt € [0,T],
C1 (V(W - PhW), VZh) =0 Yz, € Y). (42)

Furthermore, for 0 < m < k, the following approximation properties hold:

[l = spll + 11V = sl < CH* ulls
lp = Ll < CR™|lull,,-

Following [20], the following inequality holds:
lIsallze < Cllullp [IVsalle < ClIVul|ps. (4.3)
As for the Ritz projection (4.2), it satisfies the approximation property [27]

llw = Pywll + R IV (w = Pow)ll < CH (Wl

To facilitate the convergence analysis, we introduce error decompositions. Let iz, be an approximation
of u in V,. We denote u" = u("), " = a(")w" = w(i"),w" = Pw("). The following error
decompositions are

eg+1 — (I/tn+1 _ ﬁzﬂ) (An+l +1) — nn+l AZJ;zl’

e;‘” — (I/tn+1 ~n +1) (un+l +1) — nn+l 27’1’ (4 4)
ervlvﬂ — (wn+1 +1) (wn+l Z+1) — nn+1 ?V+I’ll, :
en+1 - P p2+1‘

Lemma 4.2. Under regularity Assumption 4.1, we have the following consistency error relation: ¥V o > 0,

)| < Co)AP ( fnl et it + f.,l IVudPdi + [, IVl dr)
+C(@)lvill’,

()| < Cv)AR ( [ Pt + [0 IVuglPde + [ 19wl dt)
+C(@)lzall,

4.5)
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where

n+l_q,n, , n—1 _
7.n+1(vh) = (3u 24& +u _ ut(tn+1)a Vh) —b* (un+1 —2u" + u" 1’ Lt”+1, vh)
+2v, (curl(w’“rl 2w + w'h, vh) ,
3 n+l _ g0 n—1 . —
n+1(Z ) — ]( W ;X/t +w W[(tn+1),Zh) _ ]b* (Wn+l — W+ W l,Wn+1,Zh)

+2v, (curl(u’”rl = 2u" +u" ), Zh) .

Proof. Utilizing the integral version of Taylor’s theorem and the Cauchy-Schwarz inequality, we can
derive the following expressions:

)] < || — )| il

+C V@t = 2um + ||l vall+ 20 (curlw™ ! = 2w + w1, )

< 2|2t )|+ ZIalP R P V@t = 20+ wn D+ Sl (4.6)
3v, V(Wn+l It +Wn—1)|| (T||Vh||

3 3, 2 2 2
s((, VAP NulPa + [ NP+ [ (9wl + Sl

The proof of the formulas (% - u,(t,,+1)) and (V(u"+1 - 2" + u”‘l)) can be found in the

references [28,29]. Similarly, we can establish an expression for 7"*!(z;,).
To establish convergence, a critical lemma concerning Step 2 of Algorithm 3.1 is required.
Lemma 4.3. [20] The following inequality holds:

|An+l|| n+1|| +| n+1 An+l|| + ZYAf”V ¢n+l|| 27AT||V
—IIV'¢ "+ il ¢Zh>|| V- 2o, - ‘>||2 @.7)
2||V <¢"+1 26, + #0l)- 20 (7 o 00 BIG g — g

Theorem 4.4. Under the condition of Assumption 4.1 and KAr < 6 € (0,1), where K =
maXg<;<7 {1 +Cy! ||u(t)||§ , (C IIVu(t)Ilim + g) , vo}, the error between the solutions of Algorithm 3.1

and the exact solution of (1.1) satisfies

N

€,

v (22 +5)]

2y et — NP+ 2yAr S |V e+ 2vone S ||Ver P
n=0 n=0

N eluV—1)||2) + 2Atc, NZ_]; ||Vefv+l||2
e

N-1 N-1 (4.8)
w1l + e = e [F) + 4are, 3 [V e[+ 8am, 3 e
< Cexp (At 1:2;]; 15@1) (ALY + h2m+2 4 2Ky,
Proof. Subtracting (3.1)—(3.4) from (1.2)—(1.5), respectively, we get the error equations
(% vh) + v (Veg“, Vvh) - (p'”1 —qn V- vh) +b°Qu" — u " ut vy “49)

=b*Quj, — uy” 1 ﬁZ“, Vi) = 2v, (curl(Zefv - efv‘l), vh) + 7" (), Yy, € X,
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(V : e’;i“,qh) = 0,Ygn € Op, (4.10)
.(3611?1_;Z§,+eﬁ,‘1 ,Zh) +e (V€n+l, VZh) + ]bx(zun _ un—l, Wn+l Zh)
+j = b Qu = oW )+ oo (V- eV ) + 4, (el 2) (4.11)
=2v, (curl(2eu —el” 1),Zh) +7"(z,), Yz, € Y,
3! — 3eg+1 3emtl — 4 + ! wtl
— 5 ] AV o Vv +y (Ve V) = 0. (4.12)

Taking i1, = sp, vy = A”Jrl € V,, in (4.9), we obtain the equation

3t —dp ! AT - 3gpt —adiren ae1) _ [ 30t —4gntel! AL g+l
2At h 2At > P uh 2At > uh uh

n+l_ 7 gn+l
_ (3/\u,h2Aj¢u.h An+l) +b* (2”” _ un—l’ un+1’ AZ;,I) b (2”” _ un—l’ ﬁn+1, AZ;,l) .13)
Vo VAL = (P! = qn V- AY) = 20, (curlugl, — i) AL
+2v, (curl2¢), — ¢, A1) = (A,
n+l_ 4 4n n—1
Setting v;, = w € V,, in (4.12), we have the following equations;
(3¢z*,,‘ At AT - n+1)
2At u,h
2
— %(V (3 n+1 4¢ ¢ ) V. ¢n+1 n+1) 6Az||V (3¢n+1 4¢Z,h + (pZ,—hl)” 4.14)

T 6Ar (V (3 Zjll 4¢uh + ¢uh ) V. (377n+1 47714 + nu )) .

Integrating (4.13) and (4.14) into one equation, using the error decompositions (4.4), multiplying
both sides of the integrated equation by 4A¢, and applying Lemma 4.3, we obtain

b o + o bt -2
e "+1|| st o - el

||V - @01, - DI + ]IV - (¢”” 2¢u,h o )||)

Zﬁ”V (3¢n+1 ¢ +¢n 1) + 6| Azzl n+1||

+4v0At||VA”“|| +4yAt||V ¢"+1||

< 2((3nn+1 477“ +77u 1) An+1) 4)’At (V (3 n+1 4¢Z ¢uh) V- nn+1)
+Z(V-@Berl - 4gn, + ¢,V - (377"“ ! +n:z-1>)

+4At b*(2u i 1’ n+1 An+l) b*(2u n 1,~n+1 An+l ]

~4At (P! — g, A"+1) — dArT(A

(4.15)

u,h
—8v, At [(curlrf, - i), AL = (curl g, - ¢, A
+CBd(1 + 2A1) ft,ff CIVnPde + 2ydAt||VnZ“||

+B||V (¢n+1 2¢’Z,h + (/’)Z—hl)”Z +,3At(||v . (2¢Z,h _ ¢Z_h])||2 N ”V . ¢Zh

)

AIMS Mathematics Volume 9, Issue 6, 15724-15747.



15734

Applying the Cauchy-Schwarz and Young’s inequalities on the RHS of (4.15), we obtain

n+1
2((3nz+1 _4773 + 1) An+1) Cj;—l Tt 2d[+ n+1 | + A An+1 ¢Z;l |2’ (4.16)
BV G = a4 40V ) @.17)
< BV g+ + V- ! = 200, + 00N + o
and
2(7-Goy! — 401, + 4.V - G = o+ o) @1
< gt [ INniPde + CBV - 3o - 4t + o
—4Ar (™ = i V- A < O Al = gl + vord VAL (4.19)
Using Lemma 4.2, we obtain
n+1 n+1 n+1
A0 [ ATD] < COone ([ lhalPde + 7 IVualPdr + [ 19w, Pl (4.20)
At An+1| Y At An+1 ¢;H;ll |2.
For the trilinear terms, we handle them as follows:
0t [ @ut = A = b Qug — gt ALY = 4.21)

4t b*(znu n 1, n+1 A"+1)+b*(2uh—ftz 1 nz+1 Az}-zl _b*(2¢z’h_ n— 1,~n+l An+l ]

Up u,h

Subsequently, we proceed to perform bound estimation on the nonlinear terms after the
above processing:

4Ath* (21, — 7wt AZJ;}

< cau|[Virl + [Vt + ller |+ &flans - g (4.22)
_4Atb*(2¢n _ ¢n 1 ~n+1 AZ+1)
< CAI(||2¢ V~”+1 | + ||V (2¢ ¢ | mn+l ) An+1 |
< CAt”Vu”“ |L°° " | Ay, 24]—11 Az AZJZI Z+h] 4 yAt”V ¢,,+1 | (4.23)
+7At||v (¢n+1 2¢uh + ¢ )” + C’y_lAt( n+1 |2 n+1 | + [z |2 An+1 n+1 | ),
and for the last term as in Eq (4.21), we use a similar treatment in [20] to obtain Eq (4.24),
4Alb*(2 ~n 1 n+1 An+1
< CAI(1 + h) (||u"||§ + )||vnn+1 P+ &eflgrt P+ &ef|amst — g, (4.24)
8, At | (curl(21, — n 1) A~ (curl(2¢ ¢3 LA .

< 32voAd|2m, — ! |VAZ}ZI||2.

’ 32v0m||2¢'; e
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Combining 1nequa11t1es (4.16)— (4 25) into (4 15), we get

il - ~ g+ et =20, + oI
(ZYAI +,8)(V ¢n+12 ¢uh +V. (¢n+1 ¢u,h)2

V- (@, — G + 2| VAT + 6]t = A+ dyad| - g

< At(l + Cy ! ||u! |§) P! |2 + At(l + Cy ! ||u! |§) el — A ?

2|7 ez

I+ cpar [ |Vnfar

1)+ v v

(4.26)
+Cv M| pt = gilf + Car ( [0 P+ [ e [ ||Vw,,||2dt)

+Cnr([l+ Vo) + cae v g, = e+ € S5

+CAL(1 +h) (||u"||§+ ! §)||Vng+1 [+ cvond2gr,, - 1|

+CB(1 + 2A1) f ||Vnu,

dt + CyAt|| V!

‘).

Similarly, taking z;, = ”*1 in (4.11), the angular velocity equation is similarly processed as (4.26). A
series of inequalities related to angular velocity can be derived by making use of the Cauchy-Schwarz-
Young inequality, and integrating all inequalities yields

[+ pae(|v- o, - ol + ]9 -4

_]( n+hl |2 _ n—hl 2)
w, w,
+2A8c, ||Vl gl + 8am,||er) |

n—l

2 2 2
e+ Car(S 4 ¢+ LD () 4

_C'Z A 2)) V nl ||
<cr [ B[

+%A’(||v,73 e 2)||w+1 o L o, - o o
Cvat Cvat||2¢ . l4 j;:fl ”Wm”zdt
wCint 1| [0 IVuPdr + Cv.art fﬂfffl IVulPdt + CA, |||

The equations for linear velocity (4.26) and angular velocity (4.27) are combined and generalized into
a single equation. The sum of n from 0 to N — 1 is given by
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N
uh

-oilf)
|2

S e, - o )+ 2nve, 3 [V

C gt - oI+ (224 8) (I

n+1

+ Z 6-At—Cyu

i

| Af)

¢n+1 An+1

u,h

+4yAt z ||V o)

N
¢w h

+4Atc, z & ¢"+1| + 8A, zl gl |2
n=0 ’
<At(1+c«y1 |2) > o] +cm(||w+1 e+ ) S e, - ol
n=0
+CvpAt Z 1207, — ¢ AL Z P =gl + CB (1 + D) v ftn,l V7|t
5 ) Nl = (4.28)
(IIV ST 0l) + 2 o S V- @6, - e

N- 2 1‘"+1 2 1‘"+1 ) tn+l )
+CAr4 P ( I Nl + [0 IwaalPde + [ INualPde + [ (9wl dt)

M( e L8 (1 + o )5 vt e 2 S [
+C' 3 [ Pt + o (14 £ 9 )(||vnu + ||vn"—1 ’)

n=0
+CA(y + (1 + b)) (||u"||§+ ) z ||vn"+1| + CAw, z al§

N-1
CvAt n n—1
+= ZO \|2mz =z
n=

When At is small enough, such that KAr < 1, we use the discrete Gronwall lemma [16] to get

il + 1P - (% +ﬁ)( -l
+Z<6 Af—Cv‘l "“I A, Az+,: A
(el +||z¢ #51°)

+2At¢, z ||V e ol

7+ 4arc, z |V - o)

A+ 8am, bl
n=0

< Cexp (At 2 —K" +1Az) {Vo qzrelgh llp — thz,o + 2 ”utHikH

+(2+v )h%2 Will3 1 + B+ AR 34y + voh 2 [Iwill 1.
#(er+ S o 2 (1 4 o)) B+ 2R B

; (y+(1 +h) (||u"||§ i [ i)) R el + (1 + L w |§)h2’< lll oo

2
+(An* (”Mm”zo + ”Wm”zo + ||Vutt||2o + ”Vth”z,o)

(4.29)

n—1

n+1

< Cexp(F25) ((AD* + vg' ™2 + (B + 4
+ (i_r )(”un”2 u'- 1 |2) + ,)/+2 +]j}_r n+l E) th’
where K" = max{l + Cy~ ! ||um! |2 (C ||Vu’“rl |i<>° + g),vo}. Finally, we conclude the proof by
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applying the triangle inequality.
Corollary 4.5. Under the conditions of Theorem 4.4 with k = 2 and m = 1, we have

el el + (22 4 g) (|7 + |7 (et~ )
T (e + el - e

2
n+1
el

N

€y

P2oArS Ve e 2yan s V- e+ 22 - e
n=0 n=0

(4.30)

N-1 2 N-1 2 N-1
+2Atc; 3, ||Verr'||” + At 3 |V - en!| + 8viAr B
n=0 n=0 n=0

< C(A* + 1.

Remark 4.6. Similarly, when using the (P, P, P)) elements to approximate (u, p,w), the error is
C(h + (AD)).

5. Numerical tests

We present four illustrative examples in this section. The initial pair of examples serves to compute
error and convergence rates in three and two dimensional cases, respectively. The subsequent two
examples involve the simulation of square cavity-driven flow and the bearing lubrication problem. For
the implementation of the algorithm, we have opted to utilize the publicly available finite element
software FreeFem++ [30].

5.1. Convergence order validation
5.1.1. Analytical solution in three dimensions

The fluid domain is Q = [0, 1]°. The parameters of the MGD-BDF2 method are y = 1.0, 8 = 0.2,
vo=2.0,v,=1.0, j=1.0,c; = 2.0, and ¢; = 1.0. We take the following analytical solutions:
Analytical solution 1:

u; = —2(1 — cos(2rx)) sin(2xry) sin(27z) cos(t),

uy = sin(2nx)(1 — cos(2my)) sin(27rz) cos(z),

uz = sin(2nx) sin(2wy)(1 — cos(2rz)) cos(z),

wi = (1 — cos(2mx)) sin(27y) sin(27z) cos(t), 5.1
sin(2zx)(1 — cos(2my)) sin(27z) cos(t),

)
w3 = sin(2rx) sin(2y)(1 — cos(2nz)) cos(t),
p = 10(sin(4rx) + sin(4nry) + sin(4nz)) cos(?).

Analytical solution 2:

u = (zsint, xe™,ycos(t)),w = (xcos(t),ze”", ysin(t)), p = (x + y + 2) cos(?). (5.2)

The convergence rates are determined by analyzing the errors at two consecutive mesh sizes. Both
the spatial convergence rates (SCR) and temporal convergence rates (TCR) will be evaluated in this
study. The errors and convergence rates for u, p and w in the L, norm and H; norm are recorded by
using the (P’l’ , Py, Py) and (P,, Py, P,) elements, respectively.

The data results of SCR are placed in Tables 1 and 2 by using analytical solution 1 (5.1). The errors
and convergence rates of TCR are placed in Tables 3 and 4 using analytical solution 2 (5.2).
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Table 1. The SCR of MGD-BDF2 by using (P%, Py, Py) with T = 0.5, At = 0.0001 in 3D.

1/h llu—uplll,, ~ Rate  Jllw—wylll,,  Rate |llp = pulll,o  Rate
10 3.8072 - 2.3771 - 4.6043 -

12 3.2500 0.8660 2.0018 0.9402 3.4242 1.6205
14 2.8319 0.8959 1.7268 0.9614 2.6682 1.6229
16 2.5070 0.9125 1.5172 0.9690 2.1492 1.6195

Table 2. The SCR of MGD-BDEF?2 by using (P, Py, P;) with T = 0.5, At = 0.0001 in 3D.

1/hllu—uplll,, ~ Rate  llw—wylll,,  Rate |llp— pulll,o  Rate
4 2.7752 - 1.7017 - 6.5930 -
6 1.2421 1.9837 0.8409 1.7395 1.8508 3.1347
7 0.9301 1.8775 0.6354 1.8187 1.3055 2.2655
8 0.7208 1.9048 0.4963 1.8459 0.9578 2.3143

Table 3. The TCR of MGD-BDF2 by using (P,, Py, P,) with T = 0.5, h = % in 3D.

1
A II[ze — Mh|||2,1

Rate

lllw — Wh|||2,1

Rate

1P = Palllao

Rate

4 2.201x1073
8 6.044x107*
16 1.512x107*
32 3.926x107

1.8646
1.9992
1.9452
1.9308

4.180x1073
1.362x1073
3.738x107*
9.752x107°
2.489x107°

1.6180
1.8651
1.9384
1.9701

7.433x1073
2.341x1073
6.394x107*
1.672x107*
4.328x107°

1.6668
1.8724
1.9349
1.9502

64 1.030x1073

Table 4. The TCR of MGD-BDF2 by using (P, P,,P)withT =05, h = 1—10 in 3D.

x  Mu—wll;  Rate  [Ilw=willy  Rate |[llp = pillly Rate
4 3.310x107* - 4.051x1073 - 1.423x1072 -

8 1.819x107* 0.8640 1.316x107 1.6218 4.487x107* 1.6653
16 5.839x107° 1.6389 3.617x10™* 1.8639 1.228x107° 1.8696
32 1.701x107° 1.7799 9.439x1075 1.9379 3.194x10™* 1.9425
64 4.705x107° 1.8535 2.410x107° 1.9697 8.139x10™> 1.9724
128 1.265x107° 1.8953 6.087x107° 1.9851 2.056x107 1.9849

From Tables 14, it is easy to see that these findings satisfy the convergence rates of Theorem 4.4
(i.e., Corollary 4.5 and Remark 4.6).

5.1.2. Analytical solution in two dimensions

We will check the convergence performance of the IMNSE model in two dimensions by using
analytical solution (5.3) .We set Q = (0,1)%, vg = 2.0, ¢; = 1.0, ¢, = 1.0, 8 = 02,y = 1.0,
j=10,a=10.
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uy = 10a(x* = 2x° + X (2y* = 3y* + y)e,
uy = —10a(2x® = 3x% + 1)y = 2y + e, (5.3)
p=10ax - )2y - De™",w = u; + u,.

Tables 5 and 6 are the numerical results of spatial convergence rates (SCR), while Table 7 is the
numerical results of the temporal convergence rates (TCR). We see that these findings of Tables 5-7
satisfy the convergence rates of Theorem 4.4 (i.e., Corollary 4.5.).

Table 5. The SCR of MGD-BDEF?2 by using (P, Py, P;) with T = 0.5, At = 0.0001 in 2D.

1/h |l —uplll; ~ Rate [[lw—wylll,; Rate |llp = palll,o Rate
8 7.182x1073 - 4.275%1073 - 2.279x1072 -

10 4.645x107° 19528 2.769x107% 1.9461 1.455x1072 2.0114
12 3.246x107° 19616 1.936x10% 1.9591 1.009x107> 2.0017
14 2.394x107% 1.9773 1.428x107 1.9770 7.411x107 2.0072
16 1.838x107° 1.9804 1.096x107% 1.9817 5.672x107 2.0041

Table 6. The SCR of SGD-BDF2 by using (P,, P, P,) with T = 0.5, At = 0.0001 in 2D.

1/h |l —uylll;  Rate [[lw—wylll,; Rate |llp = pulll,y Rate
8 7.177x1073 - 4.275%1073 - 2.836x1072 -

10 4.641x107° 19542 2.769x107% 1.9461 1.660x107> 2.3991
12 3.242x107% 19632 1.936x107 1.9591 1.097x107> 2.2651
14 2391x107° 1.9793 1.428x107% 1.9770 7.836x107> 2.1888
16 1.835x107° 1.9830 1.096x10~* 1.9817 5.897x1073 2.1316

Table 7. The TCR of MGD-BDF2 by using (P,, Py, P,) with T = 0.5 and Az = 0.1/ in 2D.

T
a Mu—wuplllp,y  Rate  |llw—walll,;  Rate  |[|p = palll,o  Rate

16 3.398x107? - 1.082x1073 - 5.598x107? -

32 1.076x107° 1.6585 2.742x107* 1.9808 1.408x107 1.9909
64 3.190x107* 1.7543 6.890x1075 1.9928 3.532x10™* 1.9953
128 8.963x107> 1.8317 1.726x107°> 1.9970 8.845x1075 1.9976

5.2. Computational efficiency

In order to demonstrate the superiority of the MGD algorithm, we conducted two numerical
experiments. The first numerical experiment is to calculate the error of V - u by using the analytical
solution (5.3) at T = 0.01, Ar = 0.0001, for the BDF2 scheme (without grad-div terms), the standard
grad-div (SGD-BDF2) scheme, and the modular grad-div (MGD-BDF2) scheme. Numerical results
are presented in Table 8. It is evident that the SGD-BDF2 and MGD-BDF2 schemes are superior to
the BDF2 scheme without grad-div terms.

AIMS Mathematics Volume 9, Issue 6, 15724-15747.



15740

Table 8. The error ||V - ¢,|| of BDF2, SGD-BDF2, and MGD-BDF2 with (P,, Py, P,) in 2D.

IV - el
1/h BDF2 SGD-BDF2 MGD-BDF2
8 2.86810 x 10718 1.94510 x 107" 2.14410 x 107"
12 4.59510 x 107" 2.52310x 107" 2.17610 x 107"
16 3.80510 x 10718 1.98010 x 107" 2.14410 x 107"
20 2.66010 x 10718 2.22310 x 107"?  2.24710 x 107"
24 3.58910 x 1071 1.98410x 107" 2.14110 x 107"

Next, our experiment focuses on increasing Re, where Re ~ v !is the Reynolds number. We
set At = h = 3%, B =02, and y = 10. In Table 9, we compare the errors for divergence velocity
with increasing Re of BDF2, SGD-BDF2, and MGD-BDF2. We notice that the error of the proposed
algorithm barely increases. It can be seen that the addition of stabilization can enhance the conservation

of mass sufficiently.

Table 9. The ||V - u|| by using (P, P;, P,) with different Re in 2D.

IV - ull
Re BDF2 SGD-BDF2 MGD-BDF2
102 2.206x10* 1.068x10™* 1.886x107°
103 2.207x107*  2.303x107°  1.143x107°
10* 2411107 2.239%107%  2.005%x107°
10° 7.851x107* 2.037x107 2.016x1077

The third numerical experiment is to test the computational efficiency by comparing the
computational time of the SGD and MGD stabilization methods by using analytical solution (5.3)
in 2D, and (5.2) for 3D. Numerical results are given in Tables 10 and 11.

In the 2D test, we fixed At = h = é while varying the parameters v and 8 and conducted a
comparison of the elapsed times for the SGD-BDF2 and MGD-BDF2 schemes. For the 3D test, At = %
and h = % were selected. Notably, when both y and g are set to 0, the MGD-BDF2 scheme essentially
transforms into the classical Galerkin BDF2 scheme. We used the standard GMRES solver to calculate
the SGD-BDF2 scheme and Step 1 of the MGD-BDF2 scheme, and a CG solver to calculate Step 2 of
the MGD-BDF2 scheme. When the GMRES solver fails to converge after a single iteration for certain
v and B, we denote this as “Failed” in tables. From Table 10 for 2D and Table 11 for 3D, we can

observe that the MGD-BDF2 scheme is superior to the SGD-BDF2 scheme.

AIMS Mathematics Volume 9, Issue 6, 15724-15747.



15741

Table 10. CPU time for SGD-BDF2 and MGD-BDF2 in different parameters for 2D.

B y  SGD-BDF2 MGD-BDF2
0 0 68.256 63.333
0 0.01 68.199 68.189
0 0.02 71.022 68.156
0 0.04 68.341 68.076
0 0.4 77.480 68.192
0 4.0 153.604 67.985
0 40.0 Failed 69.008
0  400.0 Failed 68.615
0  4000.0  Failed 68.767
001 03 87.894 68.197
002 03 97.863 68.679
004 03 176.354 68.054
008 03 173.345 68.408
040 03 Failed 68.680
4.0 0.3 Failed 68.844
400 03 Failed 68.651
4000 03 Failed 69.193
4000.0 0.3 Failed 69.170

Table 11. CPU time for SGD-BDF2 and MGD-BDF?2 in different parameters for 3D.

AIMS Mathematics

B y  SGD-BDF2 MGD - BDF2
0 0 136.698 134.183
0 0.01 133.890 135.247
0 002  134.652 132.967
0 004  129.029 135.269
0 0.4 137.143 134.538
0 4.0 313.818 135.377
0 40.0 Failed 135.718
0 4000  Failed 138.901
0  4000.0  Failed 139.175
001 03 138.972 134.537
002 03 138.076 135.689
004 03 152.295 134.755
008 03 185.929 134.700
040 0.3 338.625 135.593
4.0 0.3 Failed 137.891
400 03 Failed 138.533
4000 0.3 Failed 139.582
4000.0 0.3 Failed 138.421
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Regarding the SGD-BDF2 algorithm, as the stabilization parameter increases, the overall CPU time
generally exhibits a growing trend. Notably, in the cases of 8 = 0, y = 40 in 2D and 3D, 5 = 04,
v =0.31in 2D, and 8 = 4, ¥ = 0.3 in 3D, the SGD-BDF2 algorithm failed to converge successfully,
and is therefore marked as “Failed”.

In contrast, the CPU time performance of the MGD-BDF2 algorithm remains relatively stable,
without showing a significant increase as the stabilization parameter increases. Furthermore,
despite significant variations in the stabilization parameter, the MGD-BDF2 algorithm demonstrates
remarkable adaptability, enabling it to consistently maintain a relatively stable solving time.

5.3. The Lid-Driven flow

Next we simulated the flow on Q = [0, 1]*> by applying similar no-slip boundary conditions at the
lid. The upper boundary, where y = 1 and O < x < 1, is subject to the conditions: u; = 1, u, = 0, and
w = 0. The normal component of velocity is assumed to be zero on 9€2, while the tangential component
is zero, except at y = 1 where it is set to 1. Figures 1-3 display the components of velocity (u;, u5)
and angular velocity (w) contours for the MGD-BDF2 scheme and different viscosity coefficients v,
by using % =48 and (P?, P,, P,) elements.

(@) vo =0.1 (b) v =0.01 (c) vo = 0.005

Figure 1. Contours of horizontal velocity u; by using MGD-BDF2.

(a) vo =0.1 (b) v =0.01 (c) vo = 0.005

Figure 2. Contours of vertial velocity u, by using MGD-BDF2.
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(@) vo =0.1 (b) v =0.01 (c) vo = 0.005

Figure 3. Contours of angular velocity w by using MGD-BDF2.

Upon observation of Figures 1-3, it becomes evident that as the viscosity coefficient v, diminishes,
the components of velocity (u;, u,) and angular velocity (w) gradually lose their symmetry and deviate
toward one side.

5.4. The Bearing lubrication problem

The IMNSE model is used to simulate lubrication problems [4]. The relevant fluid domain
encompasses a ring-shaped region bounded by the outer boundary I'y with a radius of r;, and the
inner boundary I', with a radius of r,. In Figures 4-6, (u;,u,) and w adhere to the homogeneous
dirichlet boundary condition on I'j; while on I';, w = 0 and the following conditions hold: u; =
—rw,.siné, u, = —r,w,cos 6,0 = arctan%. Here, w, represents the rotational angular velocity. We will
explore three distinct scenarios, where w, takes on the values of 200, 600, and 1000. The parameters
are selected as r; = 0.1, r, = 0.06, vo = 2.0,¢; = ¢, = j=10,8=02,y = 1.0, h = -, and
At = 0.001.

(a) w, =200 (b) w, =600 (c) w, = 1000

Figure 4. Contours of horizontal velocity u; by using MGD-BDF2.
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(a) w, =200 (b) w, =600 (c) w, = 1000

Figure 5. Contours of vertical velocity u, by using MGD-BDF2.

(a) w, =200 (b) w, =600 (c) w, = 1000

Figure 6. Contours of angular velocity w by using MGD-BDF2.

Figures 4-6 show that the velocity components (u;, u,) and angular velocity (w) increase as the
rotational angular velocity w, increases. Consequently, the bearing can endure higher loads. However,
upon comparing the velocity components and angular velocity, it is evident that the polarity effect of
the fluid remains minimal, with the angular velocity tending to rotate around the inner circle. This
implies that, as the rotational angular velocity w, rises, the micro-polarity effect of the fluid becomes
more pronounced.

6. Conclusions

We have introduced a novel method (linearly extrapolated fully discrete MGD-BDF2) for solving
the IMNSE model in R¢,d = 2,3. Our scheme is second-order, fully discrete, and semi-implicit,
ensuring unconditional stability and optimal convergence rates in both time and space. By employing
this approach, we only need to solve linear systems at each time step, which simplifies the
implementation process and improves efficiency. Additionally, the study compared the computational
time differences between the MGD method and SGD methods with varying stabilization parameters.
Standard implementations showed a rapid increase in costs as the parameters increased. In addition,
the paper also simulated the flow of cavity fluids and bearing lubrication issues. These simulations
all yielded good results. The results show that the MGD-BDF2 method has a significant advantage in
computational time and keep mass conservation.

The MGD method decouples the velocity and angular velocity, yet the velocity and pressure
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remain coupled, which is typically a key challenge in solving the NS equations. In the future, we will
continue to work on the expansion of this model to a wider range of applications. For example, in
combination with pressure correction and the scalar auxiliary variable (SAV), we will explore whether
it can maintain the advantages of several algorithms.
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